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Abstract: The present study aimed at to follow the tomato fruit development and quality by hand-held near-infrared 
spectroscopy. Tomato quality were followed from few days after fruit setting until harvest at commercial maturity during 
two seasons (spring and summer). 

Results showed that in both seasons, fruit can be classified from fruit setting to harvest at maturity by using qualitative 
models (factorial discriminant analyses). 

Quantitatives models based on PLS regressions allowed the prediction of soluble solids content (R=0.9, 
RMSE=0.1%Brix), titrable acidity (R=0.9, RMSE=0.6méq.100g-1) and color (a*, R=0.9, RMSE=5) of fruit. The accuracy of 
the predictions depend on the season and also on the maturity stage. 

the results are promising in the context of developing a tool to assist in fruit phenotyping on site. Other experiment are 
now necessary to improve the accuracy and the robustness of the models with including additional varieties growing 
under variable climatic conditions in our greenhouses. 
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1. INTRODUCTION 

Study the effect of agricultural practices on the 
quality of tomato needs hundreds analysis of fruit 
quality during their development. Such analyses are 
time consuming, expensive and need the destruction of 
fruits. The destruction of fruit make it impossible to 
follow the quality construction on the same fruit. 
Thereby, the development of a methodology allowing 
the monitoring of fruit quality on plant (without picking-
up the fruit) is suitable. 

Near-infrared spectroscopy is widely used to 
develop predictive models aiming at to non-
destructively determine various fruit quality [1-5] and in 
particular tomato [6-13]. 

Recently, a study has been carried out on the 
development of NIR-based models allowing a rapid 
phenotyping of some quality traits of cherry tomato cv. 
Micro-Tom [14]. In this study the authors analysed 
tomato fruit at three maturity stages close to the 
harvest date (from mature green to fully ripe). The 
prediction of quality traits was promising for SSC, pH, 
color and firmness.  

In most studies, the variability of tomato due to 
growing season and fruit maturity are not taken into 
account. The aim of the present study is to take into 
 
 

*Address correspondence to this author at the Agroscope, Institute for Plant 
Production Sciences (IPS), Route Des Vergers 18, CH-1964, Switzerland;  
Tel: +41 58 481 35 30; E-mail: cedric.camps@agroscope.admin.ch 

account the variability due to growing season and the 
fruit maturity to build chemometric models based on 
handheld near infrared spectroscopy. The quality of 
tomatoes was monitored from fruit setting until harvest 
at commercial maturity. Because the climatic conditions 
strongly influence the construction of the fruit quality, 
monitoring the quality of tomatoes grown in 
greenhouse was carried out two times in the growing 
season, (1) early in the season (March-May) and (2) in 
full summer season (June-July). Then, because the 
tomato growth is strongly marked by maturation stage, 
chemometric models will be built with fruit before 
maturation and fruit at maturation. 

2. MATERIAL AND METHODS 

2.1. Monitoring of Fruit Quality 

Tomatoes (Solanum lycopersicum) endeavour 
variety, were grown in a glasshouse under controlled 
climatic conditions. The plantation took place the 14th 
February 2013 at a density of 3,5 shoot/m2. Climate 
instructions were as follows: a humidity (Dx) lower than 
3g/kg, temperatures of 17-19-21°C (day, night, 
aeration).  

A first batch of tomato fruit (n=162) was picked 
during early season (March to May), and a second 
batch (n=99) during summer (June - July). Fruits were 
picked every 3-4 days during their development until 
harvest. During spring period, 18 picking dates were 
carried out while 11 were necessary during summer 
period.  
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2.2. Fruit Quality  

Tomatoes were ground using a robot ("Electric 
tomato sauce sieve mod. Testarossa") and the 
homogenate-free skin and seed is recovered for further 
operations. The resulting homogenate is centrifuged 2 
minutes at 10’000 rpm. The supernatant part is used to 
soluble solids content and titrable acidity 
measurements.  

The soluble solids content of fruit has been 
performed using a digital refractometer (Reichert r2mini 
Digital Pocket Refractometer, USA). Total Acidity (TA) 
has been measured by using a titrimeter (Metrohm, 
719S, Titrino). 5 g of juice was titrated with NaOH (0.1 
mol/L) and the results were expressed in meq 100g-1. 
Spectro-colorimetry (Minolta C.O., LTD, Chroma-meter 
CR-400) was used to characterize the background 
color of whole tomato. Three parameters were taken 
into account, L* (lightness), a* (red to green) and b* 
(blue to yellow) components. 

2.3. Near-Infrared Spectroscopy and Chemometry 

Spectra of tomato fruit were acquired in reflectance 
mode and direct contact analysis (DCA) using a MEMS 
based PHAZIR (NIR PHAZIR 1018, Anatec, Eke, 
Belgium). Spectral acquisition was carried out by 
placing the fruit in contact with the extremity of the NIR 
pistol. Absorbance spectra (average of 30 scans) were 
recorded at a resolution of 8 nm from 950 to 1800 nm. 
Before analyzing the set of samples, a white reference 
scan was carried out using a piece of Spectralon®. 3 
measurements per fruit were carried out. A total 
collection of 702 spectra has been collected, 432 
spectra for spring period and 270 for summer period. 
NIR measurements have been performed on the last 
16 picking dates before harvest of spring period and 
the 10 last picking dates before harvest of summer 
period. Before these dates, fruits were too small to be 
analysed with the NIR device. Spectra were pre-treated 
by standard normal variate (SNV) in order to reduce 
the effects of uncontrolled baseline and the intensity 
variations of absorption bands [15, 16] . 

2.4. Qualitative Models: Factorial Discriminant 
Analysis  

Factorial discriminant analyses (FDA) were carried 
out on spectral data. A given spectrum curve forms a 
vector xi of p wavelengths. The n spectra were 
gathered into a matrix X dimensioned n × p. Due to the 
collinear nature of the wavelength absorbances, it was 
impossible to directly perform FDA. In order to cope 

with this collinearity, a modified version of FDA was 
applied [17]. In FDA, the qualitative groups to be 
discriminated were the picking dates expressed as the 
number of days before the harvest at commercial 
maturity. Therefore, during spring 16 picking dates 
covered a period from 48 days before harvest to 
harvest at commercial maturity. During summer, 10 
picking dates covered a period from 41 days before 
harvest to harvest at commercial maturity. 

A criterion of efficiency of the FDA is the proportion 
of correctly classified observations in validation sets. 
These validation tests were carried out by dividing the 
data matrices X into a training and a validation set. The 
FDA model was computed on the calibration set. The 
observations of the validation set were then classified 
using the established model. 

The observations correctly classified were then 
counted and expressed in percentages. Such validation 
tests were independently carried out ten times, placing 
two thirds (2n/3) of the observations in the calibration 
set and the remaining ones (n/3) in the validation set. 

FDA computes a set of discriminant scores, which 
are linear combinations of the original variables. The 
discriminant scores are new “synthetic variables” 
calculated so they can discriminate the observations. 
The correlation between the discriminant scores and 
the predictive variables will be calculated in order to 
highlight the relevant wavelengths implied in the FDA 
models. 

2.5. Quantitative Models: Partial Least Square 
Regression 

Spectra were gathered in a matrix Xn,p where n is 
the number of spectra (n=702) and p the number of 
wavelength steps (p=100). The reference-values (SSC, 
TA, L*, a* or b*) were gathered in a column vectors 
yn,1. The models were elaborated in three steps: 1) 
determination of the optimal number of latent variables 
(LV) to be used in the final model, 2) calibrate the 
model and 3) performing a cross-validation using a 
test-set. 

The step 1 has been achieve by using two different 
methods. Firstly, the maximisation of the correlation 
coefficient (R-value) and the minimisation of the root 
mean square error (RMSE) in a leave-one-out 
procedure. Secondly, the CovSel method has been 
used to confirm the choice of the optimal number of LV 
[18]. To achieve the step 2 and 3, Xn,p has been divided 
into 2 subsets, placing two thirds (2n/3) of the 
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observations in the calibration set and the remaining 
ones (n/3) in the validation set. 

The accuracy and goodness of models has been 
evaluated according to several indicators: the 
coefficient of determination (R2), root mean square 
error corrected for bias (RMSEc), the ratio performance 
to deviation (RPD) [19] and the ratio performance to 
interquartile (RPIQ) [20]. All data analyses were 
performed with Matlab R2013 and partially with SAISIR 
Package version 1.0 (http://www.chimiometrie.fr/ 
saisir_webpage.html).  

3. RESULTS 

3.1. Monitoring of Fruit Quality 

Soluble solids content (SSC), total acidity (TA), 
calibre (CAL), fresh weight (FW) and color (L*, a* and 
b*) are the main quality traits currently used in practice 
to evaluate a batch of tomato. These traits were 
followed from few days after fruit setting until harvest at 
commercial maturity during early season (March-May) 
and full season (June-July) (Figure 1). Early in the 
season, the fruit develops in approximately 55 days, 
while only 45 days are required in summer. During the 
30 days before fruit maturity, the calibre and weight of 
fresh fruit grow in a similar way (Figure 1A, B). Thus, 
this is before the last 30 days that the development is 
longer for the fruits of spring compared to summer. 
During the last 30 days, the development of calibre 
stabilizes, it is the end of the intensive phase of cell 
expansion [21]. Fruit maturation occurs between 10 
and 14 days before harvest at commercial maturity. 
Then, the rapid coloring of fruits (Figure 1C, D) and 
peaks of SSC and TA values during early maturation 
are observed (Figure 1E, F). These increases in SSC 
and TA cancel before harvest. Between 40 and 30 
days before harvest, the level of acidity decreased from 
12 to 6 méq.100g-1. This decrease could indirectly 
correspond to the influence of cycle of malate that play 
a role in transitory accumulation of starch allowing the 
increase of SSC at maturation time. Indeed, some 
study showed the influence of mitochondria cycle of 
malate on activation of AGPase and subsequent starch 
accumulation in plastids. Such accumulation during cell 
enlargement phase will be responsible of the SSC 
increase in cytosol in addition to glucose and fructose 
accumulation during maturation of fruit [22-25]. 

The follow-up of fruit development at these two 
seasons gave interesting variability of quality traits. 
Such variability will be used in the next parts of the 

present study to the development of qualitative and 
quantitative models using handheld near-infrared 
spectroscopy.  

3.2. Qualitative Models 

Factorial discriminant analyses have been 
performed on spectral data recorded from hand-held 
near-infrared spectroscopy. The groups to be 
discriminated are the picking dates expressed as the 
number of days before harvest.  

In a first step, the optimal numbers of variables to 
be introduced in the models have been determined. 
The Figure 1A and 1B show the percent of correct 
classification by FDA according to the number of 
introduced variables for spring and Summer models. 
The optimal numbers of variables for the two models 
were 11 and 8 for spring and Summer models, 
respectively (Figure 2A, B). Indeed, additional 
dimensions do not allow to improve the percent of 
correct classification and only introduce noise in the 
models. FDAs allowed a correct classification of 55 and 
71% of fruits in validation step for spring and summer 
models, respectively. Factorial maps according to the 
first two factorial scores are presented in Figure 2C and 
D. Concerning spring model, the ellipses of the picking 
dates form a parametric arc from 48 days before 
harvest to harvest date (0 days) (Figure 2C). The first 
factorial score describe the overall variability of the 
parametric arc. The second factorial score describes a 
secondary variability where the period corresponding to 
30 days before harvest would be the inflexion point. 
Concerning the summer model, the variability of 
spectral data from 41 to 30 days before harvest is 
described by the first factorial score while the variability 
of remaining data (30 days before harvest until harvest 
date) is explained by the second factorial score (Figure 
2D). In both models, the spectral data before and after 
the 30th days before harvest seems to evolve 
differently. The Figure 3 presents the relevant 
wavelengths of FDA models. Most of these important 
wavelengths related to CH, CH2 and CH3 absorption 
bands (1st, 2nd or 3rd overtones) and H2O absorption 
band (2nd overtone). The pattern of the curves 
presenting the relevant wavelengths is very similar for 
the spring and summer models. 

3.3. Quantitative Models 

Quantitative models aiming at to predict quality 
traits of tomato for both seasons (spring and summer) 
and global models gathering the two seasons data 
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Figure 1: Fruit quality along their development in glasshouse during spring (white symbols) and summer (black symbols). 
Calibre (A), FW (B), Color a* and b* (C), Color L* (D), SSC (E), TA (F). The error bars represent the standard deviations. 
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Figure 2: Percent of correct classification by FDA according to the number of introduced variables for “Spring” and “Summer” 
models (A and B). FDA maps of “Spring” and “Summer” models according to the first two factorial scores (C and D). 

were built. In a first step, the optimal numbers of latent 
variables (LV) to be introduced in the models have 
been determined. This step is crucial to cope with the 
over-fitting effect due to a too large amount of 
introduced LV in models. The minimization of RMSE 
and maximization of R in a leave-one-out procedure 
and the maximization of the co-variance (CovSel) were 
the two methods used in the present study. The results 
of PLS regressions are summarized in the Tables 1 
and 2.  

SSC 

Models depending on the season (spring and 
summer) and fruit maturity stages (before ‘BM’ and 
during maturation ‘M’) have been carried out. During 
spring, the best model was achieved with fruit before 
maturation (R=0.9, RMSE = 0.2%Brix). During 
summer, best models was built with fruit during 
maturation (R=0.9, RMSE = 0.1%Brix). Models 
gathering the fruit from both seasons were slightly less 
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B 

Figure 3: “Relevant Wavelengths in FDA” Correlation between the first two factorial scores of the FDA with the raw spectral 
data. “Spring model” (A) and “Summer model” (B). Correlation with the first factorial score F1 (●) and the second factorial score 
F2 (○ ). 

accurate with fruit picked before maturation but models 
performed with fruit during maturation remained correct 
(R= 0.9, RMSE = 0.1%Brix).  

Models previously described as correct presented 
RPD-values ranged from 1.8-2.2 (spring), 1.9-2.2 
(summer) and 1.7-2.5 (spring + summer). These values 
must be improved to reach valuable models. The 
accuracy of our SSC model is comparable to those 

reported in the literature and based on tomato cultivars 
used by producers [7, 10] Actual vs. predicted values of 
SSC are presented Figure 4.  

TA 

TA is one of the most important quality trait of 
tomato and one of the most difficult to predict by near-
infrared spectroscopy. In the present study, follow the 
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Table 1: PLS-values of prediction of SSC and TA. Season: spectral and reference data used to build the PLS model 
according to the season, data from early season (spring), full season (summer) and gathered data (spring + 
summer). Subset: data used to build the PLS models according to the development stage of fruit, before 
maturation (BM), maturation (M) and gathered data (BM + M). Step: Calibration (C) and Validation (V). LV: 
number of introduced latent variables in the PLS models. R: coefficient of correlation. RMSEc: root mean 
square error corrected for bias. RPD: ratio performance to deviation. RPIQ: ratio performance to interquartile. 
CV: coefficient of variation of reference values 

Season Spring Summer Spring + Summer 

Subset BM+M BM M BM+M BM M BM+M BM M 

Step C V C V C V C V C V C V C V C V C V 

LV 9 9 6 6 6 6 7 7 8 8 6 6 9 9 8 8 8 8 

R 0.87 0.79 0.90 0.89 0.71 0.55 0.77 0.53 0.88 0.79 0.91 0.86 0.72 0.66 0.77 0.74 0.93 0.85 

RMSEc 0.26 0.32 0.23 0.24 0.28 0.30 0.30 0.43 0.25 0.34 0.07 0.09 0.32 0.40 0.32 0.40 0.10 0.14 

RPD 1.73 1.45 2.08 1.84 1.00 0.97 1.20 0.88 1.84 1.41 2.24 1.90 1.04 0.89 1.23 0.83 2.54 1.70 

RPIQ 3.13 3.11 4.13 3.74 1.07 1.00 2.00 1.40 2.40 2.06 4.29 3.33 1.88 2.00 2.34 2.00 3.00 2.14 

SSC 

CV 12.6 12.7 12.8 12.7 10.2 8.9 10.8 11.1 12.1 12.3 4.3 4.0 11.6 13.1 12.4 14.2 6.7 6.5 

LV 5 5 5 5 7 7 8 8 7 7 8 8 8 8 3 3 6 6 

R 0.51 0.49 0.61 0.58 0.84 0.57 0.92 0.76 0.97 0.94 0.98 0.84 0.79 0.69 0.73 0.62 0.92 0.88 

RMSEc 1.99 1.91 1.42 1.49 0.69 1.43 0.63 1.15 0.35 0.57 0.22 0.52 1.41 1.7 1.46 1.71 0.42 0.53 

RPD 0.59 0.61 0.77 0.71 1.51 0.87 2.34 1.47 4.46 2.67 4.78 1.46 1.3 1.08 1.06 0.83 2.28 1.77 

RPIQ 1.78 1.84 1.57 1.4 1.96 1.11 1.57 1.37 7.11 4.46 9.77 2.77 2.08 1.39 1.22 0.92 2.05 1.7 

TA 

CV 26.5 24.7 22.6 23.3 11.1 15.0 23.3 24.0 25.4 26.4 13.7 12.9 29.3 28.9 28.8 29.3 15.4 16.0 

 
Table 2: PLS-values of prediction of L*, A* and B* colour indicators. Season: spectral and reference data used to build 

the PLS model according to the season, data from early season (spring), full season (summer) and gathered 
data (spring + summer). Subset: data used to build the PLS models according to the development stage of 
fruit, before maturation (BM), maturation (M) and gathered data (BM + M). Step: Calibration (C) and Validation 
(V). LV: number of introduced latent variables in the PLS models. R: coefficient of correlation. RMSEc: root 
mean square error corrected for bias. RPD: ratio performance to deviation. RPIQ: ratio performance to 
interquartile. CV: coefficient of variation of reference values 

Season Spring Summer Spring + Summer 

Subset BM+M BM M BM+M BM M BM+M BM M 

Step C V C V C V C V C V C V C V C V C V 

LV 6 6 7 7 7 7 8 8 5 5 8 8 8 8 8 8 4 4 

R 0.88 0.89 0.89 0.79 0.92 0.66 0.93 0.91 0.88 0.81 0.96 0.75 0.84 0.82 0.94 0.93 0.97 0.97 

RMSEc 2 1.83 1.49 1.9 0.99 2.07 7.47 7.3 1.33 1.52 0.73 1.7 7.1 7.95 1.96 2.01 3.93 3.9 

RPD 1.84 1.94 2 1.4 2.27 1.23 2.47 2.36 1.9 1.45 3.78 1.36 1.55 1.41 2.67 2.68 3.99 4 

RPIQ 2.74 2.67 2.69 2.21 3.76 1.64 5.46 0.97 3.12 2.67 5.13 1.44 1.36 1.3 4.56 4.72 8.16 8.39 

L* 

CV 8.6 8.3 6.6 6.2 5.6 5.6 46.9 37.7 5.0 4.6 17.6 15.6 28.2 31.2 10.8 10.3 50.7 49.6 

LV 9 9 7 7 6 6 7 7 6 6 7 7 8 8 5 5 9 9 

R 0.91 0.76 0.91 0.79 0.89 0.90 0.86 0.85 0.70 0.50 0.95 0.90 0.84 0.77 0.53 0.40 0.93 0.90 

RMSEc 3.43 4.56 0.81 1.16 4.59 4.71 6.37 6.64 0.85 0.98 1.51 2.01 5.84 7.01 0.95 0.93 4.12 5.02 

RPD 2.18 1.33 2.17 1.37 1.94 2.18 1.68 1.73 0.97 0.84 2.96 2.06 1.51 1.23 0.62 0.58 2.54 1.94 

RPIQ 0.9 0.68 3.46 2.41 3.97 4.97 3.51 3.46 1.41 1.38 2.9 2.67 1.15 0.48 1.45 1.51 5.29 4.78 

A* 

CV - - - - - - - - - - - - - - - - - - 

LV 7 7 6 6 2 2 8 8 6 6 7 7 8 8 6 6 3 3 

R 0.88 0.84 0.89 0.86 0.48 0.17 0.94 0.86 0.67 0.52 0.92 0.87 0.80 0.74 0.69 0.58 0.84 0.77 

RMSEc 1.71 2.02 1.71 1.8 1.87 2.09 2.52 3.21 1.84 2.2 1.35 2.29 2.93 3.43 1.78 2.02 3.17 3.71 

RPD 1.82 1.56 1.94 1.56 0.55 0.36 2.65 1.57 0.91 0.83 2.26 1.84 1.34 1.19 0.94 0.84 1.54 1.32 

RPIQ 2.69 1.88 2.68 2.39 1.87 1.41 5.74 1.95 1.52 1.52 1.55 2.6 1.38 1.21 1.67 1.39 3.87 3.1 

B* 

CV 17.2 18.3 17.5 16.5 11.9 11.4 43.0 35.4 11.6 12.0 44.4 52.4 27.1 28.8 12.1 12.3 43.5 39.8 
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Figure 4: Actual vs. predicted values of SSC parameter with PLS models. Spring models gathering BM and M data (A), BM data 
(B) and M data (C). Summer models gathering BM and M data (D), BM data (E) and M data (F). Confidence ellipses (p=0.05). 
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Figure 5: Actual vs. predicted values of L* parameter with PLS models. Spring (A) and Summer (B) models gathering BM and M 
data. Summer model of L* prediction with BM data (C) and M data (D). Centroids of confidence ellipses (p=0.05). 

fruit development from early stages to harvest at 
maturity allowed to collect data with a large range of 
TA-value (3.41 to 12.42 méq.100g-1). During spring, 
best models was built with fruit at maturation stage 
(R=0.6-0.8, RMSE = 0.7-1.4 méq.100g-1). During 
summer, correct predictions were reached with both 
maturity stages of fruit (before maturation and fruit at 
maturation) (R=0.9, RMSE ≤ 0.6 méq.100g-1). RPD-
values were correct for models of summer (RPD=4.8) 

and both seasons (RPD=2.28) but low for spring model 
(RPD=1.5). 

Color 

Results of prediction of L*, a* and b* for seasonal 
models were as accurate as for global one. L* was 
predicted with an accuracy of about 2, 7.5 and less 
than 8 L* color units during spring, summer and when 
gathered fruit from both seasons, respectively (Table 
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2). Depending on the season, R-values are ranged 
from 0.75 to 0.97. RPD-values are between 1.4 and 4 
for summer and global models and between 1.2 and 
1.9 for spring models. Such lower RPD-value 
compared to RPD of summer and global models is 
mainly due to the smaller range of TA-value during 
spring model (41.21 – 51.05) compared to summer 
model (14.10 – 60.25). In the summer model, at 
maturation time (10 to 14 days before harvest) an 
important decrease in L-values from 50 to 14 units 
occurred in only 4 days. In the same maturation period, 
L-values of fruit from spring period remained in a 
steady state with a L-value at harvest in the vicinity of 
40 units. Actual values as a function of the predicted 
values of the L* color parameter are presented in the 
Figure 5.  

The prediction of a* color parameter is important 
during the maturation stage since the red coloration of 
fruit skin occurs only during this stage. The accuracy of 
the prediction is correct for all the seasons during 
maturation stage (R ≥ 0.9). RPD-values are ranged 
from 2 to 3 and RMSE is less than 2 and 5 during 
summer and spring, respectively. 

Prediction of b* color parameter is depending on the 
maturity stage. During spring, best model was achieve 
with fruit before maturation while the best model during 
summer has been obtained with fruit during maturation. 
This makes sense because during the summer, the 
variations of b* occur during maturation while during 
spring (Figure 1).  
4. DISCUSSION 

Since a decade, the promising results obtained with 
near-infrared spectroscopy in various applications of 
agricultural and food chain have led the manufacturers 
to move towards the development of portable and 
handheld NIR spectrometers. The development of 
these devices responds to a request of users of NIR 
spectroscopy who want to use this technique further 
upstream in the quality chain. Some perspectives 
aimed at the application at field with all the difficulties 
that entails. 

Results about handheld NIR device remain scares 
in literature, often because the level of models 
accuracy is less promising than those reached with 
laboratory NIR devices. However, more results about 
handheld NIR technologies have to be published in 
order to inform the scientific community about the 
current development and potential of such recently 
developed devices. 

Furthermore, the level of expected accuracy with 
such devices will be certainly ever lower compared to 
laboratory devices but the objectives and the reasons 
why an user could use such device are different or 
should be different. A handheld NIR spectrometer, 
when it is used at field or on-site, could be developed 
to give a first idea on a screening method based on 
quantitative or qualitative chemometric model. Of 
course, in some cases a precise quantification of a 
given quality trait should be confirm by a laboratory 
measurement.  

In the present study, a follow-up of fruit quality 
during spring and summer seasons was perform on 
tomato growing in greenhouse. The measured 
variability was used to build chemometric models 
based on NIR spectroscopy. The models were 
qualitative and quantitative. The qualitative models 
showed that NIR spectroscopy could be an promising 
tool able to follow the fruit development during spring 
and summer seasons. The fruit development was 
significantly shorter during summer compared to 
spring, about 10 days. In this way, carried out 2 
discriminant (FDA) models was necessary to follow the 
fruit growing at the two seasons.  

The quantitative models allowed to reach an first 
estimation of qualitative traits of tomato. The models 
were particularly accurate for color prediction (L, a* and 
b*) and SSC but less accurate for TA. 

In the present study we decided to take into account 
the two main development stages of tomato that 
correspond to the time before maturation (BM) and the 
maturation time (M). In most cases, PLS models built 
separately for BM and M fruit were more accurate than 
those performed with BM and M fruit gathered in a 
single data set. Some studies presented the promising 
potential of portable NIR spectroscopy to predict 
tomato quality during maturation stage [14]. The study 
of Ecarnot et al. allowed the phenotyping of tomato 
subjected to a breeding program and analyze the fruit 
quality in the last days of its maturation. In view of the 
scientific literature, no study has used the inherent 
variability of tomato fruit growth and development to 
build chemometric models based on near infrared 
spectroscopy.  

Our results showed that the fruit growth and quality 
traits in early physiological stages (before maturation) 
could be followed by handheld NIR spectroscopy. The 
maturation stage was quite similar at the two seasons 
in terms of duration. Our study showed that the 
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environmental factors characterizing the two seasons 
mainly act during the period before maturation, 
certainly during cell expansion stage. In this way, it is 
more difficult to build a single PLS model for both 
seasons concerning the BM fruit.  

In the present study, two parameters were 
calculated to evaluate the potential use of the models, 
the RPD and RPIQ. RPD was developed in 1987 to 
assess the performance of predictions models [26]. 
However, this parameter requires that the analysed 
data are normally distributed, which is not always the 
case. Typically, in our study some quality traits (ex. 
Colour) change brutally after a long period of steady 
state, such parameter is not normally distributed. In 
order to cope with this problem, the RPD could be 
replaced by the RPIQ parameter that take into account 
the variability between the 1st and 3rd quartiles to be 
compared to root mean square error of the model [20]. 
The models built in the present study reached RPIQ 
values allowing a first screening of tomato. Concerning 
SSC, RPIQ values were comprised between 2 and 4.3. 
RPIQ of TA were quite good during summer (more than 
4.46) but very low during spring (less than 2.0). RPIQ 
of L* parameter were higher than 4.5 in a model 
gathering spring and summer fruit but with separating 
BM and M fruit. Finally, a* parameter is important 
because it characterize the red coloration of tomato 
skin during maturation. RPIQ of a* parameter was 
particularly high (between 2.67 and 5.29) for M fruit.  

This study takes into account the maturity of the fruit 
and the season as a factor influencing the construction 
of predictive models using NIR spectroscopy. Other 
factors may be taken into account through further 
studies. 

REFERENCES 

[1] Christen D, Camps C, Summermatter A, Gabioud Rebeaud 
S, Baumgartner D. Prediction of the pre- and postharvest 
apricot quality with different VIS/NIRs devices. Acta 
Horticulturae 2012; 966: 149-54. 

[2] Camps C, Simone C, Gilli C. Assessment of tomato quality 
using portable NIR spectroscopy and PLSR with 
wavelengths selection. Acta Horticulturae 2012; 936: 437-42. 

[3] Camps C, Christen D. On-tree follow-up of apricot fruit 
development using a hand-held NIR instrument. Journal of 
Food, Agriculture and Environment 2009; 7(2): 394-400. 

[4] Camps C, Christen D. Non-destructive assessment of apricot 
fruit quality by portable visible-near infrared spectroscopy. 
LWT - Food Science and Technology 2009; 42(6): 1125-31. 
http://dx.doi.org/10.1016/j.lwt.2009.01.015 

[5] Camps C, Guillermin P, Mauget JC, Bertrand D. 
Discrimination of storage duration of apples stored in a 
cooled room and shelf-life by visible-near infrared 
spectroscopy. Journal of near Infrared Spectroscopy 2007; 
15(3): 169-77. 
http://dx.doi.org/10.1255/jnirs.726 

[6] Baranska M, Schütze W, Schulz H. Determination of 
lycopene and beta-carotene content in tomato fruits and 
related products: Comparison of FT-Raman, ATR-IR, and 
NIR spectroscopy. Analytical Chemistry 2006; 78(24): 8456-
61. 
http://dx.doi.org/10.1021/ac061220j 

[7] Clement A, Dorais M, Vernon M. Nondestructive 
Measurement of Fresh Tomato Lycopene Content and Other 
Physicochemical Characteristics Using Visible-NIR 
Spectroscopy. Journal of Agricultural and Food Chemistry 
2008; 56(21): 9813-8. 
http://dx.doi.org/10.1021/jf801299r 

[8] Clement A, Dorais M, Vernon M. Multivariate approach to the 
measurement of tomato maturity and gustatory attributes and 
their rapid assessment by Vis-NIR Spectroscopy. Journal of 
Agricultural and Food Chemistry 2008; 56(5): 1538-44. 
http://dx.doi.org/10.1021/jf072182n 

[9] De Nardo T, Shiroma-Kian C, Halim Y, Francis D, Rodriguez-
Saona LE. Rapid and Simultaneous Determination of 
Lycopene and beta-Carotene Contents in Tomato Juice by 
Infrared Spectroscopy. Journal of Agricultural and Food 
Chemistry 2009; 57(4): 1105-12. 
http://dx.doi.org/10.1021/jf802920z 

[10] Flores K, Sanchez MT, Perez-Marin D, Guerrero JE, Garrido-
Varo A. Feasibility in NIRS instruments for predicting internal 
quality in intact tomato. J Food Eng 2009; 91(2): 311-8. 
http://dx.doi.org/10.1016/j.jfoodeng.2008.09.013 

[11] Kusumiyati A, Akinaga T, Tanaka M, Kawasaki S. On-tree 
and after-harvesting evaluation of firmness, color and 
lycopene content of tomato fruit using portable NIR 
spectroscopy. Journal of Food Agriculture & Environment 
2008; 6(2): 327-32. 

[12] Pedro AMK, Ferreira MMC. Nondestructive determination of 
solids and carotenoids in tomato products by near-infrared 
spectroscopy and multivariate calibration. Analytical 
Chemistry 2005; 77(8): 2505-11. 
http://dx.doi.org/10.1021/ac048651r 

[13] Pedro AMK, Ferreira MMC. Simultaneously calibrating solids, 
sugars and acidity of tomato products using PLS2 and NIR 
spectroscopy. Analytica Chimica Acta 2007; 595(1-2): 221-7. 
http://dx.doi.org/10.1016/j.aca.2007.03.036 

[14] Ecarnot M, Baczyk P, Tessarotto L, Chervin C. Rapid 
phenotyping of the tomato fruit model, Micro-Tom, with a 
portable VIS-NIR spectrometer. Plant Physiol Biochem 2013; 
70: 159-63. 
http://dx.doi.org/10.1016/j.plaphy.2013.05.019 

[15] Barnes RJ, Dhanoa MS, Lister SJ. Standard normal variate 
transformation and de-treding of near-infrared diffuse 
reflectance spectra. Applied Spectroscopy 1989; 43(5): 772-
7. 
http://dx.doi.org/10.1366/0003702894202201 

[16] Moons E, Sinnaeve G. non destructive Vis and NIR 
spectroscopy measurement for the determination of apple 
internal quality. Acta Hort 2000; 517: 441-8. 

[17] Bertrand D, Courcoux P, Autran JC, Meritan R, Robert P. 
Stepwise canonical discriminant-analysis of continuous 
digitized signals - application to chromatograms of wheat 
proteins. Journal of Chemometrics 1990; 4(6): 413-27. 
http://dx.doi.org/10.1002/cem.1180040605 

[18] Roger JM, Palagos B, D. B, E. F-A. CovSel: Variable 
selection for highly multivariate and multi-response 
calibration: Application to IR spectroscopy. Chemometrics 
and Intelligent Laboratory Systems 2011; 106: 216-23. 
http://dx.doi.org/10.1016/j.chemolab.2010.10.003 

[19] Williams P, Sobering D. Comparison of commercial near 
infrared transmittance and reflectance instruments for 
analysis of whole grains and seeds. Journal of Near Infrared 
Spectroscopy 1993; 1(1): 25-32. 
http://dx.doi.org/10.1255/jnirs.3 



38     Global Journal of Agricultural Innovation, Research & Development, 2014, Vol. 1, No. 1 Camps et al. 

[20] Bellon-Maurel V, Fernandez-Ahumada E, Palagos B, Roger 
JM, McBratney A. Critical review of chemometric indicators 
commonly used for assessing the quality of the prediction of 
soil attributes by NIR spectroscopy. Trac-Trends in Analytical 
Chemistry 2010; 29(9): 1073-81. 
http://dx.doi.org/10.1016/j.trac.2010.05.006 

[21] Giovannoni JJ. Genetic regulation of fruit development and 
ripening. Plant Cell 2004; 16: S170-S80. 
http://dx.doi.org/10.1105/tpc.019158 

[22] Beckles DM, Hong N, Stamova L, Luengwilai K. Biochemical 
factors contributing to tomato fruit sugar content: a review. 
Fruits 2012; 67(1): 49-64. 
http://dx.doi.org/10.1051/fruits/2011066 

[23] Centeno DC, Osorio S, Nunes-Nesi A, Bertolo ALF, Carneiro 
RT, Araujo WL, et al. Malate Plays a Crucial Role in Starch 
Metabolism, Ripening, and Soluble Solid Content of Tomato 

Fruit and Affects Postharvest Softening. Plant Cell 2011; 
23(1): 162-84. 
http://dx.doi.org/10.1105/tpc.109.072231 

[24] Luengwilai K, Beckles DM. Starch Granules in Tomato Fruit 
Show a Complex Pattern of Degradation. J Agric Food Chem 
2009; 57(18): 8480-7. 
http://dx.doi.org/10.1021/jf901593m 

[25] Petreikov M, Yeselson L, Shen S, Levin I, Schaffer AA, Efrati 
A, et al. Carbohydrate Balance and Accumulation during 
Development of Near-isogenic Tomato Lines Differing in the 
AGPase-L1 Allele. J Am Soc Hortic Sci 2009; 134(1): 134-40. 

[26] Williams PC. Variables affecting near-infrared reflectance 
spectroscopic analysis. Near-infrared Technology in the 
Agricultural and Food Industries: Williams P, Norris K (eds). 
American Association of Cereal Chemists: St. Paul, MN; 
1987. p. 143–67. 

 
Received on 10-11-2014 Accepted on 18-11-2014 Published on 27-11-2014 

DOI: http://dx.doi.org/10.15377/2409-9813.2014.01.01.4 

© 2014 Camps et al.; Avanti Publishers. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in 
any medium, provided the work is properly cited. 

 


