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Abstract: Symplectites form during post-orogenic fast uplift processes in orogenic belts, and retrograde Symplectic 
assemblages mainly consist of plagioclase + quartz ± orthopyroxene ± clinopyroxene in mafic granulites or plagioclase + 
hornblende + quartz ± biotite in amphibolites, usually rimming relict garnet porphyroblasts. Such Symplectic 
assemblages resulted from retrograde reactions between garnet and other peak-metamorphic minerals by nearly 
isothermal decompression (ITD), so the Symplectic mineral assemblages could not be at equilibrium with the relict 
garnet rims and thus the so-called “local equilibrium” between garnet rims and the Symplectic assemblages does not 
exist. Thus, the P-T conditions of the Symplectic assemblages are best determined using only the Symplectic mineral 
compositions. This is best accomplished using garnet-free thermobarometers, i.e., two-pyroxene or hornblende-
plagioclase thermometer in combination with the hornblende-plagioclase-quartz or applying the clinopyroxene-
plagioclase-quartz geobarometer to minerals within the symplectites. Taking two mafic granulite samples and two 
amphibolite samples as examples, reasonable ITD P-T paths from the metamorphic peaks to retrogression stages have 
been derived, but P-T paths obtained using the relict garnet rims and the Symplectic minerals gave anomalous results. 
These examples demonstrate that the P-T conditions of the retrograde Symplectic assemblages cannot be estimated 
using chemical compositions of the decomposed, relict garnet rims in this case. 
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1. INTRODUCTION 

Accurately retrieving metamorphic P-T paths is 
important for understanding the tectonothermal evolu-
tion of orogenic belts, since different P-T paths can 
record different tectonic processes. For example, the 
clockwise, western Alpine type P-T paths result from 
subduction or continental collisional zones [1] and are 
characterized by prograde and peak metamorphism 
followed by nearly isothermal decompression (ITD) 
segments. Such P-T paths are related to crustal over 
thickening followed by erosional exhumation and/or ex-
tensional thinning and may be caused by either 
tectonic unroofing during post-orogenic collapse, such 
as in extensional terranes, or by very rapid erosion [1-
4]. Examples of these P-T paths come from the Tauern 
Window [5] and the Palaeoproterozoic Trans-North 
China Orogen [6-9]. The clockwise, Franciscan type P-
T paths are characterized by retrograde return paths 
being generally parallel to the prograde P-T trajectories 
[1] and these P-T paths are seen in the Franciscan 
amphibolites [10], the Late Archean basement rocks in 
the Eastern and Western Blocks of the North China 
Craton [11,12], Spain [13], and New Zealand [14]. 
Anticlockwise P-T paths, on the contrary, are related to 
the emplacement of plutons [15,16] or have formed in 
or beneath areas of voluminous magmatic accretion 
with or without crustal extension [2]. 
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Metamorphic P-T paths are recovered using (1) 
thermodynamically modeled phase equilibrium 
relations or (2) by conventional geothermobarometry. 
Metamorphic P-T paths may be reconstructed from 
Isochemical P-T sections (P-T pseudosections) using 
modeling software, such as GIBBS [17,18], 
THERMOCALC [19], Perple_X [20] or THERIA_G [21]. 
The P-T paths are inferred by comparing the sequential 
appearance of different mineral assemblages pre-
served in metamorphic rocks with the calculated 
assemblages [14, 22-37]. Alternatively, geothermo-
barometers are applied to mineral assemblages of 
different metamorphic stages to construct the P-T 
paths [6-8, 9, 13, 38-56]. In any case, metamorphic P-T 
paths are determined on the basis of at least two 
mineral assemblages formed at different metamorphic 
stages, or alternatively, from mineral zoning or 
changing mineral abundance without any change in 
assemblage. 

It should be stated that thermobarometry of high-
grade rocks suffers greatly from partial retrograde re-
equilibration (particularly but not restricted to Fe-Mg 
exchange) leading to erroneous P-T results. Con-
versely, although pseudosections avoid the problems 
of retrograde re-equilibration, they have problems 
associated with changing bulk composition, such as 
melt loss or gain. 

Rocks that have undergone post-collisional, fast 
uplift may produce and preserve retrograde textures 
including symplectites or coronas. In garnet-bearing 
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mafic granulites or amphibolites, such processes 
usually produce the so-called “white-eye socket” 
Symplectic assemblages [57, 58] consisting of 
plagioclase + quartz ± orthopyroxene ± clinopyroxene 
(in mafic granulites) or plagioclase + hornblende + 
quartz ± biotite (in amphibolites) rimming relict garnet 
porphyroblasts. Such Symplectic assemblages are 
common in mafic granulites and commonly indicate 
isothermal decompression into the orthopyroxenebea-
ring, medium-P granulite facies [2, 59]. Decompression 
is suggested by the increase in Ca content in the 
newly-formed Symplectic plagioclase combined with 
the decrease in Ca in adjacent garnet rims [60]. It is 
quite necessary to estimate accurately P-T conditions 
of such retrograde Symplectic assemblages in order to 
understand accurately orogenic processes. In theory, 
P-T conditions of such assemblages should be 
determined using the chemical compositions of the 
Symplectic assemblages. Unfortunately, there is a 
wrong but ubiquitous routine work in determining the P-
T conditions of the retrograde assemblages: almost all 
over the world, workers suppose that there exist the so-
called “local equilibrium” between the older generation 
minerals (e.g., garnet) and the younger mineral 
assemblages (e.g., the retrograde minerals in corona 
or symplectite), thus estimate the retrograde P-T 
conditions by applying thermobarometry using the 
mineral compositions of both the garnet rim and 
minerals in the corona or symplectite, as done in the 
literature elsewhere for mafic granulites [39,41,48,60-
85]. Not surprisingly, one always obtains incorrect 
retrograde P-T conditions and accordingly, derived bias 
conclusions concerning tectono-metamorphic process-
es. Correctly computing P-T conditions of retrograde 
assemblages is quite scarce hitherto, to our 
knowledge. 

Such retrograde “white-eye socket” Symplectic 
assemblages have been found to be present both in 
the mafic granulite enclaves in TTG gneisses [6-
9,47,58] elsewhere in the Trans-North China Orogen 
(TNCO) [86, 87], as well as mafic granulites in 
Antarctica [28]. In this paper, we have determined the 
P–T conditions of such retrograde Symplectic 
assemblages using the chemical compositions of the 
minerals in the symplectite assemblages themselves 
and the results show that erroneous P–T conditions 
have been obtained where using garnet rims in 
thermobarometric computation. 

In this work, symbols of minerals are adopted from 
the scheme of Whitney and Evans [88]. Abbreviations 
of geothermobarometers used hereafter are as follows: 

CPQ= the clinopyroxene – plagioclase – quartz 
geobarometer [89].  

COPQ= the two – pyroxene geothermometer [90] 
paired with the clinopyroxene – plagioclase – quartz 
geobarometer [89]. 

GCPQ= the garnet – clinopyroxene geothermometer 
[91] combined with the garnet – clinopyroxene – 
plagioclase – quartz geobarometer [92]. 

GHPQ= the plagioclase – hornblende thermometer [93] 
coupled with the garnet – hornblende – plagioclase – 
quartz geobarometer [94]. 

GOPQ= the garnet – orthopyroxene geothermometer 
adjoined the garnet – orthopyroxene – plagioclase – 
quartz geobarometer [95]. 

HPQ= plagioclase – hornblende geothermometer [93] 
fixed with the hornblende – plagioclase – quartz 
geobarometer [96]. 

Chemical compositions of the minerals were 
determined using a wavelength dispersive electron 
microprobe Cameca SX51 equipped at the Institute of 
Geology and Geophysics, Chinese Academy of 

Sciences, Beijing, China. The analytical conditions 
were 15 kV accelerating voltage, 20 nA beam current, 5 
µm electron beam diameter and 20 seconds of 
counting time. The program PAP was used for matrix 
corrections. Reported mineral compositions are 
averaged values of up to twenty spot analyses for 
every component. Ferric contents of garnet, 
orthopyroxene and clinopyroxene were determined 
according to the method of Droop [97]. For amphibole, 
ferric iron contents were determined according to the 
method of Holland and Blundy [93]. Chemical 
compositions of the minerals used for the P-T 
determinations are listed in Tables 1-4. 

2. MAFIC GRANULITES 

2.1. Mafic Granulite Sample Lu02 

In eastern Shandong Province, mafic granulites, 
amphibolites and metamorphic ultramafic rocks are 
exposed as discontinuous boudins or lenses within the 
late Archean TTG gneisses [55], basement of the North 
China Craton [86]. Sample Lu02 is a high-pressure 
mafic granulite enclave in TTG gneiss and was 
collected from the Jiaobei terrane and in this sample 
three generations of metamorphic assemblages are 
recognized (Figure 1a). Weak chemical zoning of the
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Table 1: Representative EMPA Data for Minerals in Mafic Granulite Sample LU02 Shown in Figure 1a 

  Metamorphic Peak Assemblage Resorbed Residual Retrograde Assemblage 

  Grt2 Cpx2 Pl2 Hbl2 Grt rim Cpx3 Hbl3 Pl3 

SiO2   39.18 49.94 59.03 40.43 39.17 51.03 40.96 56.49 

TiO2   0.08 0.47 0.01 2.45 0.06 0.26 2.00 0.01 

Al2O3  21.32 4.21 25.52 12.87 21.25 2.61 13.41 27.13 

FeO    22.52 13.11 0.12 19.59 24.65 12.48 18.82 0.14 

MnO    0.78 0.32 0.01 0.22 1.83 0.38 0.23 0.00 

MgO    2.93 10.21 0.01 7.62 3.17 10.71 7.86 0.01 

CaO    14.16 20.67 7.48 11.18 10.95 21.44 11.30 9.51 

Na2O   0.01 0.68 7.24 2.36 0.04 0.44 2.25 6.02 

K2O    0.00 0.02 0.17 0.85 0.00 0.01 0.83 0.12 

ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cr2O3  0.03 0.03 0.02 0.04 0.02 0.05 0.13 0.01 

NiO    0.00 0.02 0.01 0.03 0.00 0.01 0.02 0.00 

Total   101.01 99.69 99.61 97.64 101.14 99.42 97.81 99.44 

Cations Per Formula Unit 
Si 3.03 1.90 2.65 6.19 3.04 1.95 6.23 2.55 

Ti 0.00 0.01 0.00 0.28 0.00 0.01 0.23 0.00 

Al 1.94 0.19 1.35 2.32 1.95 0.12 2.40 1.44 

Fe2+ 1.46 0.38 0.00 2.43 1.60 0.39 2.33 0.00 

Fe3+ 0.00 0.04 0.00 0.08 0.00 0.01 0.06 0.00 

Mn 0.05 0.01 0.00 0.03 0.12 0.01 0.03 0.00 

Mg 0.34 0.58 0.00 1.74 0.37 0.61 1.78 0.00 

Ca 1.17 0.84 0.36 1.83 0.91 0.88 1.84 0.46 

Na 0.00 0.05 0.63 0.70 0.01 0.03 0.66 0.53 

K 0.00 0.00 0.01 0.17 0.00 0.00 0.16 0.01 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Ni 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Total 8.00 4.00 5.00 15.78 8.00 4.00 15.72 4.99 

 
Xalm 0.48    0.53    
Xpyr 0.11    0.12    
Xgrs 0.39    0.30    
Xsps 0.02    0.04    
An     0.36         0.46 

 
Table 2: Representative EMPA Data for Minerals in Mafic Granulite Sample EP1-12 Shown in Figure 1c 

 Matrix Assemblage (M2) Symplectite Assemblage (M3) 

 Grt2 Pl2 Hbl2 Cpx2 Pl3 Hbl3 Cpx3 Opx3 

SiO2 38.30 53.39 44.43 48.76 45.17 45.57 51.80 51.35 

TiO2 0.04 0.03 1.27 0.56 0.00 0.90 0.23 0.00 

Al2O3 21.17 28.66 10.96 5.66 33.84 10.22 2.31 1.74 

FeO(tot) 25.99 0.16 14.39 10.08 0.24 14.10 9.01 26.23 

MnO 0.84 0.00 0.07 0.08 0.00 0.02 0.14 0.17 
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(Table 2). Continued 

 Matrix Assemblage (M2) Symplectite Assemblage (M3) 

 Grt2 Pl2 Hbl2 Cpx2 Pl3 Hbl3 Cpx3 Opx3 

MgO 6.13 0.00 11.90 11.65 0.01 12.32 13.43 19.96 

CaO 7.36 11.86 11.95 21.73 18.74 12.07 23.29 0.40 

Na2O 0.00 5.73 1.57 0.58 1.25 1.38 0.37 0.00 

K2O 0.00 0.07 0.39 0.01 0.00 0.22 0.00 0.00 

ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cr2O3 0.13 0.00 0.08 0.02 0.00 0.09 0.07 0.03 

NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 99.92 99.90 97.01 99.13 99.25 96.89 100.65 99.88 

Cations Per Formular Unit 

Si 2.980 2.428 6.572 1.837 2.105 6.713 1.917 1.943 

Ti 0.000 0.001 0.141 0.016 0.000 0.100 0.006 0.000 

Al 1.940 1.535 1.911 0.252 1.857 1.775 0.101 0.078 

Fe2+ 1.606 0.006 1.529 0.234 0.009 1.481 0.202 0.796 

Fe3+ 0.085 0.000 0.251 0.084 0.000 0.257 0.077 0.034 

Mn 0.055 0.000 0.009 0.003 0.000 0.002 0.004 0.005 

Mg 0.711 0.000 2.623 0.654 0.001 2.705 0.741 1.126 

Ca 0.614 0.578 1.894 0.877 0.936 1.905 0.923 0.016 

Na 0.000 0.505 0.450 0.042 0.113 0.394 0.027 0.000 

K 0.000 0.000 0.074 0.000 0.000 0.041 0.000 0.000 

Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Cr 0.008 0.000 0.009 0.001 0.000 0.010 0.002 0.001 

Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

X(alm) 0.538        

X(pyr) 0.238        

X(gros) 0.206        

X(sps) 0.018        

 

X(An)  0.53   0.89    

 

Table 3: Representative EMPA Data for Minerals in Amphibolite Sample HB32D Shown in Figure 2a 

 Matrix Assemblage (M2) Symplectite Assemblage (M3) 

 Grt2 Pl2 Hbl2 Cpx2 Pl3 Hbl3 

SiO2 36.48 57.94 44.86 51.74 57.46 44.96 

TiO2 0.05 0.02 1.37 0.24 0.03 1.46 

Al2O3 21.08 26.57 11.46 3.51 27.27 11.96 

FeO(tot) 24.27 0.10 13.73 8.28 0.04 13.65 

MnO 0.27 0.04 0.00 0.04 0.03 0.01 
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(Table 3). Continued 

 Matrix Assemblage (M2) Symplectite Assemblage (M3) 

 Grt2 Pl2 Hbl2 Cpx2 Pl3 Hbl3 

MgO 4.32 0.01 11.76 12.49 0.00 11.97 

CaO 12.84 8.38 11.53 22.96 9.03 11.56 

Na2O 0.01 6.93 1.61 0.61 6.52 1.69 

K2O 0.00 0.17 0.58 0.04 0.14 0.59 

ZnO 0.00 0.00 0.00 0.00 0.00 0.00 

Cr2O3 0.04 0.01 0.04 0.00 0.02 0.03 

NiO 0.03 0.00 0.09 0.02 0.03 0.06 

Total 99.4 100.2 97.0 99.9 100.6 98.0 

Cations Per Formular Unit 

Si 2.86 2.59 6.63 1.93 2.56 6.57 

Ti 0.01 0.00 0.15 0.01 0.00 0.16 

Al 1.95 1.40 2.00 0.15 1.43 2.06 

Fe2+ 1.28 0.00 0.55 0.23 0.00 0.46 

Fe3+ 0.33 0.01 1.15 0.03 0.00 1.21 

Mn 0.02 0.00 0.00 0.00 0.00 0.00 

Mg 0.50 0.00 2.59 0.69 0.00 2.61 

Ca 1.08 0.40 1.83 0.92 0.43 1.81 

Na 0.00 0.60 0.46 0.04 0.56 0.48 

K 0.00 0.01 0.11 0.00 0.01 0.11 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 

Ni 0.00 0.00 0.01 0.00 0.00 0.01 

X(alm) 0.44      

X(pyr) 0.18      

X(gros) 0.37      

X(sps) 0.01      

X(An)  0.40   0.43  

 

Table 4: Representative EMPA Data for Minerals in Amphibolite Sample HN424 Shown in Figure 2c 

 Matrix Assemblage (M2) Symplectite Assemblage (M3) 

 Grt2 Pl2 Hbl2 Cpx3 Pl3 Hbl3 

SiO2 34.94 58.68 41.87 51.68 59.30 42.60 

TiO2 0.06 0.03 2.12 0.17 0.05 2.06 

Al2O3 21.15 26.50 11.64 1.47 25.82 11.13 

FeO(tot) 28.85 0.04 20.17 13.11 0.09 19.83 

MnO 2.37 0.01 0.23 0.35 0.02 0.24 

MgO 3.63 0.00 8.13 11.51 0.01 8.60 

CaO 7.53 7.86 11.26 21.79 7.44 11.43 

Na2O 0.06 7.16 1.87 0.41 7.39 1.75 

K2O 0.00 0.17 1.06 0.00 0.21 1.09 
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(Table 4). Continued 

 Matrix Assemblage (M2) Symplectite Assemblage (M3) 

 Grt2 Pl2 Hbl2 Cpx3 Pl3 Hbl3 

ZnO 0.00 0.00 0.00 0.00 0.00 0.00 

Cr2O3 0.02 0.00 0.02 0.07 0.01 0.02 

NiO 0.03 0.03 0.03 0.00 0.00 0.00 

Total 99.8 100.5 98.4 100.6 100.3 98.7 

Cations Per Formular Unit 

Si 2.80 2.61 6.33 1.95 2.64 6.40 

Ti 0.00 0.00 0.24 0.00 0.00 0.23 

Al 2.00 1.39 2.08 0.07 1.35 1.97 

Fe2+ 1.58 0.00 1.00 0.36 0.00 1.04 

Fe3+ 0.39 0.00 1.55 0.06 0.00 1.45 

Mn 0.16 0.00 0.03 0.01 0.00 0.03 

Mg 0.43 0.00 1.83 0.65 0.00 1.93 

Ca 0.65 0.37 1.82 0.88 0.35 1.84 

Na 0.01 0.62 0.55 0.03 0.64 0.51 

K 0.00 0.01 0.21 0.00 0.01 0.21 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 

Ni 0.00 0.00 0.00 0.00 0.00 0.00 

X(alm) 0.56   

X(pyr) 0.15   

X(gros) 0.23   

X(sps) 0.06   

X(An)  0.37   0.35  

 

garnet was detected. The inclusion assemblage (M1) 
within garnet porphyroblast is mainly consisted of 
clinopyroxene + hornblende + plagioclase ± quartz, the 
metamorphic peak assemblage (M2) is mainly 
composed of garnet and matrix minerals 
(clinopyroxene + hornblende + plagioclase + quartz ± 
magnetite) and the retrograde Symplectic assemblage 
(M3) is generally constituted by clinopyroxene + 
orthopyroxene + hornblende + plagioclase + quartz ± 
ilmenite. The P-T conditions of the metamorphic peak 
(M2) were estimated to be of 11.5kbar/885°C and 
12.3kbar/810°C through applying the GCPQ and 
GHPQ thermobarometers, respectively. The P-T 
conditions of the retrograde Symplectic assemblages 
(M3) were estimated to be of 9.0kbar/802°C and 
1.8kbar/802°C, respectively, using the garnet-free 
hornblende-plagioclase thermometer combined with 
the HPQ and CPQ barometers and thus ITD P-T paths 
were obtained for the retrograde metamorphic process 

(Figure 1b) which is the case. Alternatively, when using 
the garnet rim compositions combined with the 
Symplectic assemblages (M3), erroneous results of 
13.0kbar/770°C (GCPQ) and 11.9kbar/780°C (GHPQ) 
were yielded, respectively, and thus bias P-T paths 
were obtained (Figure 1b). 

2.2. Mafic Granulite Sample EP1-12 

Sample EP1-12 is a garnet-bearing mafic granulite 
metamorphosed in the Late Neoproterozoic-Cambrian, 
collected from the Grove Mountains, East Antarctica 
[28]. The prograde assemblages (M1) are inclusion 
assemblages (plagioclase + hornblende + rutile) 
preserved in the garnet cores, and garnets and the 
matrix assemblages (clinopyroxene + plagioclase + 
hornblende + quartz) constitute the metamorphic peak 
assemblages (M2), and the retrograde Symplectic 
assemblages (M3) are fine-grained vermicular 
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symplectites consisted of clinopyroxene + orthopyro-
xene + hornblende + plagioclase rimming embayed, 
relict garnet porphyroblasts (Figure 1c). No chemical 
zoning of the garnet was detected. Thermodynamic P-
T pseudosection calculation suggests that such mafic 
granulite has recorded a clockwise P-T path passing 
from 830°C/9.2kbar (M1) through 840°C/11.8kbar (M2) 
to 840°C/8.2kbar (M3), demonstrating the retrograde 
segment (M2→M3) being an ITD–type path [28]. The 
P-T conditions of the metamorphic peak (M2) were 
estimated using geothermobarometers to be of 
11.8kbar/744°C (GCPQ) and 9.3kbar/745°C (GHPQ), 
respectively, and the P-T conditions of the retrograde 
Symplectic assemblages (M3) were estimated to be of 
1kbar/708°C using the garnet-free COPQ thermobaro-
meters. Thus the retrograde process was determined 

to be an ITD P-T path from the M2 to M3 stages. 
However, when using garnet-bearing thermobaro-
meters, erroneous P-T conditions of either 8.7kbar/-
828°C (GHPQ) or 4.4kbar/537°C (GCPQ) or 7.4kbar/-
774°C (GOPQ) for the M3 assemblages have been 
yielded, leading to clearly bias P-T paths (Figure 1d). 
This again demonstrates that the porphyroblastic 
garnet rims should not be included in the P-T 
estimations of symplectites. 

3. AMPHIBOLITES 

3.1. Amphibolite Sample HB32D 

Garnet-bearing amphibolites and garnet- and 
kyanite-bearing metapelitic gneisses are intercalated 
elsewhere in the late Palaeoproterozoic Zanhuang 

       

     
Figure 1: Photomicropetrographs and metamorphic P-T paths of the mafic granulites. (a) Sample Lu02 and its metamorphic P-T 
paths (b). (c) Sample Ep1-12 and its metamorphic P-T paths (d). Mineral abbreviations: Grt, garnet; Cpx, clinopyroxene; Opx, 
orthopyroxene; Pl, plagioclase. Thermobarometer symbols: GCPQ, the garnet – clinopyroxene geothermometer [91] combined 
with the garnet – clinopyroxene – plagioclase – quartz geobarometer [92]; GHPQ, the plagioclase – hornblende thermometer 
[93] coupled with the garnet – hornblende – plagioclase – quartz geobarometer [94]; HPQ, plagioclase – hornblende 
geothermometer [93] fixed with the hornblende – plagioclase – quartz geobarometer [96]; HP-CPQ, the plagioclase – 
hornblende thermometer [93] coupled with the clinopyroxene – plagioclase – quartz geobarometer [89] GOPQ, the garnet – 
orthopyroxene geothermometer adjoined the garnet – orthopyroxene – plagioclase – quartz geobarometer [95]; COPQ = the two 
– pyroxene geothermometer [90] paired with the clinopyroxene – plagioclase – quartz geobarometer [89]. 
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metamorphic complex, Trans-North China Orogen and 
this terrane had experienced upper amphibolite to 
granulite facies metamorphism characteristic of 
clockwise P-T paths including retrograde ITD segments 
[9] in the Palaeoproterozoic [98]. Sample HB32D was 
collected from the Zanhuang terrane and three 
generations of mineral assemblages are preserved in 
this sample (Figure 2a). The prograde assemblage 
(M1) is mainly consisted of quartz + plagioclase + 
hornblende ± biotite included within garnet 
porphyroblasts. The metamorphic peak assemblage 
(M2) is dominantly composed of garnet porphyroblasts 
and the matrix minerals (plagioclase + hornblende + 
quartz ± clinopyroxene ± biotite). The retrograde 
coronitic symplectites (M3) are consisted mainly of 
plagioclase + hornblende + quartz ± magnetite ± pyrite 
intergrowths rimming embayed, relic garnet 
porphyroblasts. No chemical zonation of garnet was 
found. The P-T conditions of the metamorphic peak 
(M2) were determined to be 10.5kbar/688°C by the 
GHPQ and 12.8kbar/668°C by the GCPQ thermo-
barometers, respectively. The HPQ thermo-barometer 

yielded P-T conditions of the Symplectic assemblage 
(M3) to be of 5.7kbar/696°C. Thus the ITD P-T path 
was obtained (Figure 2b) which is the case. However, 
when applying the GHPQ thermobarometer using 
chemical compositions of the garnet rim and minerals 
in the symplectite, the P-T conditions of the symplectite 
assemblages (M3) were estimated to be of 
10.6kbar/710°C, thus an erroneous, prograde P-T path 
of the retrograde process was retrieved (Figure 2b). 

3.2. Amphibolite Sample HN424 

Sample HN424 was collected from a 
metamorphosed gabbroic dyke within TTG gneiss in 
the Lushan Terrane, southern terminal of the 
Palaeoproterozoic Trans-North China Orogen. Three 
episodes of metamorphic mineral assemblages were 
found in this rock (Figure 2c). The first generation 
assemblages (M1) are inclusion minerals (quartz + 
ilmenite) preserved in the garnet porphyroblasts 
although the P-T conditions cannot be determined due 
to lack of suitable geothermometers and geobaro-

      

      

Figure 2: Photomicropetrograph and metamorphic P-T paths of the amphibolites. (a) Sample HB32D and its P-T paths (b). (c) 
Sample HN424 and its P-T paths (d). Mineral abbreviations and thermobarometer symbols are the same as in Figure 1. 
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meters. The chemical compositions of the garnet grains 
are nearly homogeneous. The metamorphic peak 
assemblages (M2) are represented by garnet 
porphyroblasts and matrix minerals (plagioclase + 
hornblende + quartz ± biotite) and the P-T conditions 
were estimated to be of 8.1kbar at 763°C by applying 
the GHPQ thermobarometer. The retrograde 
Symplectic assemblages (M3) are consisted of 
hornblende + plagioclase + quartz ± clinopyroxene 
rimming embayed, relic garnet porphyroblasts and the 
P-T conditions of 4.3kbar at 747°C were determined by 
HPQ thermobarometry. Thus, an ITD P-T path was 
retrieved (Figure 2d). But, when applying the GCPQ 
thermobarometers using both the garnet rims and the 
Symplectic assemblages the P-T conditions were 
estimated to be 9.1kbar at 618°C and thus a fake 
cooling and pressure-increasing P-T path was rebuilt 
(Figure 2d). 

4. DISCUSSION 

Although the absolute and random errors of the 
geothermobarometers used here are not discussed, 
these thermometers and barometers are the most 
reliable ones among the different versions. However, 
the trends of the derived P-T paths are not distorted by 
the inherited errors of these thermobarometers, 
because the errors are well below the P-T differences 
between the different generations of mineral 
assemblages formed at different metamorphic stages. 

In nature, it is commonly seen that supercooled 
water (such as of –15°C) freezes directly at tempera-
tures far below 0°C at 1 bar in the winter, deviating 
greatly below from the equilibrium state of ice and 
water in the P-T space, thus one cannot take it for 
granted that water consolidates to ice at 0°C/1bar 
exactly. Quite similar phenomena exist on the 
formation of retrograde symplectites or coronas in 
granulites or amphibolites. In mafic granulites, 
symplectites or coronas were generated by the 
decomposition reactions between garnet rims and 
adjacent matrix minerals (e.g., clinopyroxene ± 
orthopyroxene ± hornblende ± plagioclase ± biotite), 
and in many amphibolites the retrograde assemblages 
were also formed by the decomposition reactions 
between garnet rims and adjacent matrix minerals 
(e.g., hornblende ± plagioclase ± biotite ± 
clinopyroxene). Suppose that an equilibrium 
decomposition reaction occurs at 8 kbar and 750°C in 
a mafic granulite, then, in nature, when pressure 
decreases to well below 8 kbar (rather than at 8 kbar 

exactly) at the temperature of ~750°C, the reaction 
may be much more easily to occur. It is thus 
anticipated that most decompression, decomposition 
reactions deviate significantly from the equilibrium 
reaction conditions. If one believes that the garnet rims 
were at thermodynamic equilibrium with the newly 
formed, adjacent Symplectic or coronitic minerals when 
a decomposition reaction occurs, then the probability 
may be comparable to that of a passing-by meteoroid 
hitting an astronomer! This is the most important 
reason why we cannot estimate the P-T conditions of 
the Symplectic assemblages using chemical 
compositions of both the Symplectic minerals and the 
garnet rims. 

But we do not imply that one particular Symplectic 
or coronitic assemblage itself is necessarily at 
equilibrium, either. In fact, if there is chemical 
heterogeneity among different grains of the same 
mineral or even if there is chemical heterogeneity in 
one grain in the symplectite, then disequilibrium does 
exist in such a Symplectic assemblage. In such case P-
T conditions of the symplectites or coronas cannot be 
determined by thermobarometers any longer. 

CONCLUSION 

(a) The garnet rims were hardly at, but usually 
deviate significantly from, thermodynamic equilibrium 
with the newly formed, adjacent minerals within the 
symplectite or corona, when the decomposition 
reaction occurred; 

(b) The P-T conditions of the retrograde 
symplectites or coronas can only be determined by 
minerals formed within the symplectites or coronas 
themselves, and it is strongly suggested that garnet 
rims should be excluded from the computation. In 
granulites or amphibolites, P-T conditions of the 
symplectites or coronas can be determined by applying 
the two–pyroxene or hornblende–plagioclase 
thermometers simultaneously combined with the 
clinopyroxene–plagioclase–quartz or hornblende–
plagioclase–quartz barometers. 
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