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Abstract: We utilise minimum-norm least-squares based on the indirect observations methods to adjust our 2-
dimensional triangulation network. The main objective of this paper is to optimally adjust the approximate coordinates of 
the nodes (points) of the given network. The network observations (11 measured distances and 17 angles) have been 
adjusted by being combined in linear system of equations in terms of free-network adjustment procedure to rigorously 
adjust the approximate coordinates over the network points. We obtained better converged values by applying an 
iterative procedure, the minimum corrections for the free-network coordinates are obtained after a number of five 
iterations. The data snooping procedure has been used to test the reliability and precision of the network observations. 
The T-Test criterion is then applied for gross error detection, five angles and two lines are suspected to include gross 
errors at a critical value of 1.98. 
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1. INTRODUCTION 

In surveying profession, the unknown quantities 
such as coordinates, bearings and angles between the 
geodetic lines are derived from the field observations 
[1, 2]. There are two types of field observations, 
namely, the direct and indirect observations. The direct 
observations are explicitly applied to measure various 
quantities e.g. lengths, angles and bearings using 
specific instruments such as tape, Total Station or 
Theodolite and compass. On the other hand, the 
indirect observations are made to compute a quantity 
which can not be obtained directly, for instance angles 
and distances that connecting points are used to derive 
the coordinates of the unknown points based on the 
mathematical relationships which combine these 
quantities together [2]. The quantities derived from the 
indirect observations are always liable to errors that 
propagate from the direct observations. Therefore, 
various adjustment techniques were introduced to 
reduce these errors e.g. Bowditch's and Transit Rules 
for the adjustment of the traverse closing error, where 
the closing error arises from the combination of the 
observations and coordinates errors [3, p. 105]. 

It is believed that there are no entirely correct 
measurements, meaning that each measurement no 
matter how precise it is, likely to contain errors. These 
errors happen due to various reasons e.g. human 
mistakes (gross errors), instruments and weather 
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(systematic errors) [4]. One more type of the 
generalized errors are the random errors which are 
found in all surveying measurements and remain even 
after the elimination of the gross and systematic errors 
because it is not easy to detect or eliminate them. 
These errors are modeled by the probability laws, so 
they can be adjusted easily. The adjustment for the 
magnitude of the observations in different stations 
represents a frequent problem in geodesy and 
surveying due to the situation and the way of 
conducting the observations [5]. 

In literature, many authors have contributed in the 
network optimisation. A general review of network 
design based on cost and design orders were 
conducted by [6], other studies in designing the second 
and third order networks were also conducted by [7] 
and [8], respectively [9]. Employed the generalized 
matrix inverses to design zero order network and to 
dene a datum for geodetic network. More related 
studies in network design and optimisation are found in 
[10, 11]. Considered a method of a free-network 
adjustment which minimises the sum of the squares of 
the weighted errors matrix and the euclidean norm of 
the vector of unknowns and the covariance matrix. In 
addition, the geodetic free-network was reviewed by 
[12]. Moreover, [13] used free-network adjustment 
techniques to obtain a minimum trace of the variance-
covariance matrix of the parameters [14]. 

The optimisation of the geodetic networks is 
conducted by considering the precision, reliability and 
low cost aspects. A systematic and comprehensive 
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analysis of the geodetic network design and 
optimisation is compiled in [5, 15], have used three 
models based on these aspects to optimise the design 
of the geodetic network. They found that among other 
models the reliability model to be better for geodetic 
network optimisation. 

In this study, we employ least-squares adjustment 
of a non-constrained 2-dimensional triangulation 
network (free-network) using indirect observations 
method [16, 17]. Specifically, the observed angles, 
distances and approximate coordinates are precisely 
optimised in a rigorous least-squares way. After 
conducting a number of iterations, we yield the optimal 
coordinates for each point with approximate 
coordinates (float points). The iteration procedure is 
considered to obtain an optimal adjustment for our 
network. The corrections of the triangulation float points 
in the current network have been significantly 
minimised and refined at each new iteration until the 
convergence between the iterated and optimal 
coordinates becomes a minimum. 

The organisation of this paper is based on six 
sections, following to this introduction, the free-network 
methodology is addressed in Section 2, the modelling 
of the observations is explained in Section 3). The Data 
Snooping criterion and post-adjustment technique 
applied in this study are found in Section 4. The 
numerical results are investigated and analysed in 
section 5. Concluding remarks on the obtained results 
are drawn in section 6. 

2. FREE-NETWORK ADJUSTMENT 

The geodetic network is called to be a free network 
when it lacks the essential information such as position, 
orientation and scale of the network and the datum 
parameters of the coordinate reference system [14, 
17]. The measurements of the baselines are based on 
observational process either during the triangulation or 
in the trilateration [14]. The adjustment of the free 
networks is highly important as it consists of several 
practical applications. Despite the missing of the 
essential information, it is still possible to solve the free 
network in terms of least-squares and obtaining the 
adjusted coordinates and analysing the least-squares 
residuals [18]. 

The free geodetic network is solved by the normal 
least-squares formed by a number of observation 
equations [17]  

  

L = A
n!m

X            (1) 

where  L  denotes the vector of the reduced 
observations,  A  is the   n!m  design matrix which and 
 X  is the unknowns vector the evaluation of the linear 
least-squares is normally solved according to the 
following relation 

    

min

X!R
n

AX !b            (2) 

where    X ! R
m!n ,   b ! R

m   

In the normal cases, Equation 1 can be solved properly 
while the design matrix  A  is well-posed and of full rank 
one. On the other hand, the matrix manipulation by 
means of leas-squares does not go well when the 
design matrix  A  is ill-posed and suffers from a rank-
deficiency problem. In such case, the solution of 
Equation 1 requires using one of the regularisation 
procedures e.g. singular value decomposition (SVD), 
Tikhonov regularisation or rank-revealing QR 
factorization (RRQR), more information can be found  
in [19-21]. 

However, the free network adjustment method has 
problems associated with the singularity matrix  A  as a 
result of the linear dependence of its columns, 
respectively. This is due to the loss of the rank of the 
configuration matrix, and it is also referred to the 
network defect. Necessary parameters are needed to 
eliminate the degrees of freedom of geodetic network 
in the processing area. 

The design matrix  A  in Equation 1 will be singular due 
to the rank defect  d   

  d = m ! r            (3) 

  
r A

n!m
( ) = r < m < n           (4) 

The minimum-norm least-squares solution is explained 
clearly in [17]. The inconsistent linear equation system 
is regularised by considering the vector of the 
unknowns  !  as follows; 

    
A

n!m
X
m!1

= L
n!1
" !

n!1
r A( ) # m < n$
%&

'
()
        (5) 

The solution of the above equation (5) is not unique 
because  X  and  !  are the unknown and the residuals 
vectors which fulfill the least-squares condition  

    !
T
P! = min            (6) 

where  P  is the square matrix that denotes the 
associated weight of the network observations (lines 
and angles) 
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The derivation of the least-squares solution, we 
start from the general solution of the Equation 5. 
Considering the condition shown in Equation 4 where 
the system of equations is inconsistent and over-
determined with rank defect. The least-squares solution 
based on the following form of equation will not be 
unique:  

   
L !AX( )

T

P L !AX( ) = min          (7) 

The least-squares general solution is obtained in the 
following form [17, eq. 4.110, P. 150]; 

    

X
! = A

!1
L + I !A

!1
A( )V

= A
!
!

L

         (8) 

where    A
!
!

 is the generalised inverse of matrix  A  and 
 V  is an arbitrary vector; 

    
A
!
!

= A
T
PA + D

T
D( )
!1

A
T
P          (9) 

 D  is defined such that; 

   

AD
T

= 0

DD
T
! 0

A
T
PA + D

T
D ! 0

        (10) 

The structure of matrix  D  is based on the structure of 
the design matrix  A  . Therefore, the elements of  D  
vary between different types of free networks e.g. 1-D 
levelling networks, 2-D triangulation networks with 
distances, angles or directions. The structure of D 
matrix in 2-D triangulation networks has three formats 
with respect to the types of the observations (e.g. 
distances, angles, directions) as follows: 

2-D Triangulation networks with distance 
observations 

   
d = 3( ) ; 

    

D
3!m

=

1 0 1 0 … 1 0

0 1 0 1 … 0 1

"N
1

0
E

1

0
"N

2

0
E

2

0
… "N

k

0
E

k

0

#

$

%
%
%
%
%

&

'

(
(
(
(
(

     (11) 

where  m  is the number of unknown parameters, 

   k = m / 2  is the number of unknown points, 
   
E

i

0,N
i

0( )  

are the approximate coordinates of network. 

2-D Triangulation networks with angles obser-
vations 

   
d = 4( ) : 

    

D
4!m

=

1 0 1 0 … 1 0

0 1 0 1 … 0 1

"N
1

0
E

1

0
"N

2

0
E

2

0
… "N

k

0
E

k

0

E
1

0
N

1

0
E

2

0
N

2

0
… E

k

0
N

k

0

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

     (12) 

where  m  is the number of unknown parameters, 

   k = m / 2  is the number of unknown points, 
   
E

i

0,N
i

0( )  

are the approximate coordinates of network. 

2-D Triangulation networks with direction obser-
vations 

   
d = 4( ) . 

The variance-covariance matrix of 
  
ˆX  is obtained as 

follows 

    

C
x̂x̂

= A
T
PA + D

T
D( )
!1

A
T
P!

0

2
P
!1 " A

T
PA + D

T
D( )AT

P#
$%

&
'(
T

= !
0

2
N
!1

!N
!1

D
T
DN

!1)

*
+++

,

-
....

(13) 

3. OBSERVATIONAL MODELLING 

The combined triangulation and trilateration network 
in Figure 1 is based on a total of 28 observations, 17 
angles and 11 distances. All these observations are 
connected to 6 benchmarks to form the free network. 

 
Figure 1: A newly-measured triangulation network with 
unadjusted (17) angles and (11) distances. 

The network observations have been measured by 
a total station instrument, the approximate coordinates 
are electronically calculated based on the functionality 
of the instrument (using resection and intersection 
methods). The combination of the triangulation and 
trilateration is a robust network that used to create 
horizontal control points based on such traditional 
methods [2, section 9.7, p 501]. 
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3.1. Angles Condition Equations 

As shown in Figure 1, we need to create the 
condition equations for both angles and distances 
measured in the network. The condition equations of 
angles are written in terms of azimuths, because the 
horizontal angle  ijk  can be derived by subtracting the 
azimuth of the line  ij  from the azimuth of line  ik . As 
the azimuth represents the horizontal angle measured 
from a north meridian clockwise to a line, one may be 
cautious when computing the azimuth in Equation 14 
and make sure that it is located in the right quadrant. 
Otherwise, it will subsequently lead to wrong results in 
the adjustment process due to the geometrical errors in 
the network [5]. 

The azimuth condition equations for 
  
!

ij
 and 

  
!

ik
 are 

written as follows:  

    

!
ij

= arctan
E

j
0
!E

i
0

N
j
0
!N

i
0

and !
ik

= arctan
E

k
0
!E

i
0

N
k
0
!N

i
0

  (14) 

where 
  
E

i
0,E

j
0,E

k
0  and 

  
N

i
0,N

j
0,N

k
0  are the coordinates 

at the ends of the lines 
  
!

ij
 and 

  
!

jk
, respectively. 

The condition equation of angle 
  
!
ijk

 is written as: 

    

!
ijk

+ v
ijk

= "
k
! "

i

= arctan
E

k
0
!E

j
0

N
k
0
!N

j
0
! arctan

E
i
0
!E

j
0

N
i
0
!N

j
0

     (15) 

where 
 
v

ijk
 denote the residuals of the angles. The 

linearisation of the Equation 15 is obtained by the 
followings: 

putting; 

    

u
k

=

E
k
0
!E

j
0

N
k
0
!N

j
0
,u

i
=

E
i
0
!E

j
0

N
i
0
!N

j
0
…u

n
=

E
n
0
!E

j
0

N
n
0
!N

j
0

     (16) 

when executing the partial derivative of equation 16, 
we get; 

   

!

!E
arctanu =

1

1 + u
2
"
!u

!E
       (17) 

then the linearised form of Equation 15 is given as; 

!ijk "!ijk( )" vijk = a.#Ei + b.#Ni + c.#Ej + d.#N j + e.#Ek + f .#Nk
(18) 

Using the partial derivative with respect to the 
approximate coordinates 

   
E

i

0,N
i

0( ),  
   
E

j
0,N

j
0( )  and 

   
E

k

0,N
k

0( ) , the evaluation of the coefficients in Equation 

(18) is computed by the following equations: 

     

a =
!!

ijk

!E
i

=
sin"

ik

!"
ik

"
sin"

ij

!"
ik

b =
!!

ijk

!N
i

= "
cos"

ik

!"
ik

+
cos"

ij

!"
ik

c =
!!

ijk

!E
j

=
sin"

ij

!"
ij

d =
!!

ijk

!N
j

= "
cos"

ij

!"
ik

e =
!!

ijk

!E
k

= "
sin"

ik

!"
ik

f =
!!

ijk

!N
k

=
cos"

ik

!"
ik

       (19) 

The following parameters 
    
!
ijk

,
!"

ij
,
!"

ik
 are computed by 

the approximate coordinates by the following 
equations; 

 

!ijk =" ik #" ij

!lij = Ei

0 # Ej

0( )
2

+ Ni

0 # N j

0( )
2$

%&
'
()

1/2

and

!lik = Ei

0 # Ek

0( )
2

+ Ni

0 # Nk

0( )
2$

%
'
(

1/2

      (20) 

3.2. Distances Condition Equations 

The distance condition shows that the distance 
  
!

ij
 

between two points  i  and  j  as a function 
 
F

ij
 of the 

coordinates 
   
E

i

0,N
i

0( )  and 
   
E

j
0,N

j
0( )  as represented in 

the following functional equation: 

    
!

ij
+ v

ij
+ F

ij
E

i
0,N

i
0,E

j
0,N

j
0( ) = 0       (21) 

lij + vij ! Ei

0 ! Ej

0( )
2

+ Ni

0 ! N j

0( )
2"

#$
%
&'

1/2

= 0       (22) 

The linearisation of Equation (22) is obtained as follows; 

    
!

ij
! "!

ij( )! v
ij

= a " !E
i

+ b " !N
i

+ c " !E
j

+ d " !N
j
(23) 

Similarly, using the partial derivative with respect to the 
approximate coordinates 

   
E

i

0,N
i

0( )  and 
   
E

j
0,N

j
0( ) , the 

evaluation of the coefficients in Equation (23) is 
computed by the following equations:  



Adjustment and Gross Errors Detection of Free Triangulation International Journal of Robotics and Automation Technology, 2015, Vol. 2, No. 2      35 

    

a =

!!
ij

!E
i

= "
E

j
0
"E

i
0

"!
ik

b =

!!
ij

!N
i

= "
N

j
0
"N

i
0

"!
ik

c =

!!
ij

!E
j

=

E
j
0
"E

i
0

"!
ik

d =

!!
ij

!N
j

=

N
j
0
"N

i
0

"!
ik

        (24) 

6. SOLUTION OF FREE-NETWORK LEAST-
SQUARES MODEL  

The creation of the design matrix  A  in Equation 8 is 
based on the coefficients 

  
a,b,c,d,e, f  as shown in 

equations 19 and 24. The dimension of the design 
matrix is determined by computing the number of the 
coordinates points in the network which will represent 
the number of columns. While the rows are 
represented by the combination of the angles and 
distances condition equations, respectively. For 
instance, the current network of this study contains a 
number of six benchmarks, 17 angles and 11 
distances. Since each single benchmark consists of a 
pair of coordinates, this means that the number of the 
columns in the design matrix for any network are equal 
to 

   
2!n( )  where  n  denotes the number of the 

benchmarks. The number of the rows is computed by 
the adding the total number of the linearised conditions 
equations for angles and distances, in this study they 
are found to be 28 rows. Hence, the exact dimension of 
the design matrix  A  based on the network 
observations and their final linearised condition 
equations is 

   

A
12!28

. 

The rest of points which are not involved are 
considered as zeros in the corresponding columns. The 
following example indicates the criterion of building up 
the design matrix  A  based on the aforementioned 
information. 

Referring to Figure 1, the organisation of the 
coefficients starts first with all linearised angles 
equations (rows   1 ! 17 ), then follows with distances 
(rows   18 ! 28 ). For instance, we can take the first two 
angles 

  
!
213

, 
  
!
316

 and the last linearised distance 
  
!

56
 

equation in the last row of the  A  matrix as follows:  

     

A =

b
11

!E
1

0

b
12

!N
1

0

b
13

!E
2

0

b
14

!N
2

0

b
15

!E
3

0

b
16

!N
3

0

0

!E
4

0

0

!N
4

0

0

!E
5

0

0

!N
5

0

0

!E
6

0

0

!N
6

0

b
21

b
22

0 0 b
25

b
26

0 0 0 0 b
211

b
212

! ! ! ! ! ! ! ! ! ! ! !

0 0 0 0 0 0 0 0 b
289

b
2810

b
2811

b
2812

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

(25) 

The approximate coordinates in the last row of 
matrix  D  in Equation (11), are preferably smoothed by 
subtracting their mean coordinates 

   
E,N( ) , so  D  can 

be written as follows: 

    

D
3!6

=

1 0 1 0 … 1 0

0 1 0 1 … 0 1

" N
1

0
"N( ) E

1

0
"E( ) " N

2

0
"N( ) E

2

0
"E( ) … " N

6

0
"N( ) E

6

0
"E( )

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

(26)
 

the corrections of the approximate coordinates are 
obtained in the unknown vector   X

!  as follows; 

     

X
!

= !E
1

"

!N
1

"

!E
2

"

!N
2

"

… !E
6

"

!N
6

"!

"#
$

%&

T

     (27) 

By obtaining the coordinate corrections vector   X
!  from 

Equation (8), the approximate coordinates 
   
E

i

0,N
i

0( )  

are corrected which also means that the network is 

now adjusted. Since the corrections 
     
!E

i

!

,!N
i

!( )  are 

added to the approximate coordinates, there will be a 
slight shift due to the change in the coordinates: 

     

Ê
i

N̂
i

!

"

#
#
#

$

%

&
&
&

=
E

i

0

N
i

0

!

"

#
#
#

$

%

&
&
&

+
!E

i

!

!N
i

!

!

"

#
#
#

$

%

&
&
&

        (28) 

The radial distances 
  
OP

i

! "!!!!

 and   OP
!

i

" #"""""

 from the origin 

coordinate centre 
   
O 0,0( )  to 

 
P

i
 and   P

!
i  are: 

 

r
i

0
= E

i

0( )
2

+ N
i

0( )
2!

"
#
$

1/2

and !r
i
= !E

i( )
2

+ !N
i( )
2!

"%
#
$&

1/2

     (29) 

and their corresponding azimuths are given by: 

     

!
i

0
= arctan

N
i

0

E
i

0

!

"

#####

$

%

&&&&&
and!!

i

0
= arctan

N
"

i

0

E
i

#0

!

"

#######

$

%

&&&&&&&&
     (30) 

The total area 
  
ˆA  swept by the radial distances 

  
OP

i

! "!!!!

 

and   OP
!

i

" #"""""

 due to the changes indicated in Equation (28) 
is given by: 

     

Â =
1

2
i=1

k

! "N
!

i

0

# !E
i

"

+ E
i

"0

# !N
i

"$

%
&&&

'

(
))))
      (31) 

4. POST-ADJUSTMENT TECHNIQUE 

4.1. Data Snooping 

Data snooping is a procedure used for the detecting 
and localising the gross errors in the adjusted 
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observations [22-24]. It is a justified statistical 
derivation that is conducted to make a decision on the 
tested observations after least-squares adjustment 
[25]. The gross error is experimentally located by 
performing a one-by-one comparison of the least-
squares residuals versus their standard errors, this 
comparison can similarly be repeated. 

The functional and statistical models for the null 
hypothesis 

  
H

0
 stands for an assumption that considers 

the observations as gross-error-free, they are 
presented as follows in [17]; 

H
0
:

n!1
L "

n!1
# =

n!m
A

m!1
X

E ${ } = 0

E $$ T{ } =% 0

2
Q =%

0

2
P

"1

&

'
((

)
(
(

*

+
((

,
(
(

       (32) 

where  P  and  Q  are the weight and co-factor matrice 
of  ! .  

The variance-covariance matrix 
   
C
!
!
!
!  and co-factor 

matrix 
   
Q
!
!
!
!  by the following equation: 

     
C
!
!
!
! = "

0

2
!Q
!
!
!
!          (33) 

     
Q
!
!
!
! = P!1

!A ATPA( )
!1

AT        (34) 

The substitutional hypothesis 
  
H

1
 assumes that one of 

the observations contains gross error   !i : 

H
1
:

n!1
L "

n!1
# =

n!m
A

m!1
X +

n!1
ei $ %i

E &{ } = 0

E && T{ } =' 0

2
Q ='

0

2
P

"1

(

)
**

+
*
*

,

-
**

.
*
*

       (35) 

where 
 
e
i
 denotes a vector of zero elements except the 

i-th element which equals 1. 

4.2. Observations Quality 

The precision of the adjusted observation is still not 
sufficient, because the adjusted observation must be 
precise and reliable too. The reliability of any 
observation stands for its proximity to the true value, 
better reliability can be obtained by repetitions and 
iterations. The network quality can be described by 
precision and reliability in terms of variance-covariance 
matrix and the adjusted quantities [17]. There are two 
types of reliability, namely internal and external. The 
internal reliability is characterised by the minimal 

detectable error 
  
!

i
(see Equation 35) which shows the 

amount of the smallest possible observation error 
which is detected by the statistical test. The 
redundancy number can also be used for the internal 
reliability. A large redundancy number indicates 
proximity to the true value which means a strong 
reliability. Conversely, a smaller the redundancy 
number denotes poor reliability and when the 
redundancy number equals zero it means that the 
observation is not checked at all. 

The internal reliability is computed by local 
redundancy 

  
!

i
 of the observation 

  
!

i
 and its standard 

error as follows;  

!̂i =
"
0
# qii

pii #qii
#ui

=

" 0 / qii

pii #qii
=

" i

ki
#ui

        (36) 

where 
 
q

ii
 denotes the   i ! th  diagonal element in the 

cofactore matrix 
   
Q
!
!
!
! , 

 
p

ii
 denotes the   i ! th  diagonal 

element in the weight matrix  P  as shown in Equation 
34. The standard error for any observation 

  
!

i
 is 

obtained by: 

    

!
i

=
!

0

p
ii

         (37) 

The minimum detectable gross error is given by: 

    

!
i

=
"

i

#
i

! $
0
%,&( )         (38) 

where 
   
!
0
",#( )  is the non-central shift in the standard 

normal distribution and it is given by: 

    
!
0
",#( ) = c1

2
"

+ c
1!#

        (39) 

where 
   

c1

2
!

 is the standard normal distribution at the risk 

level  ! , and 
   
1! !  is the power of the statistical test. 

The effect of the undetected gross error on the 
observation is called the external reliability of the 
observation. It is a measure to compute the impact of a 
possible error on the observations or constrained 
stations on the adjusted ones. So the minimum 
detectable effect on 

  
!

i
 on the adjusted observation 

  
!
i
 

is given by; 
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!
i

= 1! "
i

( ) "
#

i

"
i

$
0
%,&( )

= 1! "
i

( ) " '
i

       (40) 

Alternatively, the external reliability is evaluated by 
computing the bias to noise ratio 

  
!

i
 for each 

observation, which reflects the influence of the possible 
gross error in the observation.  

   

!
E

i

!
E

i

" "
i
         (41) 

5. NUMERICAL ANALYSIS  

The adjustment procedure followed in this study is 
presented in the flow chart illustrated in Figure 2, the 
steps we followed are the least-squares adjustment 
using the minimum-norm method which is used for the 
geodetic free network. The data snooping technique is 
employed to investigate the quality of the network 
observations. The quality of the geodetic network can 
be evaluated in terms of precision and reliability which 
are numerically represented by certain parameters as 
explained in Equations 38, 40 and 41. 

 
Figure 2: Adjustment procedure including test criterion and 
improvement iteration. 

5.1. Minimum-Norm Least-Squares Adjustment 

In this study, five iterations have been performed for 
the sake of improvement. Figure 3 shows that the 
residuals of the observations 

 
v

i
 (angles and distances) 

are significantly reduced from iteration 1 to 5. It is also 
clear that the residuals are very close in some angle 

observations over all iterations, while a noticeable 
convergent can also be seen at the rest of the 
observations (cf. Figure 3a). In the same manner, the 
residuals of the distance in Figure 3b are also reduced 
with respect to the iterations. 

 
(a) Angles 

 
(b) Distance 

Figure 3: Residuals in angles and distances after five 
iterations. 

The impact of the iterations on the radial distances 
and their azimuths is computed and illustrated in 
Tables 1 and 2. This can also be confirmed by 
calculating the total area wept by the radial distances 
after the final adjustment which is appearing 
insignificant, this means that the shift of the network 
coordinates is negligible because it is assumed that 
when    Â = 0,  which means that the network has zero 
rotation during the free-network adjustment. 

5.2. Mathematical and Stochastic Models 

The data snooping technique is utilised in the 
second step of the adjustment procedure. The 
numerical evaluations of the precision and reliability of 
the angles and distances are illustrated in Tables 3 and 
4, respectively. The internal reliability of the angles 

  
!
i
 

in Table 3 are based on the minimum detectable gross 
error and are expressed in terms of seconds. It is found 
that the minimum detectable gross error 

  
!
i
 varies in 

each angle, it reaches up to 21 arc-second in   !3,6,1  
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which apparently indicates poor reliability as explained 
in Section 4.2. The local redundancy number 

  
!

i
 is also 

utilised to investigate the internal reliability of the 
observations. 

From Table 3, the external reliability 
    
!

i
= 10.1  can 

be interpreted as the influence 
  
!

E
i

( )  of the minimum 

detectable error 
    
!
i

= 21.1"( )  on the coordinates of the 

Table 1: The Iterations Impact on the Radial Distances r
i

0  and 
  
!r
i
 

I II 
 

r
i

0  
  
!r
i
 r

i

0  
 
!r
i

 

1  1778379.237  1778376.546 1778379.264  1778379.237 
2  1779505.867 1779505.917 1779505.917 1779505.867 
3 1779158.691 1779133.693 1779158.941 1779158.691 
4 1777599.453  1777664.695  1777598.80  1777599.453 
5 1776594.230  1776584.288  1776594.329  1776594.229 
6 1778211.039  1778188.381  1778211.265  1778211.039 

III  IV 
 

r
i

0  
  
!r
i
 r

i

0  
 
!r
i

 

1 1778379.270  1778377.615  1778379.258  1778377.615 
2 1779505.951  1779501.780  1779505.899  1779501.830 
3 1779159.244  1779131.627  1779159.231  1779131.627 
4 1777598.142  1777663.659  1777598.315  1777663.124 
5 1776594.420  1776584.880  1776594.391  1776585.807 
6 1778211.489  1778188.951  1778211.812  1778188.752 

V 

r
i

0  
 
!r
i

 

1778379.301 1778377.721 
1779505.913 1779501.871 
1779159.452 1779131.674 
1777598.215 1777663.597 
1776594.753 1776584.778 

 

1778211.489 1778188.790 

 

 

Table 2: The Iterations Impact on the Azimuths of the Radial Distances r
i

0  and 
  
!r
i
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point  i  (cf. Equation 41) is 10.1 smaller than the a-
posteriori standard deviation of the coordinate. 

The statistical hypothesis methods stand on 
mathematical and stochastic models. These 
mathematical models state the gross error detection 
and correctly describe the relation between the 
observations and the unknown parameters while the 
stochastic models describe the stochastic properties of 
the observations. In this study T-Test is used to test the 
reliability of the network observations [26]. The 
theoretical critical value of T-Test is found to be 1.96, 
therefore the red-coloured values in Tables 3 and 4 
represent the rejected observation because they 
exceed the critical value 1.96. From Table 3, we can 
see that five angles in the network are rejected 
according to the T-Test criterion, while in Table 4, it is 
clear that only pair of the observations (

   
!

1!5
 and 

   
!

3!4
) are rejected. The minimum detectable gross 

errors at the rejected distances in Table 4 reach about 
15cm 

   
!

1!5
( )  and 7cm 

   
!

3!4
( ) , respectively. 

Table 4: Internal end External Reliability of the 
Distances !

i
,v

i
and "

i
are in meters( )  

 

It is worth mentioning that the internal and external 
reliability of the observations 

    
!
i
,"

i
( )  can only describe 

the reliability of the network observations. But the 
rejection of the observations are subject to T-Test 
criterion, that is why some observations in Tables 3 
and 4 might seem to have good internal and external 
reliabilities while they are actually rejected by T-Test. 

 
Figure 4: The final adjusted triangulation network with 
minimum error ellipse. 

The error ellipses, also known as confidence 
ellipses, are considered as equivalent spots of 
standard deviations. There is a certain level of 
confidence means that a station can possibly be 
located within the area surrounded by its ellipse. The 
absolute error ellipses are computed around the 
benchmarks (see Figure 4) based on their correct 
bearings   !i , the ratios between their semi-major  a  
and semi-minor  b  axes are also illustrated in Table 5. 
The final adjusted network including the error ellipses is 
plotted in Figure 4. 

6. CONCLUDING REMARKS 

In this study, we used minimum-norm least-squares 
procedure for geodetic free network adjustment. The 

Table 3: Internal End External Reliability of the Angles !
i
,v

i
and "

i
are in arc # seconds( )  
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free-network observations including angles and 
distances were compiled in the least-squares sense 
after the creation of the condition equations which were 
created by the linearisation of the observations (angles 
and distances). 

The solution of the free network based on minimum-
norm least-squares has been iterated to reduce the 
divergence between the initial and adjusted 
coordinates. The coordinates were better converged 
after a number of five iterations as mentioned in 
Section 5. The data snooping procedure has been 
applied after the least-squares solution, the test of 
reliability and precision of the observations. 

Furthermore, the T-Test criterion was utilised to 
detect any gross errors in the observations (angles and 
distances) as shown in Tables 3 and 4). The result of 
T-Test revealed that a number of five angles (red-
coloured) are suspected to be affected by gross errors, 
while two lines of the network were also detected to 
include gross errors (cf. Tables 3 and 4). 
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Table 5: Absolute Error Ellipse Over Network Stations 

and their Bearings !
i
,
a

b

"
#$

%
&'

 is the Ratio Between 

the Semi-major and Semi-minor Axes a and b, 
Respectively 

Station a / b !
i
 

7 2.6 80 
8 4.7 -23 
9 2.3 -4 
10 6.2 73 
14 8.3 64 
15 3.9 -75 


