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Abstract: Authors are returning to the basic concepts of turbulence – homogeneity and symmetry principles. It is shown 
that the homogeneity in the sense of constant mean velocity gradient (instead of constant velocity) permits to introduce 

mirror asymmetry. This way is corresponding to stratified atmosphere and to differential volume in any continuum model. 
The basic ideas of A. N. Kolmogorov do not contradict to such an approach. Moreover, the use of the intrinsic eddy 
angular velocity (so-called spin or mesovorticity) as the internal thermodynamic parameter becomes necessary for 

adequate description of tornado (and intensive atmospheric vortices, in general) dynamics. The continuum description is 
formulated with standard introducing of stresses averaged over a cross-section, and now motivated asymmetry leads to 
the vortices moment of momentum balance. The set of nonlinear 3D partial differential equations is suggested for the 

problem of tornado generation from a cloud of initial vortices. The dependence of turbulent rotation viscosity on the spin 
permits to localize the tornado body due to the nonlinear diffusion effect. Numerical calculations are performed at two 
different clusters using Parjava program environment. The growth of typical tornado structure is shown by a sequence of 

pictures. A visual comparison with the Hurricane Isabel, 2003, is represented. 
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1. INTRODUCTION 

A.N. Kolmogorov [1] made important contributions 

to the Taylor turbulence theory [2]. He suggested: 

(1) To avoid the isotropy of the velocity pulsations 

fields but to save it for the pulsation differences. 

His local isotropy was a great step towards the 

other cases of mean velocity fields besides the 

constant velocity (in 1941).  

(2) To consider the energy flux as the main 

parameter of energy cascades in turbulence (in 

1941). It coincided with the Schrödinger [3] 

principle for thermodynamically open systems. 

(3) To introduce the rotation frequency as an 

additional kinematical parameter (in 1942). 

Actually, the angular velocity vector was needed, 

as in the Cosserat continuum [4], but then it is 

also necessary to overcome the mirror symmetry 

limitation. 

In fact, mirror symmetry is inadequate for a general 

turbulent flow if the gradient of the mean velocity does 

exist. This happens in actual profiles of the 

atmosphere, that were an object of own Kolmogorov 

research, as well as in the representative turbulent 

continuum cell, for which the balances of mass, 
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momentum and angular momentum have to be 

formulated. 

Here we use all these suggestions for the 

development of turbulence theory effective enough for 

tornado generation. 

Mathematically, the mirror asymmetry reveals itself 

in rising of anti-symmetrical terms in turbulent stress 

tensor. Along with Cosserat brothers [4], the turbulent 

theories dealing with this asymmetry were developed 

by Nikolaevskiy [5-6], Mattioli [7], Ferrari [8], Heinloo 

[9], Eringen and Chang [10], though probably only 

Nikolaevskiy and Heinloo (with their co-authors) have 

applied their theories to geophysical phenomena. First 

attempt of using asymmetrical turbulent stress tensors 

in the problem of tornado (and hurricane) bulk 

modeling was made by Arsenyev, Gubar, Nikolaevskiy 

[11] (2004) and developed in [12-16]. In this paper we 

apply the results of 3D tornado speculations in the 

mirror asymmetry turbulent model to first show in detail 

how a tornado suction spots [17-23] -- smaller whirls 

rotating around the main one in the tornado “eyewall” -- 

can be formed while it rising. Then, using a simple 

rescaling, we provide a visual comparison of the model 

tornado suction spots with the “pin-wheel” structure of 

Hurricane Isabel, 2003, [24-25] and give a quantitative 

explanation of this phenomenon, alternative to that 

furnished in [26], where 2D barotropic flow model was 

used. Although the multiple-vortex structure both in 

hurricanes and tornados has been numerically 

modeled earlier (for hurricane-like vortices, egg. in 

[26]), the mirror asymmetry turbulence theory 
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presented here is able to provide numerical description 

of the multiple-vortices formation processes in the both 

scales. 

We introduce the moment of inertia in the evident 

form that permits us to consider mass components 

involved in the tornado evolution. 

2. NOTE ON THE STRESS TENSOR SYMMETRY 

In all approaches to turbulence the Navier – Stokes 

equations are assumed to be valid for micro flows at a 

given time moment. In an attempt to develop balance 

equations, valid at a macro level, we consider a spatial 

continuum cell bigger than the size of vortices that 

contains the main turbulent energy (Figure 1). 

 

Figure 1: The scales of microelements (dx), macroelements 
(dX) and mesovortices ( ). 

Practically, there are two different scales for an 

effective turbulent field description. First, there is an 

element of a turbulent vortex with the volume scale dx
3
 

that needs in the balances of mass and momentum 

only, as in the Navier – Stokes equations, because the 

element’s own rotation is negligible due to its small 

size. This point of view is proved by the inertia moment 

I estimation: (I/dx
3
)~dx

2
<< 

2
. 

Second, there is a volume scale X
3
 including at 

least one vortex with  as a radius. Because the vortex, 

corresponding to the main turbulent energy, possesses 

sufficiently high angular momentum, its inertia 

momentum cannot be missed in the balance equation 

for the angular momentum and its special evolution has 

to be developed. 

However, the volume, which size is selected (by the 

macro continuum nomination) to be much less than the 

outside problem scale, has to include the gradients of 

macrovariables beginning with mean velocity U up to 

mean stresses, all of which appear in the macro 

balance equations and in the interconnecting governing 

“laws”. 

Therefore, the adequate statistical image should be 

homogeneous relatively to gradients of the mean 

variables, and the random field wi under consideration 

depends at least on one vector. Because the distance r 

between two points is a vector, the corresponding 

correlation tensor Cij = <wi (X) wj(X+r)>, ui = Ui + wi is 

not symmetrical but a function of the angle between r 

and grad U (Figure 2). This point was first mentioned in 

[5] and corresponds to the case of gradient 

homogeneity. 

 

Figure 2: Illustration to possibility of asymmetry of the 
correlation (as well as the stress) tensors. 

Consequently, the mirror reflection does change the 

results of statistical averaging in the homogeneity case 

determined as velocity gradient constancy. Therefore, 

the introduction of the angular velocity  (and 

pseudovectors in general) as a kinematic variable is 

quite adequate in the turbulence theory. 

The Reynolds stress tensor Rij =  < wiwj>j has to 

be introduced only by the Cauchy method as a 

momentum vector wi transferred with the velocity 

pulsation wj across the plane oriented by its normal nj = 

wj /|wj|. Here  is the density and < >j is a symbol of 

averaging at a cross-section X
2 

with the normal nj.  

The tensor Cij at r  0 may be identified with the 

same momentum flux through the differential plane 

element dx
2
, averaged statistically. The results of these 

two averaging should coincide, if the ensembles of dx
2 

statistics and over the plane X
2 

are equivalent.  

Besides, the limiting process r  0 does not 

exclude the dependence of Cij on  because “zero” is 

here understood as relatively to the macroscale. This 

means that the stress tensor in both cases is 

asymmetric potentially. 
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3. AVERAGED EQUATIONS 

The deriving of effective balance equations for 

differential cells, which size is bigger than the turbulent 

eddies scale , means the spatial averaging [5,6] of the 

Navier – Stokes equations valid for the scale dx less 

than : 
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where all the functions are stochastic in space, tij is the 

stress tensor assumed to be symmetric in the scale dx, 

fi are the external forces, ijk is the alternating Levi – 

Civita tensor, i = xi – Xi, < i> = 0. The resulting 

equations for the mean fields of the velocity Ui, angular 

momentum Mi, and pressure P include
1
 the Reynolds 

stresses Rij: 
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where μij is the Mindlin couple stresses also acting at 

the cell faces, Mi = JijF j, Jij is the vortex moment of 

inertia
2
, and, F= + , =0.5 rot U, i=0.5 ijk< wk/ j> 

are the total, macro- and meso- vorticities, 

respectively
3
; f and G are the averaged external forces 

and momenta. The traditional turbulence governing 

laws now connects the asymmetric part of the 

Reynolds stresses with spin rotation of a vortex and the 

couple stresses with the angular momentum gradient: 
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where eij = 0.5 ( iUj + iUj) is the strain rate. For the 

evolution of the specific moment of inertia Jij = ( ij kl  

ik jl)< k l>/  derived in [5] we use the simplified form: 

  
D

t
J =

j
K

3 j
J( ),            (4) 

                                            

1
The third equation in its continuum form of angular momentum balance was 

first introduced by Cosserat brothers [4]. De facto its application to the 
turbulence was suggested by G. Mattioli [7] but the own (spin) rotation of the 
vortex was introduced much later by C. Ferrari [8].  
2
The vortex inertia tensor was first discussed by H. Poincare [27] and 

afterwards - by G. Batchelor [28], and Eringen and Chang [10]. 
3
Here and then  means < > when outside the averaging brackets <>. 

where J is assumed to have spherical symmetry: 

Jij= ijJ. 

 The total (molecular + turbulent) kinematic viscosity 

coefficients K1,…K3 have to correspond to the internal 

energy flux principle, that is, they depend on the 

dissipation function of turbulent field. This means that 

the rheological links for turbulence flows are essentially 

nonlinear. The latter is in accordance with observed 

localization of turbulent objects, for example, tornado in 

the surrounding atmosphere. This is analogous to the 

“fire ball” in the atmosphere generated by atomic 

explosion explained by nonlinear temperature 

dependence of thermal conduction in gases [29]. 

The averaged equations (2)-(4) should be 

completed with the thermodynamic relations: the total 

energy conservation law and the gas state equation. 

For the adiabatic processes, (2)-(4) lead to the 

following total energy E evolution equation 

 t
E =

j
P

j
E

dis
+W            (5) 

where E = (Emacro + Emeso + Ein), Emacro = 0.5U
2
, Emeso = 

0.5JF
2
 are the specific macro, meso, and inner energy, 

respectively, Pj = Ui(Rij- ij(P+E)) + K3 jEmeso is the total 

energy flux per volume unit, W is the power of the 

external forces and momenta, Edis = (2K1eijeij 

+2K2 s s + JK3( iFj)
2
) is the total energy dissipation 

rate, which is always positive, and, therefore, K1, K2, K3 

> 0. The coefficients Kk have been discussed in [12-

13]: Kk = k + KTk (J …), where k = 1,…3, k and KTk 

are the kinematical molecular and turbulent viscosity 

coefficients, respectively, and KTk>> k. The turbulent 

viscosity coefficients KTk have the form [12] 

  
K
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1
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T 2
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2
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          (6) 

where 2 ( 1/ )
p
 <<1, p>0, 1 is the sub-meso scale: 

0<< 1<< <<L, 0 ( 1
3
/ )

1/4
 is the inner scale of 

turbulence,  is the turbulent energy dissipation rate 

[30], J
1/2

 and L are the meso and macro scale, 

respectively. The model coefficient C1 in (6) 

corresponds to the model coefficient C in the paper 

[31], where a different meso scale turbulent model is 

studied. In [12] we evaluated the turbulent dissipation 

rate  as the dissipation at the -scale, which 

according to (5)-(6) can be estimated as follows:  = 

Edis
( )

  KT2
2
  J

3
, and, therefore, the expression (6) 

agrees with the Kolmogorov – Obukhov concept [30]: 

KT
( )

  (Edis
( ) 4

)
1/3

  J . 
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In fact, the atmosphere has so-called “background” 

mesovorticity bk and mesoscale bk  Jbk
1/2

 <<  

corresponding to the mean coefficient of turbulent 

mixing for the given scale L [32]. Finally, using the 

typical constant value of the specific moment of inertia 

in (6), the total mixing coefficients are given by  

[11-14]: 

  
K

1,3
= K = A f ( ),

  
K

2
=

2
K ,          (7) 

where A is the initial total viscosity coefficient, f( ) = (  

+ bk)/( 0 + bk), 0 = || (X, 0)||C.  

4. INITIAL BOUNDARY PROBLEM AND 
NUMERICAL SCHEME 

Under our assumptions, the thermodynamic 

parameters for a two-atomic perfect gas (the air) are 

interconnected by the adiabatic equation: ln( / 0) = 5/2 

ln(T/T0) = 5/7 ln(P/P0). The initial temperature profile is 

dry-adiabatic: T(X,0) = T0 (1  az), where subscript “0” 

corresponds to the values at the ground level, T0 

a=g/Cp 0.0098 K m
-1

 is the dry-adiabatic temperature 

gradient, Cp 1005 J kg
-1

 K
-1

 is the specific air heat at 

constant pressure, g 9.8 m s
-2

 is the acceleration of 

gravity. 

Using a new variable a(X,t ) = ln( (X,t)/ (X,0)), the 

averaged equations (2)-(4) with the coefficients (7) in 

the dry-adiabatic compressible rotating atmosphere 

can be written in the explicit form: 
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where Dj[*]  j* + * ( ja  i32.5 a/(1  az)), j = Dj[K], 

c
2
= c0

2
e

0.4a
 (1  az) is the square of the speed of 

sound, c0
2
= 7/5 RaT0 is its value at the ground level, 

Ra 287.04 J kg
-1

 K
-1

 is the dry air specific gas 

constant, = 0{  cos 0, 0, sin 0}, 0 7.29 10
-5

 s
-1

 is 

the angular frequency of the Earth rotation, 0 is the 

latitude. The axes X={x,y,z}={x1,x2,x3} are directed to 

the south, east, and zenith, respectively. 

The boundary conditions in the domain D={|x|,|y|<L1, 

0<z<H} are given by 
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where Un is the normal derivative at the corresponding 

boundary, Vk = Vk(x,y) is Uk averaged by z, Cf = 

0.1375(zrgh/H)
1/4

 is the friction coefficient, and zrgh is the 

roughness coefficient. 

The initial conditions written in cylindrical coordinate 

system (r,z, ) have the form: 
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where fr( ) = 4 (1  ), fz(z) = ln (1+ z/zrgh)/ ln (1+ 

H/zrgh), R1=R1(z)=Jbk
1/2

 +(0.5R0 Jbk
1/2

) (2z/H) e
1  2z/H

, R0 

is the size of the initial mesovortex cloud, U0, 0, J0 are 

the initial magnitudes, and (r) is the Heaviside 

function. 

We have solved the initial boundary problem (8)-

(10) numerically with the modified Runge – Kutta – 

Adams –“leapfrog” scheme (MRKAL) [15-16]. The 

MRKAL scheme is conditionally stable and has the 

second order of accuracy in time and space. Its stability 

criterion is close to that of the evident McCormack 

scheme [33]. In brief, the algorithm can be written as 

follows. Let y
 (n)

 ={a, J, U, F)
(n)

 and u
 (n)

 ={J, U, F)
(n)

  

refer to the mesh point  at the time layer tn=n , where 

 is the integration time-step (index  is later omitted). 

Assuming that all the values are known at the n-th and 

(n 1)-th layers, we get the values at the sub-layer 

(n+1/4) with the simple Adams’ interpolation: y
(n+1/4)

 = 

1.25 y
(n)

  0.25 y
(n  1)

. Then the (n+1)-th time layer is 

calculated as follow:  
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where a[...] and u[...] are the right parts of (8) written 

in finite-differences. More details on the numerical 

algorithm can be found in [15-16]. 
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The calculations were performed on two clusters: 

the ISP RAS cluster (AMD AThlon XP 1500 + Myrinet 

and Dual-Coré Intel® Xeon® 5160 Myrinet 2000) and 

cluster MVS1000M JSCC RAS (processors Power 2.2 

GHz, Myrinet, 2 Gbit/s). Program implementation in 

different cluster architectures without code changes 

became possible due to portability features of the 

Parjava program environment [34]. Multi sequencing 

was performed by 2D division of the computational 

area, which strongly decreased the amount of data 

transfer. The optimization of parallel calculations, 

depending on partition method, matrix scale and 

processor number, was discussed in [15, 16]. 

5. RESULTS OF 3D TORNADO NUMERICAL 
MODELING 

The initial boundary problem (8)-(10) has been 

solved with the initial data relevant to a mid-size T3 

category tornado in the cubic area: 2L1=H=1500 m. 

The radius of initial mesovortex cloud R0= 300 m, initial 

cyclonic wind is calm with its magnitude: U0=1.5 m/s, 

total kinematic viscosity coefficient A =1000 m
2
s

-1
, and 

 

Figure 3: The winds in the central vertical cross-sections of the model tornado at different instants. 
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the roughness zrgh=0.1 m. To describe the initial 

mesovortex activity, which is the main source of 

tornado rise in our model, the following dimensionless 

data is used: 2 = 0.02, M=0.5(1+ rel)Jrel=750, 

V=0.5 2 (1+ rel) =120, where rel= 0R0/U0= 0/ 0 and 

Jrel=J0/R0
2
 are the relative mesovorticity and moment of 

inertia, correspondingly. It was shown [11,12] that the 

process of tornado (and hurricane) rise is mainly 

regulated by these three dimensionless parameters. 

The rest two parameters are as follows: Jbk=0.05J0 and 

bk=0.01 0. The number of mesh points in each 

direction is 80, and the time-step 0.35 s. 

The wind projections in the different cross-sections 

at the different instants are shown in Figures 3, 5-7. 

The coordinates in figures and in (8)-(10) are 

connected as follows: X=x+750 m, Y=y+750 m, Z=z 

(so, the central vertical axis of the tornado is at 

X=Y=750 m). Each vector field in each figure is 

normalized to unity. The absolute values of the radial-

vertical winds shown in Figure 3 can be estimated by 

using Figure 4 and those of the horizontal ones shown 

in Figures 5-7 – by using Figure 8. 

The radial-vertical winds in the central cross-

section, Uxz={Ux,Uz}(X, 750 m, Z, t), are shown in 

Figure 3 at the following instants: a) 10.34 s, b) 41.36 

s, c) 62.94 s, d) 82.72 s, e) 113.7 s, f) 165.4 s. The 

mean square velocity values |U| ||U(X,tk) ||L2(D) are also 

given in the figure. 

Big black round arrows in Figure 3 are placed 

around the main instant centers of vertical – radial 

circulation. Note, that at t=0 both vertical and radial 

components are absent; only a slow cyclonic tangential 

motion exists with the amplitude of U0=1.5 m/s.  

The vertical–radial wind circulation is created due to 

interaction of the macroscale velocity (i.e. the observed 

winds) with the mesoscale vortices. The main instant 

centers of vertical-radial circulation ascend and move 

away from the center axis with time. The initial energy 

of mesovortices is transferred to the winds energy; the 

wind velocity grows up fast, until it reaches its maximal 

magnitude, and then slowly decays, what is typical to 

tornados and hurricanes. 

The macroscale air circulation can be described as 

the suction of the surface air from the periphery 

towards the tornado center. Then, inside the eyewall, 

the air masses ascend till about 1 km height where 

they diverge to the periphery and descend. In this way, 

the tornado structure is creating.  

The maximal vertical wind velocity Uz=31 m/s is 

reached in the center at Z 600 m and t = 51.7 s. At that 

instant, the maximal radial inflow Ur  7 m/s and 

outflow Ur  5 m/s are located, respectively, at Z=500 

m, r=230 m and Z=1200 m, r=330 m. Under the given 

parameters, the total typical mushroom-like structure of 

 

Figure 4: The radial Ur(r,zn,tn) (a-c) and vertical Uz(r,zn,tn) (d-f) winds (m/s) as functions of radius ( =0) at the heights (m): 
z=zn=93.75 (n-1), n=2,...,16, z1=9.4, z17=1490, and the instants (s): t=tn=10.34 n. 
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Figure 5: Horizontal winds at the height z=187.5 m at the instants (s): a) 0; b) 10.34; c) 41.36; d) 82.72; e) 124.1; f) 165.4. 

 

Figure 6: Horizontal winds at the height z=750 m at the instants (s): a) 20.7; b) 72.4; c) 103.4; d) 165.4. 
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Figure 7: Horizontal winds at the height z=1125 m at the instants (s): ) 31; b) 72.4; c) 103.4; d) 134.4; e) 144.8; f) 165.4. 

the tornado is formed approximately for a minute 

(Figures 3c-f). 

Figure 4 shows the radial Ur(r,zn,tn) (a-c) and 

vertical Uz(r,zn,tn) (d-f) winds (in m/s) at the heights (in 

meters): z=zn=93.75 (n 1), n=2,...,16, z1=9.4, 

z17=1490, and the time instants (in seconds): 

t=tn=10.34 n, as the functions of radius at the azimuth 

angle =0 (y=0, x>0).  
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The horizontal winds Uxy={Ux,Uy}(X, Y, Z, t) at the 

different instants and heights are shown in Figures 5-7: 

Figure 5: Z=187.5 m; a) 0 s, b) 10.34 s, c) 41.36 s, 

d) 82.72 s, e) 124.1 s, f) 165.4 s; 

Figure 6: Z=750 m; a) 20.7 s, b) 72.4 s, c) 103.4 s, 

d) 165.4 s; 

Figure 7: Z= 1125 m; a) 31 s, b) 72.4 s, c) 103.4 s, 

d) 134.4 s, e) 144.8 s, f) 165.4 s. 

Figure 8 shows the horizontal wind amplitudes 

Uhor(z,t)= max|Uxy |(|x|,|y|<L1) at four heights. 

At t=0 s and all the heights, there are no radial (and 

vertical) winds, and the current represents pure 

tangential rotation inside the radius r R0=300 m. The 

initial structure of the horizontal winds at all the heights 

is like the one shown in Figure 5a (Z=187.5 m), and 

only tangential velocity magnitude varies with height. 

E.g. at Z=187.5 m the initial azimuth wind velocity 

magnitude equals to 1.2 m/s. With time at that height, 

the radial flux towards the eyewall arises and grows. 

During the first 10 seconds the horizontal velocity 

increases in 10 times and reaches 12 m s
-1

, while the 

eyewall radius narrows to r 153 m (Figure 5b). Later 

on, the eyewall radius still decreases tending to be 

stabilized near r 110 m (Figures 5c-f). 

Both inside and out of the eyewall, the air 

cyclonically spirals towards the wall. But out of the 

eyewall the air motion reveals more complicated 

features with time. For example, at the corners of 

Figure 5e (t=124.1 s) one can clearly see 

conglomerates of four vortices of different polarity, 

where the horizontal flow recalls a jet normally striking 

a bar. 

The magnitude of horizontal wind at this height 

reaches its maximum of about 14 m/s in 12 seconds 

and afterwards begins to decrease, while the gradient 

of the vertical velocity is still growing (compare with 

Figures 3d-f). 

At Z=750 m (Figure 6) the evolution of the 

horizontal winds resembles that at z=187.5 m (Figure 

5) with the only difference that the maximum of 

horizontal wind velocity is greater (about 28 m/s) and is 

reached later (in about 22 sec). One can clearly see 

the growth of the eyewall thickness (Figure 6b), and 

more intense and complicated motions at the periphery 

(Figures 6c-d). 

At the height Z=1125 m (Figure 7) the maximum of 

the horizontal velocity is about 30 m/s and is reached 

approximately in 31 seconds (Figures 7a and 8). At this 

height and higher, the centrifugal trend appears – the 

air outflow towards the periphery, growing in time 

(Figures 7b-e; see also Figures 3c-f and 4a). The 

eyewall expands and occupies the area up to r = 550 m 

at t = 72.4 s (Figure 7b) and after t=103.4 s intense 

horizontal currents cover the whole calculation area 

(Figures 7c-f). 

 

Figure 8: The magnitudes of horizontal winds Uhor(z,t) (m/s) with time (seconds) at the different heights z. 
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After t>100 s the secondary vortices emerge at the 

inner edge of the eyewall at r 260 m (Figure 7d). The 

system of four secondary vortices is relatively stable 

and cyclonically turns (counterclockwise) with angular 

velocity SV 0.0116 s
-1

 (Figures 7d-f). 

Such subtornado-scale multiple vortices structures 

have been observed visually or in patterns of havoc 

[17-20], by numerical [21] and laboratory [22] 

simulations, and by Doppler Radars [23]. Similar 

patterns of the eyewall mesovortices rotating around 

the eye center, emerging, coupling, decaying, and 

again merging, are also observed in severe hurricanes 

[24-26]. 

To estimate the quantitative values of the horizontal 

winds shown in Figures 5-7 one can use Figure 8: the 

maximal arrow length in each of these figures 

corresponds to the respective value of Uhor(z,t) in 

Figure 8. 

Figure 9 shows the main dynamic features of the 

numerical model. The central depression forming in the 

center of the category T3 tornado is shown in Figures 

9a-c. The typical pressure pit shown in these figures, 

as well as the wind velocity radial distributions at 

different heights at the instant of maximal winds shown 

in Figures 9e-f, sufficiently good correspond to the 

observation data [11,12,14]. The unity-normalized 

mean square values of the total energy (E), wind 

velocity (U), moment of mass (J), total vorticity (F), and 

the density parameter (a) as the functions of time are 

shown in Figure 9d. The time instants (tk) and heights 

(zn) are the same as described in Figure 4.  

6. DISCUSSION 

Figure 10 shows visual comparison of our numerical 

model (in quasi-3D form) with the photograph of the 

category T3 tornado made in Montana, USA, August 

2005. 

The structure of the objects in either picture is 

practically the same. Moreover, the space, time and the 

velocity data in our numerical experiment and the 

observed tornado almost coincide. 

Another visual comparison is shown in Figure 11 

where the model tornado at the instant t=93 sec is 

compared with the 1973 Union City, Oklahoma 

tornado. It was the first tornado captured by the 

National Severe Storms Laboratory Doppler radar, and 

it is shown here in its early stage of formation
4
. 

                                            

4
http://celebrating200years.noaa.gov/breakthroughs/tornadowarnings/01_torna

do650.html 

 

Figure 9: (a-c): pressures at the different heights and instants; (e): wind velocity magnitudes at the instant when absolute 
maximum wind is reached at t=82.7 s; (f): wind components (t=82.7 s, z=1031.25 m) (d): the total energy E, wind U, moment of 
mass J, total vorticity F, and the dencity parameter a, unity-normalized in square norms. The time instants and heights are the 
same as in Figure 4. 
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Concerning multiple vortices formation shown in 

Figure 7d-f, it is interesting to compare it with the 

similar phenomena observed in violent hurricanes.  

Figure 12 shows the satellite GOES-12 photograph 

of Hurricane Isabel, September 13, 2003, 1812 UTC 

(left) and the horizontal cross-section of the model 

tornado at t=165.4 s, z=1125 m (right). The both reveal 

four “pin-wheel” vortices around the central one. We 

found the following estimates for the diameters of 

eyewalls: De=70 km (Isabel), de =1.1 km (our model); 

central vortices: Dc=24.6 km, dc=0.37 km; “pin-wheel” 

vortices Dp=19.4 km, dp=0.27 km; and the radii of the 

“wheels”: Rw=25 km, rw=0.36 km. The geometrical 

similarity of the vortices in the eye of Hurricane Isabel 

and those of the tornado calculated in our model is 

obvious. 

Another comparison of the model tornado and 

Hurricane Isabel can be made by rescaling in time, 

space, and velocity. Concerning the maximal wind 

velocity (MWV) in our model UMW(t)=||U(X,t)||C(D) and 

the best-track wind velocity (BTV) in Hurricane Isabel 

UBT(t) [25], we can normalize MWV to BTV: 

UMWN(t)=kUUMW(t), where kU is the relation of absolute 

maximum of BTV (74.9 m/s) to that of MWV (42.11 

m/s). Then, let us define the typical time scale of 

Hurricane Isabel TI as the time period since 0000 UTC 

6 September 2003, when it became a tropical 

depression from an African easterly wave with 

BTV=16.4 m/s, until 1200 UTC 11 September 2003, 

when it reached the peak BTV. In the same manner we 

define the typical time scale of the model TM as the 

time period while the normalized MWV is rising from 

16.4 m/s to its peak value 74.9 m/s. Rescaling the 

model time rate with the factor kT=TI/TM 5233, we then 

can compare the time-rescaled normalized MWV 

UMWNT(t)= UMWN(t/kT) of the model with the BTV of 

Hurricane Isabel. The results of the comparison are 

shown in Figure 13. 

 

Figure 10: Left: 3D wind field in our model at t=165.4 s. Right: snapshot of T3 tornado, Montana, USA, August 2005 (Andrei 
Panshin © 2005). 

 

 

Figure 11: Left: 3D wind field in our model at t=90.03 s. Right: 1973 Union City, Oklahoma tornado in it early stage of formation. 
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The spatial coordinates of the model should be 

rescaled by the factor kX=De/de 63.63, and the 

similarity law requires AI=AM kX
2
/kT, where AI and AM 

are the typical turbulent viscosity coefficients of the 

hurricane and the model, respectively. In the numerical 

model AM =1000 m
2
s

-1
, so the effective turbulent 

viscosity in the hurricane should be equal to AI 774 

m
2
s

-1
, what is in good agreement with the observation 

data. 
 

7. CONCLUSION 

The Cosserat model of asymmetrical hydrodyna-

mics is applied to the tornado/hurricane phenomena 

which differ in their scales and nature. The tornado rise 

from the cloud of turbulent eddies is considered as the 

localization process. Our numerical solution of the 

problem applied to Category 3 tornado proved its 

fitness. 

 

Figure 12: Left: the eye of Hurricane Isabel (zoomed part of GOES-12 photo, Sept. 13, 2003, 1812 UTC, 
http://goes.gsfc.nasa.gov/pub/goes/030913.isabel.gif). Right: the eye of the model tornado at t=165.4 s, z=1125 m. (See details 
in text). 

 

 

Figure 13: Best-track wind velocity (m/s) in Hurricane Isabel [25] (dashed) and rescaled maximal wind velocity in the model 
(solid). Horizontal axis shows time in days of September 2003. The arrows show the periods when multi-vortices inside the 
hurricane/tornado model were observed/ calculated. 
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Our model concept is to overcome the prejudice 

against the vortex symmetry of turbulence 

microstructure, and the alternative concept of gradient 

homogeneity is suggested which agrees with the 

Kolmogorov idea of local isotropy. 

Interesting features of the concept implemented 

here are as follows. First, our model can explain 

multiple vortices formation both in tornados and 

hurricanes simultaneously (depending on the scale 

factors), and, second, it is shown that the mesoscale 

theory of turbulence can explain the processes of 

catastrophically rapid rise of tornados (or hurricanes), 

and also can describe the peculiar features of these 

phenomena, such as multiple vortices. 

REFERENCES 

[1] Selected Works of A.N. Kolmogorov: Volume I: Mathematics 
and Mechanics. V.M. Tikhomirov, Ed., Kluwer, Dordrecht, 
1991. 

[2] Taylor G.I. Statistical Theory of Turbulence. Proc R Soc 

London Ser A 1935; 151: 421-478. 
http://dx.doi.org/10.1098/rspa.1935.0158 

[3] Schrodinger E. What is life? Cambridge Univ. Press, 1944. 

[4] Cosserat E. et F. Theorie des Corps Deformables. Herman, 
Paris, 1909.  

[5] Nikolaevskiy V.N. Angular Momentum in Geophysical 
Turbulence: Continuum Spatial Averaging Method. Kluwer, 

Dordrecht 2003. 
http://dx.doi.org/10.1007/978-94-017-0199-0 

[6] Nikolaevskiy V.N. Asymmetrical Mechanics of Continua and 
Averaged Description of Turbulent Flows. Dokl Akad Nauk 
1969; 184(6) 1304-1307 [in Russian]. 

[7] Mattioli G.D. Teoria Dinamica dei Regimi Fluidi Turbolenti. 
CEDAM, Pardova 1937. 

[8] Ferrari C. On the Differential Equations of Turbulent Flow. In: 

Continuum Mechanics and Related Problems of Analysis, 
Nauka, Moscow 1972; pp. 555-566. 

[9] Heinloo J. Setup of turbulence mechanics accounting for a 
preferred orientation of eddy rotation // Concepts of Physics 

2008; 5: 205-219. 
http://dx.doi.org/10.2478/v10005-007-0033-8 

[10] Eringen A.C., Chang T.S. A Micropolar Description of 
Hydrodynamic Turbulence. In: Recent Advances in 
Engineering Science, Gordon & Breach, New York 1970; 
5(2): 1-8. 

[11] Arsenyev S.A., Gubar A.Yu., Nikolaevskiy V.N. Self-

Organization of Tornados and Hurricanes in Atmospheric 
Currents with Meso-Scale Eddies. Dokl Earth Sci 2004; 
396(4): 588-593. [Doklady Akademii Nauk 2004; 396(4): 541-
546]. 

[12] Arsenyev S.A., Babkin V.A., Gubar A.Yu., Nikolaevskiy V.N. 
Theory of Mesoscale Turbulence. Eddies of the Atmosphere 
and the Ocean. RCD, Moscow – Izhevsk, 2010. [in Russian]. 

[13] Arsen’ev S.A., Gubar A.Yu., Shelkovnikov V.N. Generation of 
Typhoons and Hurricanes by a Mesoscale Turbulence. 

Moscow Univ Phys Bull 2007; 62(2): 113-117. [Vestnik 
Moskovskogo Universiteta Fizika 2007; 62(2): 50-54].  
http://dx.doi.org/10.3103/S0027134907020129 

[14] Gubar A.Yu., Avetisyan A.I., Babkova V.V. Tornado Rise: 3D 

Numerical Model in Mesoscale Turbulence Theory of  
 

Nikolaevskiy. Dokl Earth Sci 2008; 419(2): 467-472. [Doklady 

Akademii Nauk 2004; 419(4): 547-552].  
http://dx.doi.org/10.1134/S1028334X08030264 

[15] Avetisyan A.I., Babkova V.V., Gaissaryan S.S., Gubar’ A.Yu. 
Development of Parallel Software for Resolving the 3D Task 
about the Origin of the Tornado According to the Nikolaevskii 

Theory. Math Models Comput Simul 2009; 1(4): 482-492 
[Matematicheskoe Modelirovanie 2008; 20(8): 28-40].  
http://dx.doi.org/10.1134/S2070048209040061 

[16] Avetisyan A.I., Babkova V.V., Gaissaryan S.S., Gubar A.Yu. 

Intensive Atmospheric Vortices Modeling Using High 
Performance Cluster Systems. LNCS 2007; 4671: 487-495. 
doi:10.1007/978-3-540-73940-1_48 

[17] Fujita T.T. The Lubbock tornadoes: A Study of Suction Spots. 
Weatherwise 1970; 23(4): 161-173.  
http://dx.doi.org/10.1080/00431672.1970.9932888 

[18] Agee E.M., Church C., Morris C., Snow J. Some synoptic 
aspects and dynamic features of vortices associated with the 
tornado outbreak of 3 April 1974. Mon Wea Rev 1975; 103: 

318-333.  
http://dx.doi.org/10.1175/1520-
0493(1975)103<0318:SSAADF>2.0.CO;2 

[19] Agee E.M., Snow J.T., Nickerson F.S., Clare P.R., Church 
C.R., Schaal L.A. An Observational Study of the West 

Lafayette, Indiana, Tornado of 20 March 1976. Mon Wea 
Rev 1977; 105: 893-907.  
http://dx.doi.org/10.1175/1520-
0493(1977)105<0893:AOSOTW>2.0.CO;2 

[20] Pauley R.L., Snow J.T. On the Kinematics and Dynamics of 

the 18 July 1986 Minneapolis Tornado. Mon Wea Rev 1988; 
116: 2731-2736.  
http://dx.doi.org/10.1175/1520-
0493(1988)116<2731:OTKADO>2.0.CO;2 

[21] Rotunno R. Numerical Simulation of a Laboratory Vortex. J 
Atmos Sci 1977; 34: 1942-1956.  
http://dx.doi.org/10.1175/1520-
0469(1977)034<1942:NSOALV>2.0.CO;2 

[22] Church C.R., Snow J.T. Laboratory Models of Tornadoes. In: 

Church C., Burgess D., Doswell C., Davies-Jone R., Eds., 
The Tornado: Its Structure, Dynamics, Prediction, and 
Hazards, Am. Geophys. Union, Washington, D.C., 1993; pp. 
19-39. doi:10.1029/GM079p0277 

[23] Wurman J. The Multiple-Vortex Structure of a Tornado. Wea. 
Forecasting 2002; 17: 473-505.  
http://dx.doi.org/10.1175/1520-
0434(2002)017<0473:TMVSOA>2.0.CO;2 

[24] Montgomery M.T., Vladimirov V.A., Denisenko P.V. An 

Experimental Study on Hurricane Mesovortices. J Fluid Mech 
2002; 471: 1-32.  
http://dx.doi.org/10.1017/S0022112002001647 

[25] Bell M.M. & Montgomery M.T. Observed Structure, Evolution, 

and Potential Intensity of Category 5 Hurricane Isabel (2003) 
from 12 to 14 September. Mon Wea Rev 2008; 136: 2023-
2046.  
http://dx.doi.org/10.1175/2007MWR1858.1 

[26] Kossin J.P., Schubert W.H. Mesovortices in Hurricane Isabel. 

Bull Am Meteorol Soc 2004; 85: 151-153.  
http://dx.doi.org/10.1175/BAMS-85-2-151 

[27] Poincare H. Theorie des Tourbillions. Carré et Naud, Paris. 
1893. 

[28] Batchelor G.K. An introduction to fluid dynamics, Cambridge 
University Press, 1967, 1973, 2000, First Cambridge 

Mathematical Library edition 2000 Reprinted 2001, 2002. 
XVIII, 615 p. — ISBN 0 521 66396 2 (paperback). 

[29] Brode H.L. Review of Nuclear Weapon Effects. Annu Rev 
Nucl Sci 1968; 18: 153-202. 
http://dx.doi.org/10.1146/annurev.ns.18.120168.001101 

[30] Obukhov A.M. Turbulence for Atmospheric Dynamics. Center 
for Turb. Res., Palo Alto, Calif., 2001. 



Numerical Pattern of 3D Tornado Rise with Account Global Journal of Earth Science and Engineering, 2014, Vol. 1, No. 1      17 

[31] Iovieno M., Tordella D. The Angular Momentum Equation for 

a Finite Element of a Fluid: A New Representation and 
Application to Turbulent Modeling. Phys Fluids 2002; 14(8): 
2673-2682. 
http://dx.doi.org/10.1063/1.1485765 

[32] Iskenderov D.Sh, Nikolaevskiy V.N. Laminar Core of 

Atmospheric Turbulent Eddies. Dokl Akad Nauk 1991; 
319(1): 124-128. [in Russian]. 

[33] Fletcher C.A.J. Computational Techniques for Fluid 

Dynamics. Vol. II: Specific Techniques for Different Flow 
Categories. Springer-Verlag, Berlin 1988. 

[34] Ivannikov V.P., Gaissaryan S.S., Avetisyan A.I., Padaryan V. 
A. Improving Properties of a Parallel Program in ParJava 
Environment, LNCS 2003; 2840: 491–494. 
http://dx.doi.org/10.1007/978-3-540-39924-7_65 

 
Received on 30-05-2014 Accepted on 06-07-2014 Published on 30-09-2014 

DOI: http://dx.doi.org/10.15377/2409-5710.2014.01.01.1 

© 2014 Gubar and Nikolaevskiy; Avanti Publishers. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in 
any medium, provided the work is properly cited. 
 


