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Abstract: Estimation of ore grade is a time and cost consuming process that requires laboratory-based and exploratory 
information to present the shape and the ore grade distribution of ore deposit in three dimensional space. The block size 
is one of the most important parameters which impacts the quality of grade estimates in a resource model. This study 
aims at spatial modeling of iron ore deposit using geostatistical estimation methods such as Ordinary Kriging based on 
error estimation, selection of the appropriate size for mining blocks using Vlse Kriterijumsk Optimizacija Kompromisno 
Resenje method, and performing a three-dimensional block modeling along a grade estimation study for the resource 
estimation in the C-North iron ore deposit, NE Iran. The variogram that was used in OK estimation was cross validated. 
Cross validation results showed that compared with the local model, OK with the global model was the most appropriate 
model for the ore body. Detailed distribution maps of total iron contents in the C-North ore deposit showed a close 
relationship between structural features and higher iron contents, relative to other areas of the ore deposit. Structural 
features included the major faults and fault zones along the axial plane. These structures are interpreted to have played 
a significant role in (re) mobilisation and concentration of the metals, in agreement with observations made elsewhere in 
the Sangan iron ore complex. Based on the estimation results, 83 million tons of resource was estimated at an average 
grade of 41.86 % Fe using OK method. The C-North ore deposit has been classified based on the relative estimation 
error variance and the Australasian Code for Reporting of Mineral Resources and Ore Reserves. It is hoped that this 
example, taken from very different application fields, will encourage practitioners in applying an OK method with variety 
of ore deposits. 
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1. INTRODUCTION 

A critical task of any mining project is to construct a 
three-dimensional block model mainly representing the 
tonnage and grade distribution of the mineralized 
deposit. Occurrences and distributions of the iron ores 
have gotten attention in mapping and grade-wise 
categorization of different types of iron ores. The use of 
three-dimensional (3D) modeling is inevitable to 
estimate the exact amount of the deposit as well as in 
detailed planning for mining and ore production [1]. 3D 
modeling can be effective in control of mineral mixing in 
different sectors in addition to consideration of the 
production plan. Also, a good knowledge of grade 
distribution within an ore deposit is essential to assess 
the economic feasibility of mine production [2]. The 
success in a mining operation depends on the 
accuracy of the reserves evaluation as well as the 
distribution of ore grades of the individual blocks [3]. A 
two-dimensional (2D) or 3D computerized model of the 
grade distribution is fundamental to modern mineral 
resource estimation through which one can delineate 
both low and high grade areas. Open pit mine planning 
and design is traditionally based on a block model of 
the ore body built by using interpolation techniques, 
either traditionally such as inverse distance, nearest 
neighborhood, etc. or through application of 
geostatistical  methods  like  simple kriging, ordinary  
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kriging, etc., from the drill hole sample data [4]. 
Geostatistical tools have been considered as powerful 
techniques for the spatial modeling of the ore deposits, 
predicting spatial attributes, and quantifying the 
uncertainty. Geostatistical approaches can be used to 
investigate the spatial behavior of a variable. Over the 
past 30 years, geostatistics has became the most 
established methodology for grade estimation. Various 
researchers have applied geostatistical methods and 
successfully modeled the spatial variability of the grade 
of elements associated with iron ore deposits 
[2,3,5-10].  

Grade estimation is one of the most important 
stages in reserve calculations [11]. Grade estimation 
helps to obtain grade-tonnage curves that are used for 
the prediction of mining production. Estimation of ore 
grade can be improved by reducing the variance of 
estimation, which leads to reduction in the regression 
effect. The ore grade distribution in mineral deposit 
based on the economic cut-offs should be placed on 
selective mining units and not sample grades [3]. To 
decrease the risk of mining activities, geostatistical 
estimation methods are used to provide an estimation 
of different regional variables (e.g. grade) in 2D and 3D 
environments [12-15]. One of the best methods for 
estimation of different regional variables in ore grade 
modeling is kriging. Kriging is a linear regression 
method for estimating point values (or spatial 
averages) at any location of a region. Kriging, as a 
group of geostatistical methods, is an interpolation 
technique that considers both the degree of variation 
and the distance between known data points in 
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estimating the values in unknown areas [6,16]. Mineral 
inventories are based on assessing the grades and 
tonnages through an estimation in the mining industry 
and one of the most important of them is ordinary 
kriging (OK). This allows the construction of a model 
where block grades are estimated, usually from 
exploratory data. The question now is how much you 
can trust the proposed reserve based on the 
geostatistical methods. With initiatives to establish 
international standards for classifying mineral 
resources and reserves, it is important to establish the 
level of confidence in the results and correctly assess 
the error. For this reason, using the parameters that 
can be obtained through geostatistical methods, the 
quantification of exploratory blocks is made that is one 
of the needs and strengths of this research. Block 
modeling, representation of an ore body, is one of the 
most important steps through which the mineral deposit 
is divided into a series of separate blocks. The grade of 
the block is estimated by mathematical methods, such 
as geostatistical interpolation. In this work, we focus on 
the evaluation and classification of mineral resources 
by using different methods. Three dimensional 
modelling of grade in an ore deposit has a lot of 
advantages. Therefore, if this process is done carefully, 
evaluations and judgments about different parts of the 
ore deposit would be better. An important problem in 
the block modeling in a deposit is the determination of 
optimum block sizes [7]. Recognition of the ore grade 
distribution and the block size in each zone will help to 
decrease the risk of exploration and planning for further 
mining activities [17,18]. Thus, the block size is the 
most important concepts in optimal open pit design [1]. 
Ore grade estimation in smaller blocks is far more 
difficult than larger blocks, because bases with larger 
size have lower variability as shown in the central limit 
theorem. Moreover, the higher the grade distribution in 
a deposit, the less accurate the grade estimate in it [19]. 
More recently, multi-criteria decision-making methods 
such as AHP, TOPSIS, ELECTRE, and VIKOR have 
been used alone or in combination with fuzzy logic to 
solve mining problems [19]. The tonnage, average 
grade, and cutoff are the basic parameters in mineral 
resource assessments and mining operations [20]. The 
distributions and relationships of the tonnage- grade 
and cutoff have been studied for decades to predict 
resources at a regional scale. 

This research focuses on determining the ore zones 
in the sub-surface environment, spatial modeling of 
C-North iron ore deposit using geostatistical estimation 
methods such as OK, selecting the appropriate size of 
mining blocks using Vlse Kriterijumsk Optimizacija 
Kompromisno Resenje (VIKOR) method, and 3D block 
modeling of ore grades. Also, the C-North ore deposit 
has been classified based on the relative estimation 

error variance and the Australasian Code for Reporting 
of Mineral Resources and Ore Reserves (JORC).  

2. MATERIALS AND METHODS 

2.1. Sangan District 

The Sangan iron skarn complex is one of the most 
important deposits associated with the Tertiary 
volcanic-plutonic magmatism in NE Iran. The study 
area is located in SE of the Khorasan-e-Razavi 
province, approximately 280 km from the City of 
Mashhad, and in the end part of the 
Khaf-Kashmar-Bardskan Tertiary magmatic belt of the 
Central Iran blocks along the regional E-W trending 
and the eastern segment of large scale old Dorouneh 
fault passing near the area (Figure 1a) [21]. This belt is 
one of the most important economic mineral districts in 
NE Iran. The Sangan Magmatic Complex (SMC), at the 
NE edge of the Lut block, includes a thick pile of 
volcanic rocks intruded by younger granitoid stocks 
[22]. There are a number of iron ore deposits with 
considerable reserve amounts in the study area while 
the iron ore bodies are distributed along the contact 
zone between the Jurassic clastic rocks or Cretaceous 
carbonates and the Eocene igneous rocks [23]. These 
deposits, together with other smaller satellite deposits 
and occurrences, form a long E-W trending magnetite 
rich belt. Based on the characteristics of ore deposits, 
this mining region is divided into western (subdivided 
into A, A', B, CS (C-South), and CN (C-North)), central 
(subdivided into Baghak (BA) and Dardvey (D)) 
anomalies (Figure 1b) and eastern anomaly 
(subdivided into Senjedak 1, 2, 3; Madanjoo, Som–
Ahanai and Ferezneh).  

2.2. Geological Setting of the Study Area 

SMC is located in the eastern part of the Sabzevar 
Dorouneh Magmatic Belt (SDMB). This formation 
consists of intermediate to felsic intrusive and extrusive 
(volcanic and pyroclastic) rocks, and is located at the 
eastern edge of the Khaf- Kashmar- Bardskan 
Volcano- Plutonic and Tertiary Metallogenic Belt 
(KKB-VPMB) in NE Iran [24]. The geology of this belt 
mainly includes Cenozoic silicic to mafic volcanic rocks, 
which have been intruded by granitoid units of granitic 
to dioritic composition [23]. 

The oldest geologic units in the Sangan region 
include Precambrian schist and Paleozoic 
metamorphic rocks, which are overlain by a complex 
assemblage of Eocene volcanics, Oligo-Miocene 
sedimentary deposits and Jurassic and Cretaceous 
formations (Figure 1b). The metasedimentary rocks 
represent the oldest rock units. The oldest unit is a 
thick pile (1500 m) of sedimentary rocks that consists 
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of lower Jurassic shales and siltstones, which are 
overlain by Upper Jurassic to Cretaceous limestone, 
dolomite and rare gypsum [25]. The whole rock 
sequence up to the upper Eocene is intruded by Late 
Eocene granitoids [23]. The carbonate rocks of 
Jurassic consist of crystalline and less dark dolomite 
limestone that spread all over the area [26,27]. This 
sedimentary sequence is either intruded by granitoids 
or is unconformably covered by the volcanic rocks. The 
depressions between the ranges are filled in by thick 
Neogene sediments [28]. Granitoid rock intruded older 
rocks such as crystalline limestone, dolomite and 
volcano-sedimentary rocks in the pre-carbonifer age, 
and quartzite, slate and conglomerate in the carbonifer 
age. Granites and syenogranites are two main intrusive 
rocks exposed in the study area [24]. Syenogranites 
are widespread in the north of the SMC and exhibit 
porphyritic textures with weak alteration consisting of 
sericite and chlorite [22]. The structural features of the 
region such as the faults and foldings as well as the 
strike of the formations follow the E-W to NW-SE 
direction of the major Dorouneh fault [21]. The 
recognition of a fault system and structural features are 
important because these may materially affect the 
assessment and exploration of other segments of the 
hidden ore body. Mineralization and magmatism were 

controlled by basement-hosted E-W and NW-SE 
trending fault sets. All of the deposits in the study area 
are thought to have hydrothermal origins and have 
skarn type mineralization [29, 30]. 

2.3. Grade Estimation Geostatistical Methods 

Ore grade estimation is one of the most key and 
complicated aspects in the evaluation of a mineral 
deposit [31]. The main aim of grade modeling is at 
providing a quantitative definition of the variables 
distributed in space [32]. An important problem in 
mineral exploration is the estimation of mineral 
resources and reserves of 2D or 3D ore grade 
distribution with low values of error. In the mining 
industry, the geostatistical methods, such as kriging, 
are widely used to predict the value of a whole section 
based on the sub-surface data. The geostatistical 
methods provide quick and reliable estimates with 
minimum variance. On the other hand, geostatistical 
estimation of the ore grade is necessary in mine 
planning and designing [33,34]. The choice of 
estimation method applied depends on the 
appropriateness of the method to the deposit’s geology 
and the available data. Kriging is used as an unbiased 
linear estimate of point values (point kriging) or block 
averages (block kriging) with minimum error variance 

 
Figure 1: (a) Geographic location of the study area; (b) Geological map of the Sangan deposits (faults are not shown) (modified 
after [21, 27]). 
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[35]. Different variants of kriging estimators have been 
developed depending on the available source of 
information and spatial variability of the variable in 
question [36]. Kriging provides the best estimate since 
it provides the smallest standard error; narrowest 
confidence interval and the most confidence (lowest 
risk) [37]. Kriging utilizes a variogram, which does not 
depend on the actual value of the variable (data), 
rather its spatial distribution and internal spatial 
structure. The variogram provides penetrating insight 
concerning the data used to construct a kriging 
interpolation system. When a good robust variogram 
model is available, kriging provides the estimation best 
representing the spatial distribution of the input data 
[5]. 

2.3.1. Ordinary Kriging 

Ordinary Kriging (OK) is an appropriate 
geostatistical approach and a popular geostatistical 
method for the estimation of the ore grade and is the 
most useful technique among different kriging methods, 
which plays a superior role because of its compatibility 
with a stationary model that contains a variogram 
[38,39]. OK, as a linear estimation method, instead of 
weighting nearby data points by some power of their 
inverted distance, relies on the spatial correlation 
structure of the data to determine the weighting values. 
This is a more rigorous approach to modelling as 
spatial correlation between the data points determines 
the estimated value at a non-sampled point. This 
spatial correlation of the phenomena is represented by 
a variogram, which is a tool of geostatistics. The 
variogram function has to be estimated on the basis of 
the available data. In the case of a finite data set, the 
estimation of the variogram can be made for a finite set 
of vectors only. The variogram can be estimated with 
the help of the following formula using sample data 
[40]: 

! ℎ = !
!!(!)

! ! + ℎ − !(!) !!(!)
!!!       (1) 

where ɣ (h) is the estimate of semi-variance, N (h) is 
the number of pairs observed [Z (X), Z (X+h)], and h is 
the distance between the pairs.  

OK provides a single estimate at locations that 
minimizes the estimation variance and conditional bias 
[41]. OK is a spatial interpolation estimator Ẑ (X0) used 
to find the best linear unbiased estimate of a 
second-order stationary random field with an unknown 
constant mean as follows: 

Z""(!!) = !!  !
!!! ! !!         (2) 

where Ẑ (X0) is kriging estimate at a non-sampled 
location X0; n is the number of measured value Z(X); 

Z(Xi) is the sampled value at location Xi; and λ i is the 
weighting factor for Z (Xi). The estimation error is: 

Z(!!) − ! !! = ! !! = !  !
!!! ! !! − !(!!)      (3) 

where Z (x0) is the unknown true value at X0; and R (X0) 
is the estimation error. For an unbiased estimator, the 
mean of the estimation error must be equal to zero. 
Therefore, 

E R !! = 0         (4) 

and  

!!   = 1!
!!!          (5) 

The best estimator is always unbiased and has a 
minimum variance. The minimization of the estimation 
error variance under the constraint of unbiasedness 
leads to a set of simultaneous linear algebraic 
equations for the weighting factors, λ i, which can be 
solved by an optimization routine and the method of 
Lagrange multipliers [38,42]. OK is also applied to 
estimate the block grades. 

2.3.2. Cross Validation of Models and Validation of 
Estimation Results 

Cross validation is a technique to check 
performance of the estimation methods [38]. This 
technique is based on omitting some sample points xα 
from the set of variables Z (x) and then estimating them 
by kriging from the neighboring data Z (xβ), α≠β. 
Accordingly, at every sample point xα, the Kriging 
estimate Zα* and the associated Kriging variance σ2 Kα 

are calculated. Since the measured value Zα = Z (xα) is 
known, the empirical Kriging error (Eα) and 
standardized error (eα) can be computed: 

!∝!!∝∗ − !∝         (6) 

!∝!
!∝
!!!

          (7) 

Estimation model quality can be evaluated using the 
mean square standardized error with N data. 

! = !
!
. !∝!!

∝!!          (8) 

The best fit for the model is the value closest to one 
[38]. Other indices such as the regression slope can be 
used to check the consistency of the selected 
neighborhood while cross-validating. In addition to the 
error variance and standardized error variance, 
examining the scatter plot of the estimated and true 
values is another possibility. These techniques show 
which model is more reliable. Estimation results can be 
validated in some applications if the real data are 
available. For instance, in mining studies, grade 
evaluations made on the basis of limited information 
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(drill holes) can be validated by the real grades of the 
blocks [41]. 

2.3.3. Variography 

Geostatistical estimations are based on the 
existence of a spatial structure in the data. Variography, 
or spatial statistics, is the most important means of 
showing the spatial correlation of sample values, which 
is computed by averaging the squared differences of 
grades between the pairs of samples that are a given 
distance apart [41]. Also, it is a very important study in 
the computerized resource estimation of the mining 
industry. The variogram is the function of the distance 
and direction separating the two locations that is used 
to measure the dependence. The variogram is 
described by a nugget, a sill, and a range parameter. 
The variogram is a quantitative descriptive statistic that 
can be graphically represented in a manner which 
characterizes the spatial continuity (i.e. roughness) of a 
data set. 

The variogram models are widely used tools for 
spatial interpolation, which are the fundamental 
parameters for geostatistical modeling [43,44]. These 
models are fitted for different directions on the data set, 
which is used later on for the estimation of grade at a 
non-sampled location by OK method. To study the 
anisotropy of the ore deposit, variography was done in 
different directions and dips in the ore deposits.  

2.4. Block modeling 

One of the goals of this study is to create a block 
model for the iron ore deposit. An unconstrained block 
model was generated in a software and constrained by 
using the mineralized zone wireframes. The model 
composed of 3D cells or blocks, each of which has 
attributes such as grades. The model should be large 
enough to cover the full range of input data, which in 
most cases consist of one or more wireframes and 
drilling databases. 3D coordinates spatially define the 
model extents. To determine the extent of a block 
model, set the minimum coordinates of the starting 
blocks- the lowest angle, the south-west of the model, 
and the maximum block coordinates-the highest angle 
to the north-east of the model. This establishes space 
in the total area of impact that is used for estimating the 
grade and reserves. The sub-cells are not only helpful 
for accurate construction of a 3D grade model for the 
ore body, but also for identification of continuous 
sensitive differences of the ore grade in a single ore 
body [20]. The estimate of the grade of a block can be 
obtained as the linear average of the point estimates 
(e.g OK estimates). 

Determination of a block size is the most important 
in the operation and selection of equipment at an open 

pit mine [45]. Also, choosing a suitable block size for 
evaluation of a reserve/resource is crucial for 
minimizing errors [7], because the choice of the block 
dimensions will affect the operation and mining costs. 
Mineral deposit mining decisions are based in part on 
the information provided in the grade block models 
obtained from samples [46]. The selection of such 
parameters is a complex engineering decision due to 
their great economic impact on the mining operation, 
as they will significantly affect the mine design and 
planning. In addition, several direct and indirect costs 
are associated with mining, and some costs such as 
drilling expenses differ depending on the block size [1]. 
Therefore, the costs can be reasonably reduced by 
determining the optimal size of the extracted blocks. To 
select the size of the block model, we should also 
consider several factors, such as the size of the blocks 
depend on the characteristics of the source, the size of 
the forms of bodies, type of ore, zonality, and length of 
sample analysis. The block size to be estimated must 
be comparative to the spacing of the available drilling 
information informing the estimate to avoid what is 
known as the “small block linear estimate problem” 
described by Stephenson and Vann, 2001 [47], which 
states that “as the block size decreases relative to drill 
spacing, the precision of the estimates decreases, 
often sharply”. Utilizing a larger block size will increase 
the averaging effect in the estimated block model in 
terms of concentrations of mineralized zones by 
smoothing of these points with high or low values within 
a large block [12,40,48-50]. Also, a smaller block size 
will show more details, but potentially more error in an 
anisotropic environment [48]. As a result, reducing the 
block size results in an increase in estimated errors 
(variance and standard deviation) for a final block 
model [48]. Therefore, it is necessary to select an 
optimal block size with respect to the deposit geometry 
and drilling pattern. In this research work, appropriate 
block size is determined using VIKOR method. 

2.4.1. VIKOR Method 

Use of multi-criteria decision-making (MCDM) 
methods are very useful as it allows simultaneous 
consideration of several criteria by taking into account 
the different relative importance attached to them [1]. 
The VIKOR is one the most robust techniques in 
MCDM problems that was established by [5], which is 
often used to solve discrete problems. The VIKOR 
method was developed for multicriteria optimization of 
complex systems. It determines the compromise 
ranking-list, the compromise solution, and the weight 
stability intervals for the preference stability of the 
compromise solution obtained with the initial (given) 
weights. This method focuses on ranking and selecting 
from a set of alternatives in the presence of conflicting 
criteria [51]. It aims to rank and weight different 
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attributes under various criteria based on the 
introduction of multiple criteria ranking indices 
according to a particular measure of “closeness” to the 
“ideal solution” [51-53]. VIKOR model prioritizes or 
ranks the options via evaluation of the options on the 
basis of the criteria. In MCDM problems, the 
multi-disciplinary effective factors (here, diverse 
exploration and extraction data) are used to select the 
optimal block size and consequently to create block 
modeling of the iron ore deposit. VIKOR algorithm is 
adjusted based on the derived characteristics of 
exploration and extraction factors. The advantage of 
VIKOR is that the raw data can be used to evaluate the 
options as well as the expert opinion. In this research 
work, while introducing a comprehensive set of 
effective criteria to determine the appropriate block size, 
the best option (most appropriate size) for the C-North 
iron ore deposit is suggested using VIKOR method. 

2.5. Grade-Tonnage Curve 

Grade-tonnage curves are a visual representation 
of the impact of cut-off grades on mineral reserve. The 
tonnage and grade curves can be adjusted to account 
for several modifying factors to approximate or 
estimate the potentially mineable material available at 
various cut-off grades. Grade-tonnage curves are one 
of the tools which enable the mine managers to 
determine the correct long-term, mean-term and 
short-term parameters for ore production [5]. Drawing 
grade-tonnage curves is required in order to find the 
tonnage of different grades. According to assay data of 
each block, we could calculate the deposit based on 
different cut-off grades. The aim of the grade-tonnage 
calculation is to determine how much tonnes of metal is 
present in the deposit for the different grades of ore. It 
is calculated by the formula: 

Grade-tonnage = Dx x Dy x Dz x T x n 

where Dx, Dy, Dz = dimension of block in x, y, z 
directions, respectively, T= tonnes of ore per qubic 
meter of block (also called the tonnage factor), n= 
number of blocks 

2.6. Classification of Reserve 

Choosing the proper method for estimation of 
reserve with a minimum error is very important in 
geostatistical operations in mining engineering. One of 
the most important reasons for determining reserve 
classification is to justify the investment, which is 
especially important early in the life of the mine [54]. A 
useful classification is to consider categories A and B 
as equivalent to be measured, and category C1 as an 
indicated. C2 is then an inferred [32,55,56]. In this 
research, classification of the reserve has been carried 

out by relative estimation error variance method. In this 
method, with respect to apparent shape of relative 
estimation error variance histogram, the reserve is 
classified into measured, indicated and inferred 
categories. Relative estimation error variance is given 
below:  

!! =
!!
!∗!

         (9) 

where !! is the relative estimation error variance; !!: 
the block estimation error variance and !∗! : the 
estimated grade of each block. 

Several methods are utilized for classification of 
reserves and resources. The reserve is classified 
based on calculated estimation errors by JORC code. 
The classification framework is based on the code 
developed by the Joint Ore Reserves Committee of the 
Australian Institute of Mining and Metallurgy, Australian 
Institute of Geoscientists and Minerals Council of 
Australia [57]. This code is one of the international 
standards for mineral resource and ore reserve 
reporting, and it provides a template system that 
conforms to international society requirements [31,33]. 

2.7. Data Analysis 

The present case study is based on an iron ore 
deposit located in the Sangan mining region. The strike 
of the deposit is almost along SE-NW. The study area 
covers 1.0 km2 (1.0 × 1.0 km) and elevation ranges 
from 1409 m to 1745 m above sea level. The drill holes 
dataset plays an important role in both mineral 
exploration and grade estimation. The C-North iron ore 
deposit was explored by drilling 85 drill holes. The drill 
holes were spaced in an irregular grid pattern with a 
spacing of 20–100 m (average 50 m) between each 
drill hole. The depth of drill holes varies from 53.30 to 
517.00 m, with an average depth of 234.15 m while 
total drilling depth is 19904.02 m. The iron ore is 
associated with seven different lithologies such as 
quartzite (QZIT), shale (SHAL), siltstone (SIST), skarn 
(SKAR), granite (GRAN), dacite (DACT), and 
rhyodacite (RD). A database was created based on the 
drill holes information which was collected from 85 drill 
holes in the C-North iron ore deposit. Drill hole data 
included concentrations of Iron (Fe (%)), Phosphorous 
(P (%)), and Sulfur (S (%)). The core logs were 
digitized using Microsoft Excel and were converted to a 
geological database, which included collar, survey and 
assay files. The main data used to create the 
geological model and the only data used for grade 
interpolation were the exploration drill hole data, 
consisting of assays and geological logging. The 
number of 3598 geochemical samples was collected 
from the drill holes and used for assays and logging in 
either 1.5 m or 2 m lengths. A composite length of 2.0 
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meters was selected as it was the most prevalent 
interval length in the dataset [27]. 

Chemical analyses through ICP-MS method, are 
available for the major attributes Fe and SiO2 as well as 
for minor attributes P and S. These measurements 
were assayed results used in the mine and production 
planning. Although Fe, SiO2, P and S variables were 
analyzed, due to the importance of iron, only Fe 
content was chosen for geostatistical estimations of the 
ore deposit in the present study. It is noteworthy that 
phosphorous and sulfur content in the C-North iron ore 
are low. The drilling intersects various layers of 
sedimentary rocks, which are occasionally intercepted 
by intrusive. Five geological sections were selected in 
the north-south direction on the basis of sub-surface 
data at intervals of 50 and 100 meters (profiles number: 
5850- 5950-6050-6100-6150) [27]. 

The shallowest drilling is 53.3 m (BH.219) and the 
deepest drilling is 517 m (BH.59) deep. In order to 
observe the spatial distribution modeling in 2D, one 
cross-section line (profile number: 5850) is drawn 
containing the drill holes that take place in the ore zone 
areas (Figure 2). The interpretation of the ore zones 
was based on geological control on the mineralization. 
In this cross-section, the distribution of the ore zones is 
observed between BH.113 and BH.94 drill holes and 
between BH.182 and BH.302 drill holes at levels of 
about 1200–1400 m and 1100- 1400 m, respectively 
[27]. This stage consists of an exploratory study and 
variogram analysis of a real dataset (sample assays 
from exploration drill holes) from C-North iron ore 
deposit. 

2.7.1. Basic Statistics 

Statistical studies and spatial analysis were 
performed on the raw data of the drill holes and the 

results of the basic statistical parameters and 
frequency distribution (histogram) of the primary iron 
grade are shown in Figure 3 [58]. The grade 
distribution of the iron concentrations is not normal. 
The histogram shows that the data are having multiple 
populations, and is negatively skewed (Figure 3). The 
iron grade (Fe%) as a regionalized variable has no 
trend in any direction; this means that the Fe 
concentration does not depend on the coordinates of 
the samples (Figure 4a-c). Consequently, assumptions 
of the stationary function are tenable. 

 
Figure 3: Histogram showing grade distribution of Fe (%) in 
the drill hole samples of the study area. 

After exploration data analysis, the spatial continuity 
was investigated by constructing variogram models. In 
the spatial studies, both directional and non-directional 
variograms were constructed. The directional 
variogram model provided a better understanding of 
the deposit and enabled to check for anisotropies. The 

 
Figure 2: The geological cross-section line (5850) and the distribution of the ore zones in the C-North iron ore deposit [21]. 
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presence of anisotropy was taken into account during 
ordinary kriging. The non-directional and directional 
variograms were generated by Datamine Studio 
software in the C-North iron ore deposit, as shown in 
Table 1 and Figure 5. Both the variograms show a very 
good spatial structure with fitted models. Three main 
directions of the search ellipsoid were chosen from the 
experimental directional variograms of Fe to create the 
best variography model for the OK estimation. In the 
study area, structural features include the major faults 
and fault zones along the axial plane. Iron behaves 
differently in relation to these structural features. The 
main structures of the study area, in agreement with 
the obtained variograms and the main mineralization 
trends. 

One of the methods to check the validity of the 
results of estimation is cross-validation. In order to 
evaluate the accuracy of the variogram model (fitted 
model), each one of the grade values was estimated 
using the data from the neighborhood. The scatter-plot 
between the real and the estimated grades are 
represented in Figure 6. The correlation coefficient 
between the estimated points and known points was 
0.71. 

3. DISCUSSION 

In the mineral industry, the information available for 
modeling is limited and represents a very small fraction 
of the domain of interest. In this study, grade estimation 
of the iron ore deposit has done using the OK method. 
Based on geostatistical parameters, the suitable size of 
blocks is half of the distance between exploratory 
drilling networks. For size optimization of mining blocks, 
first the block model of deposit was constructed using 
2.5, 5, 7.5, 10, 12.5 and 15 m blocks by modeling 
program. Using the kriging method and based on 
variogram parameters, the grade of various deposit 
blocks was then determined. In addition to the 
geostatistical parameters, the extraction parameters 
are important in choosing the optimum block size. 
Generally, the most important factors affecting the 
dimensions of the blocks are cost, and product price. In 
this study, six additional criteria, including safety, 
environmental impact, productivity, capacity of 
machinery, capital costs and operating costs have 
been considered. Table 2 shows the characteristics of 
nine most effective factors used in this study to 
determining the size of the blocks. C1 to C3 criteria are 
quantitative criteria and various numerical values and 

 
Figure 4: Scatter plots for variability of Fe concentration in (a) east- west (X) direction, (b) north-south (Y) direction, and (c) depth 
(Z) of mineralization level in the study area. 

Table 1: Parameters of the Spherical Non-Directional and Directional Variogram Models of the Study Area 

Structure/ variables Range (m) Sill (%)2 Nugget effect C-value 

Non-direction 422.1 144.2 97.3 46.9 

1 104.8 120.08 90.07 30.01 

2 41.01 116.2 53.7 62.5 

3 308.73 157.01 88.7 68.31 
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some calculations have been used for their estimation. 
Other criteria are qualitative and expert opinion has 
been used to determine their values for different 
options (different block sizes). In criteria with a positive 
impact, the higher the value of these criteria for an 
option, the higher preference of that option. In criteria 
with a negative impact, the increasing value of these 
criteria for an option reduces the preference of that 
option for selection. This research work is conducted 
on selecting the appropriate size of the mining blocks 
using VIKOR method. 

 
Figure 6: Cross-validation diagram to evaluate accuracy of 
real and estimated (kriged) values of Fe in the C-North ore 
deposit. 

At this stage, according to the proposed dimensions 
for block size, six sizes including 2.5 m (A1), 5 m (A2), 
7.5 m (A3), 10 m (A4), 12.5 m (A5) and 15 m (A6) were 
selected as six options (alternatives) based on the nine 
effective criteria, including C1 to C9 and the decision 
matrix was formed to choose the proper size for 
mineral block in Angouran mine. 

As noted above, C1, C2 and C3 are quantitative 
criteria and their values for various options have been 
determined on the basis of detailed calculations. Other 
criteria are qualitative and expert opinions that have 
been used to determine their values for different 
options. Thus, the decision matrix was determined. 
Eigenvector technique was used to determine the 
relative importance of the criteria. For this purpose, 
paired comparison matrix of the criteria was formed 
through the survey of expert opinion on the relative 
importance of the criteria in accordance with whole 
time. In the end, while calculating the geometric mean 
of data in each row, the geometric mean obtained in 
each row was divided by the sum of geometric mean 
elements to normalize the data (i.e. making the sum of 
weights equal to 1). In this method, the final normalized 
weight of each criterion (also known as eigenvector) 
was obtained.  

After determining the decision matrix and relative 
importance of the criteria, other steps of VIKOR 

 
Figure 5: Non-directional and directional variograms (with appropriate fitted model) of the study area: a) non-directional, b) 
directional with Azimuth = 32.2 degree; Dip = 2.4 deg, c) directional with Azimuth = 138.5 degree; Dip = 82.4 deg, d) directional 
with Azimuth = 302.4 degree; Dip = 4.2 deg. 

Table 2: Effective Criteria in Determining the Appropriate Size of Blocks  

Criterion t 
estimator 

Standard 
deviation 

(%) 
Mean 
(%) Safety Environmental 

impact Productivity 
Production 
capacity of 
machinery 

Capital 
costs 

Operational 
costs 

Sign C1 C2 C3 C4 C5 C6 C7 C8 C9 

Aspect Positive Negative Positive Negative Negative Positive Negative Positive Negative 
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method to choose the optimum size of blocks are 
described below. First, the normal decision matrix was 
defined and then the weighted normal matrix was 
obtained by multiplying the normal matrix elements by 
relative importance of the criteria. In the end, while 
determining the positive and negative ideal points in 
the normal weight matrix (Table 3) and satisfaction 
index, the rejection and VIKOR indexes are calculated 
(Table 4). 

Finally, the options were arranged based on the 
values of Q, R, S in three groups from small to large. 
The best option is the one with the smallest Q, so the 
fourth option (10×10×10 meters) was recommended as 
the optimal size for mining blocks in the C-North ore 
deposit.  

An exploratory analysis and geostatistical modeling 
of the grades assayed on a set of drill hole samples 
was performed, which allowed constructing a grade 
block model. A geological cut-off grade of 20 % Fe was 
determined from the classical statistical analysis of the 
data for the C-North iron ore deposit. This was used as 
a trigger value to create grade composites for 
interpretation. Geological data were used to assist in 
interpretation of the mineralized envelopes. 
Interpretation and wireframing was then carried out for 
all mineralized envelopes over twenty cross-sections. A 
three dimensional block model of the C-North iron ore 
deposit was prepared in Datamine software on using 
the ore body block size of 10 m (X) × 10 m (Y) × 10 m 
(Z). The block model was estimated by using the Ok 
method in the same block support (10mN x 10mE x 
10mRL) after adding to the dataset the iron grade 
values provided by samples from the drill holes. A 
study was taken up to evaluate the grade distribution of 
a magnetite iron ore deposit. The iron ore deposit is 
characterized by rugged and undulating topography. 
The main mineralization in the C-North deposit has a 

SE-NW trend with moderate to steep south easterly 
slope and a strike length of 1000 m with a width varying 
between 600 and 1000 m. 

Due to the importance of iron, Fe content was 
selected as a regional variable and geostatistical 
estimations were carried out for this variable. The block 
model contains 47,349 blocks with a block size of 10 × 
10 × 10 m, including the ore and waste blocks. Grade 
blocks were created for identification of the waste (W), 
low grade (LG) and high grade (HG) areas. The deposit 
has a high grade of Fe content. Grade maps show that 
the deposit broadly can be distributed into three 
classes depending on the estimated Fe grade. It is also 
inferred that the high grade part of the ore body has 
very high grade (> 45 %) of Fe, the medium grade 
(35-45 % Fe) and low grade (20- 35 % Fe) (Figures 7 
and 8). Based on the results of the 3D models obtained 
by the OK estimation method, parts with Fe values 

Table 3: Determining the Ideal Negative and Positive Points 

f* 0.4069 0.4021 0.4117 0.6103 0.0795 0.6321 0.7925 0.0843 0.0742 

f- 0.4016 0.4142 0.3938 0.0721 0.6223 0.0832 0.0642 0.7106 0.5957 

 

Table 4: Satisfaction, Rejection and VIKOR Indexes for Alternatives 

Alternatives Si Ri Qi 

A1 0.4326 0.1124 0.8867 

A2 0.6038 0.2224 0.4986 

A3 0.6234 0.2167 0.2235 

A4 0.6774 0.3546 0.0095 

A5 0.3765 0.1223 0.9945 

A6 0.4956 0.2406 0.3889 

 
Figure 7: 3D model of estimations of Fe grade by OK method 
in the C-North ore deposit (view to the north). 
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higher than 45% (high-grade mineralized zones) occur 
in the northern parts of the study area with an E-W 
trend.  

The ordinary kriged model was checked locally in 
section to determine if the original sample grades were 
reflected in the block model grades. The process 
involved averaging both the blocks and the samples in 
panels of 10 m (easting) by 10 m (northing) by 10 m 
(RL) for the C-North deposit. The grades were 
calculated from the individual estimated blocks and 
composite assay dataset in the C-North ore deposit. 
Local validation of the OK block model with the original 
drill hole sample values for Fe is shown in Figure 9. It 
can be seen that there is a high correlation between the 
original sample grades and the ordinary kriging 
interpolated block model grades. Generally, a good 
agreement is observed between the data and block 
model mean grade for all variables for easting, northing 
and RL slices. For average grade conformance, all 
domains in low grades and high grades display 
comparable performance relative to the data. 

 
Figure 9: Fe estimate validation plot in 10 m×10 m×10 m 
panels (RL). 

The grade-tonnage curve of the block model in the 
C-North iron ore deposit has been estimated at several 
cut-off grades with the OK result of the respective 
model. The grade- tonnage curve for the C-North iron 
ore deposit is generated for different assays, as 
illustrated in Figure 10. The total tonnage of the ore 
deposit based on various cut-off grades is different and 
with 20% cut-off grade are 116 million tones, with 25% 
cut-off grade are 106 million tones and with 30% cut-off 
grade are 95 million tones. It could be seen that in the 
cutoff grade of high values, the tonnage of the reserve 
was reduced and the Fe values of reserves are 
increased.The grade-tonnage curve provides two key 
characteristics for the deposit under investigation. 
Firstly, the blue line represents the cumulative tonnage 
(y1-axis) of all blocks with the grade at or above the 
selected cut-off grade (x-axis) (Figure 10). As one 
might intuitively expect, the tonnage drops as the 
cut-off grade is increased and the tonnage increases 
as the cut-off is decreased. Secondly, the red line 
represents the average grade (y2-axis) of all the blocks 
with grade at or above the selected cut-off grade 
(x-axis). Based on a grade-tonnage curve, possible 
resource has been estimated for this deposit. Using a 
20% cut-off, this resource would be contained 116 Mt 
at an average grade of 23%. Figure 11 shows grade–
tonnage relationship for Fe grades above 35 % in the 
C-North iron deposit. As the criteria for ore 
classification becomes more selective, the tonnage 
above the cut-off grade of the deposit decreases. 
Conversely, as the cut-off grade is lowered, the 
tonnage of the deposit increases. 

In this research work, the reserves were classified 
based on the relative estimation error variance and the 
JORC standard. In this section, classification of the 
reserve has been carried out by relative estimation 
error variance method. The Resource has been 

 
Figure 8: Ordinary kriged block model showing Fe grades in the C-North ore deposit (view to the east). 
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classified as measured, indicated, and inferred. Table 5 
shows the results of reserve classification using the 
relative estimation error variance method in the 
C-North iron ore deposit. 

Also, the C-North ore deposit has been classified 
based on the calculated estimation errors by JORC 

code as shown in Table 6 [55]. Results obtained by OK 
methods were validated by statistical methods (Figure 
12). Most estimated blocks by OK method have low 
values of errors, which are lower than 20 %. Resource 
classification is based on confidence in the geological 
domaining, drill spacing and geostatistical measures. 

 
Figure 10: Curve of grade-tonnage in the C-North iron ore deposit. 

 

 
Figure 11: Grade-tonnage relationship for Fe grades above 35 % of the C-North iron ore deposit. 

 

Table 5: Result of Reserve Classification using Relative Estimation Error Variance Method in the C-North Iron Ore 
Deposit 

Error Reserve category Tonnage (ton) 

0-10 % Measured 82,156,000 

10-20 % Indicated 93,587,000 

20-30 % Inferred 115,989,000 

Table 6: Result of Reserves Classification Based on JORC Standard in the C-North Iron Ore Deposit 

Error Average grade (%) Tonnage (%) Classification 

0-20 % 41.86 99.63 A 

20-40 % 23.15 0.21 B 

40-60 % 20.32 0.16 C 

> 60 % - - Possible 
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Figure 12: Histogram of estimated data for Fe grades above 
20% by OK method. 

4. CONCLUSIONS 

In the present study, an attempt has been made for 
estimation of the iron ore resource based on the linear 
geostatistical estimation method in the Sangan mining 
region, NE Iran. This research work focuses on the 
generation of an ore block model and grade 
interpolation of the C-North iron ore deposit that had 
been estimated by the OK method using variogram 
model to evaluate the deposit, with the help of 
geostatistical methods. Fe content was chosen as a 
regionalized variable for grade estimation. Based on 
the basic statistical analysis from 85 drill holes, 
histogram plot of the present data showed that there is 
the presence of multiple populations. For the purpose 
of block modeling, according to the results of the 
VIKOR method for optimal block size, the deposit was 
discretized into various blocks with the size of each 
block being 10m ×  10m ×  10m. OK was used to 
estimate 3D blocks. A total number of 47,349 blocks 
were recorded in the study area. Grade blocks were 
created for the identification of the waste (< 20% Fe), 
low grade (20- 35 % Fe), medium grade (35- 45 % Fe), 
and high grade (> 45% Fe) areas. The estimated iron 
values of the respective blocks were compared with the 
nearest possible drill holes analysis data while all 
blocks within the domains were correctly estimated. 
The main mineralization in the C-North deposit has a 
SE-NW trend with moderate to steep south easterly 
slope. Iron grade maps indicate that there is significant 
structural control on the ore grade distribution. 
Structural features played an important role in the 
concentration of the metals and upgrading of the ore 
deposit. The grade-tonnage curve of the block model in 
the C-North iron ore deposit had been estimated at 
several cut-off grades with the OK result of the 
respective model. Based on grade-tonnage curve, 

possible resource has estimated for this deposit. Using 
a 20% cut-off, this resource would be contained 116 Mt 
at an average grade of 23% Fe. The reserves were 
classified based on the relative estimation error 
variance and the JORC standard. The resource is 
estimated as 83 million tons at average grade of 
41.86 % Fe by OK method from the block model 
developed by mine planning software. Users of this 
visualization system can find that its strengths lie in the 
simplicity of complex deposit modeling and the 
increased availability of important information in 3D 
space. 
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