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Abstract: The fusion-fission hybrid reactor is a promising technology that is likely to assume an increasingly important 
role in the global energy scene in the coming years. This kind of reactor can use both the nuclear fusion and fission 
processes to produce energy: neutrons from fusion reactions are used to sustain the fission of a sub-critical system. This 
method allows to have an intrinsically safe facility, with higher efficiency than a fusion reactor itself and with a harder 
neutron energy spectrum than a fission reactor, which could be suitable for nuclear waste transmutation. This paper, in 
particular, analyzes a type of hybrid reactor for the transmutation of Minor Actinides (MA). Nuclear waste, in the oxide 
form, is inserted as an element of the First Wall (FW) of an ITER-like fusion reactor. The aim is to demonstrate the 
feasibility of the transmutation of the MA characterized by higher long term radiotoxicity into shorter lived nuclides. The 
neutron transport in a detailed 3D geometrical model of the ITER reactor (B-lite) was performed by MCNP6 code, while 
the transmutation of the MA loaded in a single element of the FW was performed by SERPENT2 code. A pulsed ITER-
like irradiation scenario was used. The analysis, which must be considered as a preliminary feasibility study, lead to very 
promising results, which could be further improved with a longer DEMO-like irradiation scenario and a larger number of 
MA loaded (“fission waste”) elements loaded in the FW. 
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1. INTRODUCTION 

In nuclear systems, neutron multiplication is 
produced by the fission reaction, which is induced by 
the free neutrons created in the previous fission 
reactions; this behavior leads to the concept of chain 
reaction, which is self-sustained in a so called critical 
reactor. 

On the contrary, in a subcritical system, the nuclear 
properties of the nuclear fuel and other components 
are unable to keep the chain reaction going on, and 
both the neutron population and the fission reaction 
rate vanish in a very short time [1]. 

There are some artificial heavy nuclei and some 
mixtures of heavy radioactive nuclei with a non-
negligible strength of neutron emission. However, more 
powerful sources are needed to feed a subcritical 
system if we want to have a power density similar to 
that of a critical reactor. Generally speaking there 
mainly are two kind of reactions useful as (potential) 
independent neutron sources: 

• A spallation reaction induced by accelerated 
charged particles impinging in a target of a 
heavy element (e.g. lead) [30-33]. 
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• A fusion reaction. 

Between these two potential choices, the latter is 
receiving more and more attention by the international 
scientific community. This is the basis of the hybrid 
reactor concept, where neutron generation is not 
produced just in neutron-induced fissions, but as a “by-
product” of the fusion reactions inside the nuclear 
fusion reactor “core” (i.e. respectively, the void 
chamber for MCF or the fuel particles for ICF). 
Although the fusion-fission hybrid concept dates back 
to the earliest times of the fusion projects (when it was 
recognized that using fusion neutrons to “support” 
nuclear fuel cycle could vastly increase the exploitation 
of the fusion plants), it appears to receive relatively 
limited attention since the mid-1980s [2]. 
Notwithstanding, hybrid fusion fission systems have 
been already studied for some decades, in the most 
prominent laboratories and a large bibliography was 
produced [3-29]. Obviously much more papers on this 
topic have been published in more recent years (just to 
give some examples up to the end of the previous 
decade, see [34-48]. 

2. HYBRID FUSION-FISSION SYSTEMS 

As already anticipated, fusion can also be combined 
with fission in what is referred to as hybrid fusion-
fission system, where the blanket surrounding the core 
represents a “subcritical fission reactor” (i.e. the 
neutrons are captured, resulting in fission reactions 
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taking place); instead, the fusion reaction acts as a 
source of neutrons for the surrounding blanket. These 
fission reactions would also produce more neutrons, 
thereby assisting further fission reactions in the 
blanket itself. 

The concept of hybrid fusion-fission systems can be 
compared with an accelerator-driven (subcritical) 
system (ADS). The blanket of a hybrid fusion system 
could therefore contain the same fuel as an ADS: for 
example, the abundant element Th [52] or the long-
lived heavy isotopes present in the spent nuclear fuel 
(SNF) could be used as fuel (see, as examples, [39, 
41, 42, 47]. 

The blanket containing fission fuel in a hybrid fusion 
system would not require the development of new 
materials capable of withstanding constant neutron 
bombardment, whereas such materials would be 
needed in the blanket of a “conventional” fusion 
system. A further advantage of a hybrid system is that 
the fusion process would not need to produce as many 
neutrons as a “standard” (i.e. non-hybrid) fusion reactor 
would in order to generate more power than is 
consumed (so a commercial-scale fusion reactor in a 
hybrid system does not need to be as large as a fusion-
only reactor). 

To synthetize, some potential benefits of a fusion-
fission hybrid plant could be [66]: 

 Inherent safety (when the plant shuts down no 
runaway fission reactions are possible). 

 Proliferation resistance (the plant does not 
require any enrichment or fuel reprocessing with 
isotopic separation, so the fuel would not be 
suitable for use in weapons). 

 Reduction of hazardous materials (the plant 
would transmute most of the long lived isotopes 
present in SNF). 

 Reduction of the need for high-level waste 
repositories (only about 5% as much repository 
space would be needed, compared with current 
OTTO fuel cycle in LWRs). 

In the last years, many initiatives on nuclear waste 
transmutation were proposed in order to reduce the 
long-term radiotoxicity of the wastes by eliminating a 
high fraction of the transuranic elements (TRU) from 
the SNF before their final disposal [49-65]. In this 
frame, as already anticipated, hybrid fusion-fission 

systems have an additional degree of freedom because 
of the independent source: this means that the neutron 
spectrum can be (reasonably) tailored for the 
transmutation purposes [1]. 

Differently from almost all the studies carried out in 
the past on this topic, in the present study the burnup 
calculations have been performing under the 
hypothesis to consider the “real” behavior of a planned 
fusion plant (namely ITER), i.e. the pulsed steps 
considered in our burnup calculations have the same 
duration of those ones planned for the real reactor. 

3. CALCULATIONS INSTRUMENTS AND METHODS 

Monte Carlo (MC) codes chosen for our calculations 
are widely known for nuclear applications: namely we 
used MCNP6 [67] and SERPENT2 [68, 70, 71] (a new 
version provided to registered nuclear community 
members already using SERPENT1 [69] version). Both 
the codes have a self burnup routine but only the 
SERPENT2 allows to perform burnup calculations with 
an external (a-priori fixed) neutron sources in 
subcritical systems: in fact the eigenvalue solution (i.e. 
the so called kcode mode) could not provide correct 
solutions for the present case. Moreover MCNP6 does 
not work in nps mode for burnup calculations, while 
SERPENT2 has this capability; additionally the latter is 
relatively faster with respect to other available burnup 
codes (see, as an example, [55]). 

Due to the fact that we have used to simulate the 
fusion plant (ITER) a very complex input already 
available for MCNP (namely ITER B-lite V3 [79]), we 
performed the static calculations on the whole fusion 
reactor (ITER) by MCNP6, and the burnup calculations 
on a single “modified” FW “sector” (see par. 5 for 
further details on this issue) using SERPENT2 code. 
Particularly, the B-lite V3 model [79] was run in nps 
mode with 1 million of particles simulated. 

Regarding the cross sections, we have performed 
the calculations on the whole fusion reactor (by 
MCNP6) using a FENDL2.1 based dataset [72] (more 
suitable for “pure” fusion calculations) while we used a 
JEFF-3.1 based dataset [73] (more suitable for fission-
based burnup calculations) for the burnup calculations 
(by SERPENT2 code). 

It is important to remark that, in order to extract a 
proper FW sector from the complex and detailed 
geometry (described in the MCNP6 input) to be 
analyzed in the burnup calculations (by SERPENT2 
code), the MCAM software [74] was used, too; in detail: 
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• Firstly, we focused on a (relatively) large section 
of the blanket, focusing step-by-step on a more 
limited FW sector, 

• Then, starting from the input file B-lite V3 [79] 
has been possible to “extract” through MCAM 
software [74] (now SuperMC/MCAM), the 
analyzed FW sector. The underlying Figure 1 
and 2 show the volume, in white, considered for 
the subsequent calculation with SERPENT2. 

Once defined the geometric element to be 
analyzed, the neutron flux through its boundary 
surfaces (in order to characterize the relative 
“importance” of neutron inlet flux through each surface) 
has been calculated. In fact the basic idea for the 
analysis of this element has been to calculate the flux 
through each surface of the element so that these data 
could be used as “external” input data for the burnup 
calculations by the SERPENT2 code. 

From the burning step point of view, the idea was to 
analyze the behavior of materials during irradiation (i.e. 

during normal operation of the reactor) and then, during 
the out-of-pile decay period. 

As known, the ITER experimental reactor is still in 
the construction phase. As a consequence, the ITER 
operational scenario is in the planning stages. So, in 
order to perform our burnup calculations we can only 
suppose in a reasonably way the operating times of 
switching on/off, breaks and switching timetables. To 
date, one plausible hypothesis is to ignite the plasma 
for 450 seconds per pulse, for a total period shorter 
than 1800 seconds per day [75]. Three pulses (of 450 
seconds each) were then hypothesized: the first one at 
9 am in the morning, the others at 12 am and 3 pm 
respectively; this schedule should be repeated for 11 
days followed by 3 days of stop, during which some 
analyses on materials and reactor components are 
planned. This means that the gap between the begin of 
a pulse (with a duration of 450 s, corresponding to 
0.125 hours) and the begin of the following one should 
be about 3 hours long; as a result, the gap between the 

 
Figure 1: FW and blanket sector analyzed in the burnup calculations, figure created with MCAM. 

 

 
Figure 2: Detail of the FW sector analyzed in the burnup calculations, figure created with MCAM. 
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end of a pulse and the begin of the following one 
should be about 2.875 hours long. SERPENT2 
simulated 35000 neutrons in nps and burnup mode 
using the schedule reported in Table 1. 

Table 1: Burnup Schedule used in SERPENT2 

Step # Step Length [days] Type of Step 

0 0 initialization 

1 0.0052083 depletion step 

2 0.11979167 decay step 

3 0.0052083 depletion step 

4 0.11979167 decay step 

5 0.0052083 depletion step 

6 0.74479167 decay step 

7 0.0052083 depletion step 

8 0.11979167 decay step 

9 0.0052083 depletion step 

10 0.11979167 decay step 

11 0.0052083 depletion step 

12 0.74479167 decay step 

13 0.0052083 depletion step 

14 0.11979167 decay step 

15 0.0052083 depletion step 

16 0.11979167 decay step 

17 0.0052083 depletion step 

18 0.74479167 decay step 

19 0.0052083 depletion step 

20 0.11979167 decay step 

21 0.0052083 depletion step 

22 0.11979167 decay step 

23 0.0052083 depletion step 

24 0.74479167 decay step 

25 0.0052083 depletion step 

26 0.11979167 decay step 

27 0.0052083 depletion step 

28 0.11979167 decay step 

29 0.0052083 depletion step 

30 0.74479167 decay step 

31 0.0052083 depletion step 

32 0.11979167 decay step 

33 0.0052083 depletion step 

34 0.11979167 decay step 

35 0.0052083 depletion step 

36 0.74479167 decay step 

37 0.0052083 depletion step 

38 0.11979167 decay step 

39 0.0052083 depletion step 

40 0.11979167 decay step 

41 0.0052083 depletion step 
 

Table 1 conti... 

Step # Step Length [days] Type of Step 

42 0.74479167 decay step 

43 0.0052083 depletion step 

44 0.11979167 decay step 

45 0.0052083 depletion step 

46 0.11979167 decay step 

47 0.0052083 depletion step 

48 0.74479167 decay step 

49 0.0052083 depletion step 

50 0.11979167 decay step 

51 0.0052083 depletion step 

52 0.11979167 decay step 

53 0.0052083 depletion step 

54 0.74479167 decay step 

55 0.0052083 depletion step 

56 0.11979167 decay step 

57 0.0052083 depletion step 

58 0.11979167 decay step 

59 0.0052083 depletion step 

60 0.74479167 decay step 

61 0.0052083 depletion step 

62 0.11979167 decay step 

63 0.0052083 depletion step 

64 0.11979167 decay step 

65 0.0052083 depletion step 

66 1.74479167 decay step 

67 1.0 decay step 

68 1.0 decay step 

The material composition of the “fission waste” 
element to be “burned” used for the burnup calculations 
has been assumed on the basis of a previous study 
performed on the reactor ALLEGRO for burnup 
evaluation purposes [76]. Particularly we chose to use 
a fuel contained only americium and curium (with a 
relative isotopic composition similar to that used in the 
GoFastR project [63-65, 76]) because we wanted to 
assess the transmutation potentiality of an ITER-like 
reactor for those specific materials (such as some MA 
isotopes) heavily transmuted in fission reactors. On the 
contrary, in ITER, thanks to the presence of high 
energy neutrons (~14MeV), MA could be transmuted 
(almost) completely and more easily. 

Looking at the MA chemical matrix, we assumed 
that the materials have been inserted in the “fission 
waste” element as oxides; as a result, the final density 
of the materials containing the MA is that typical of the 
oxides (10.579g/cm3). The use of this chemical 
compound instead of more performing carbides (more



56     Global Journal of Energy Technology Research Updates, 2015, Vol. 2, No. 2 Scarfò et al. 

 
Figure 3: Am241 mass vs. calculation step. 

 

 
Figure 4: Cm242 mass vs. calculation step. 

 

 
Figure 5: Cm243 mass vs. calculation step. 
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Figure 6: Cm244 mass vs. calculation step. 

resistant to the involved high temperatures) is mainly 
due to the coolant used for blanket and/or FW: 
although different coolants have been proposed (e.g. 
helium), in this case (and, maybe, in the real one) it 
was assumed the use of pressurized (~4MPa) water (at 
an average temperature of ~70°C). If the carbides was 
used, as known, a loss of water from the coolant 
pipes/systems could cause a highly exothermic 
reaction with the same carbides. Clearly, it is not 
possible to accept a potential scenario like this, so we 
opted for the less performing but more conservative (at 
least from the safety point of view) oxides. The burned 
volume had a volume of about 1.7·106 cm3 and a shape 
similar to that considered for MCNP and extracted by 
MCAM. As already anticipated, the “external” neutron 
source was obtained by mean of fluxes data through 6 
surface sources. 

4. RESULTS 

The results obtained at the end of the burnup 
calculations (by SERPENT2 code) are shown in the 

following figures. Particularly we have simulated 14 
days of burnup (11 days of “normal” operation plus 3 
days of reactor stop, as better detailed in the previous 
paragraphs) by 69 time steps calculations; the behavior 
of the main Am and Cm isotopes is reported in the 
Figure 3-6 and summarized in Table 2. 

Looking at Figure 3-6 and at Table 2, the Am and 
Cm variations due to transmutation (and not to pure 
decay) seem very limited, but two fundamental aspects 
have to be considered: 

I. The timing of each pulse is extremely reduced - 
The daily duration of the pulses is 1350 seconds 
equal to only 0.015625 days. Multiplying this 
quantity for 11 days of reactor operation, we 
obtain 0.171875 days. Therefore, the irradiation 
time is short and this is reflected clearly in the 
MA transmutation. In future, however, once the 
fusion technology will be more assessed, it 
should be reasonable to conjecture a quite 
longer irradiation time. 

Table 2: Main MA Isotopes Trend after the Transmutation Process 

Elements Initial value Trend Variation Variation [%] 

Am241 ~ 63642 g decreasing ~ 4 g ~ - 0.01% 

Am243 ~ 10000 g ~constant negligible negligible 

Cm242 ~ 1280 g decreasing ~ 60 g ~ - 4.7% 

Cm243 ~ 23.18 g decreasing ~ 0.02 g ~ - 0.086% 

Cm244 ~ 570 g decreasing ~ 0.6 g ~ - 0.1% 

Cm245 ~ 11.1062 g increasing ~ 0.0006 g ~ 0.01% 

Cm246 ~ 0.10849 g increasing ~ 0.000003 g negligible 
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II. The single element inserted into the reactor 
blanket - The goal of the study is in fact, to 
demonstrate the feasibility of this process, so we 
consider only one element inside the blanket. 
Obviously as a future development, when a more 
mature and proven technology will be available, 
it could be possible to load many “modified” 
sectors/modules simultaneously, so increasing 
the MA transmutation rate. 

Another important issue to be considered is the 
production of uranium and plutonium, absent at the 
beginning of the irradiation period: as obvious, the 
isotopes of these element increase; here, as examples, 
only three isotopes of plutonium are shown in Figure 7, 
8 and 9. The amount of uranium that is created during 

the process is summarized in the following Table 3, 
while the plutonium production is reported in Table 4. 
While the production of uranium is very modest, the 
plutonium increases more substantially: the final 
amounts of the Pu isotopes are not negligible (as, 
instead, it is in the case of uranium). The Pu238 build-up 
is mainly due to the large amount of Am241 [75]: as 
known, following a neutron capture, this latter is 
transmuted into Am242, which is a short life isotope 
(half-life of 16.2 hours); the 82.7% of Am242 decays1 
into Cm242, while the remaining 17.3% transmutes (by 
an electron capture) into Pu242; finally Cm242 
(characterized by a half-life of about 160 days), 

                                            

1 β-decay 

 
Figure 7: Pu238 mass vs. calculation step. 

 

 
Figure 8: Pu239 mass vs. calculation step. 
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decays2 into Pu238. So, in the end, it is true that the 
amount of plutonium increases, but the isotope which 
largely increases, is characterized by a significant 
radiotoxicity for a time interval shorter than that typical 
of other MA [75]. This is a key issue, because it is 
precisely one of the aim of the present study: indeed 
the goal is not to completely “destroy” the initial 
radiotoxicity inventory, but rather to transform the initial 
long-lived radionuclides in others, characterized by a 
shorter half-life. 

Table 3: U Isotopes Build-up after Irradiation 

U232 ~ 3E-11 g 

U233 ~ 2.5E-9 g 

U234 ~ 0,012 g 

U235 ~ 2.5E-8 g 

U236 ~ 0.0000016 g 

U238 ~ 7E-10 g 

 

Table 4: Pu Isotopes Build-up after Irradiation 

Pu238 ~ 70 g 

Pu239 ~ 0.05 g 

Pu240 ~ 0.08 g 

Pu241 ~ 0.00004 g 

Pu242 ~ 0.035 g 

Pu243 ~ 0 g 

Pu244 ~ 0.000012 g 

                                            

2 α-decay 

Finally Figure 10 shows the 69-groups spectra at 
begin of cycle: it is important to note that there is a 
peak between 100eV and 100keV; this finding is very 
interesting, because in this range it is possible to have 
a very good MA transmutation. In fact, as known, some 
MA cross sections (e.g. those related to Am241 and 
Cm244) are typically higher for that neutrons energy 
range. 

 
Figure 10: 69-groups spectrum at begin of cycle. 

In general, we can conclude that the MA mass 
inventory trend is coherent with the spectra: starting 
from a 14MeV neutrons source from the fusion plasma 
(which is a typical value for a thermonuclear fusion 
reactor), it is possible to obtain neutrons fluxes suitable 
for the MA transmutation. 

However, it is interesting to carry out some 
additional considerations related to the reactor 
operating time: it has to be recalled that ITER will be an 

 
Figure 9: Pu241 mass vs. calculation step. 
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experimental plant and, as previously mentioned, will 
work in a pulsed mode; the (pre-)“commercial” nuclear 
fusion reactors (DEMO and later) obviously will work 
for much longer periods of time, possibly in a 
continuous mode (in order to, among the others, 
increase the energy production rate and the 
compatibility with the electric grids). Starting from this 
considerations, it could be possible to assess (although 
at a very preliminary level) the hybrid reactors 
transmutation potentialities in a more realistic way. 

As already anticipated, the daily duration of the 
considered pulses is only 1350 seconds (i.e. around 
0.015625 days); multiplying this quantity for 11 days of 
the reactor operation (plus 3 days of subsequent 
decay), we obtained 0.171875 days of total irradiation. 
On the basis of the previous considerations, if we 
consider a (pre-)“commercial” (DEMO-like) nuclear 
fusion reactor, and assume a linear transmutation 
behavior3, we have to multiply 14 days (corresponding 
to 0.171875 days of “burning pulses”) by a factor of 26, 
in order to have a reactor operation equal to a 
(reasonable) time (i.e. about 1 years); under this 
hypothesis, as a first rough approximation, also the MA 
final quantities have to be multiplied by a factor around 
26. This would provide (for a single “fission waste” 
loaded element), for example, the transmutation of 
more than 100 g of Am241. Similarly, if you multiply by a 
factor of 650 (that is to have an equivalent reactor 
operating time in a pulsed regime equal to about 25 
years), it is possible to obtain (for a single “fission 
waste” loaded element) a decrease of about 2.6 kg of 
the Am mass initially present. Therefore, if we consider 
those assumptions, the quantity of “burned” actinides 
would be much higher, as better detailed in Table 54. 

Table 5: MA Transmutation Performances vs. 
Equivalent Reactor Operating Time 

Nuclide Reference Case 
(14 days) ~1 Years ~25 Years 

Am241 ~ 4 g ~ 104 g ~ 2600 g 

Cm242 ~ 60 g ~ 1560 g ~ 39000 g 

Cm243 ~ 0.02 g ~ 0.52 g ~ 13 g 

Cm244 ~ 0.6 g ~ 15.6 g ~ 390 g 

Cm245 ~ 0.0006 g ~ 0.0156 g ~ 0.39 g 

Cm246 ~ 0.000003 g ~ 0.000078 g ~ 0.00195 g 

                                            

3 Obviously this preliminary rough assumption has to be further refined on the 
basis of the future developments of the present research, taking also into 
account separately the decay and transmutation contributions. 
4 Again, this preliminary rough assumption has to be further refined on the 
basis of the future developments of the present research, taking also into 
account separately the decay and transmutation contributions. 

However it is obvious that these extensions in 
reactor operating time would increase the build-up of 
unwanted materials (Table 6): to give an example to 
obtain the amount of Pu238 after 1 year the original 
amount should be multiplied by 26 thus obtaining a 
quantity equal to around 1.8kg. Nevertheless, as 
already highlighted in the previous paragraphs, Pu238, 
in addition to being usable in various fields (including 
the aerospace industry), is not characterized by a long 
term high radiotoxicity level, so its storage would 
certainly be safer and less expensive (if compared with 
other MA). 

Table 6: Pu Transmutation Performances vs. Equivalent 
Reactor Operating Time 

Nuclide Reference Case 
(14 days) ~1 year ~ 25 years 

Pu238 ~ 70 g ~ 1820 g ~ 45500 g 

Pu239 ~ 0.05 g ~ 1.3 g ~ 32.5 g 

Pu240 ~ 0,08 g ~ 2.08 g ~ 52 g 

Pu241 ~ 0.00004 g ~ 0.00104 g ~ 0.026 g 

Pu242 ~ 0.035 g ~ 0.91 g ~ 22.75 g 

Pu244 ~ 0.000012 g ~ 0.000312 g ~ 0.078 g 

 

Looking at the other Pu isotopes, although they 
constitute a potential long term problem, they could be 
(relatively) easily transmuted also in fast (fission) 
reactors (e.g. [50, 51, 53, 54, 58, 63]. 

5. CONCLUSIONS 

As already found in previous publications, also our 
preliminary calculations and results confirm the 
feasibility and the potentiality of transmutation in hybrid 
fusion-fission reactors. In fact, it was found a decrease 
(although relatively limited) in many actinides masses 
and the build-up of nuclides characterized by reduced 
levels (more than an order of magnitude) in long term 
potential hazard (in term of radiotoxicity, etc.), if 
compared to the starting materials. In this way, the long 
term storage of nuclear waste would be cheaper and, 
above all, safer (since such wastes could be potentially 
dangerous only for a time interval lower than in the 
case in which there had been no transmutation). 

The obtained results are interesting, but it should 
also be remarked that this paper has to be considered 
only as a first preliminary step, useful mainly to 
demonstrate the feasibility of the process in “realistic” 
fusion plants. In fact, only when the nuclear fusion 
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technology (including materials, blanket configuration, 
etc.) will be fully developed and the amount of high-
level radioactive materials from fission reactors fleet to 
be burned inside fusion reactors will be precisely 
defined, we could be able to develop in detail a realistic 
hybrid fission-fusion “fuel cycle”. 

Nevertheless if we should consider a (pre-) 
“commercial” (DEMO-like) nuclear fusion reactor with a 
longer irradiation time (even remaining in a pulsed 
regime) and the presence of many (instead of a single 
one) “fission waste” elements loaded, we could 
assume, although as a first (very) rough approximation, 
to have a substantial decrease in MA quantities: the 
quantity of actinides “burned” would indeed be, under 
these hypotheses, much higher. 
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LIST OF ACRONYMS  

ADS Accelerator-Driven System 

ALLEGRO Gas-cooled Fast Reactor Demonstrator 

ASIPPC Institute of Plasma Physics Chinese 
Academy of Science 

CCFE Culham Centre for Fusion Energy 

DEMO Demonstration fusion power plant 

 

ENEA Italian National Agency for New 
Technologies, Energy and Sustainable 
Economic Development 

FDS Advanced Nuclear Energy Research team 
(China) 

FENDL Fusion Evaluated Nuclear Library 

FW First Wall 

ICF Inertial Confinement Fusion 

ITER International Thermonuclear Experimental 
Reactor 

JAEA Japan Atomic Energy Agency 

JEFF Joint Evaluated Fission and Fusion File 

LWR Low Water Reactor 

MA Minor Actinide 

MC Monte Carlo 

MCAM Monte Carlo Automatic Modeling 
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