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Abstract: In the present study, an artif icial neural netw ork (ANN) model for a solid desiccant – vapor compression hybrid 

air-conditioning system is developed to predict the cooling capacity, pow er input and coefficient of performance (COP) of 
the system. This paper also describes the experimental test set up for collecting the required experimental test data. The 
experimental measurements are taken at steady-state conditions while varying the input parameters like air stream flow  
rates and regeneration temperature. Most of the experimental test data (80%) w ere used for training the ANN model 

w hile the remaining (20%) w ere used for the testing of the ANN model. Experimental data w ere collected during the 
cooling period of March to September. The outputs predicted from the ANN model have a high coeff icient of correlation 
(R>0.988) in predicting the system performance. The results show  that the ANN model can be applied successfully and 

can provide high accuracy and reliability for predicting the performance of the hybrid desiccant cooling systems.  

Keywords: Artificial neural network, Coefficient of performance, Dehumidifier effectiveness, Moisture removal rate, 

TRNSYS. 

1. INTRODUCTION 

Integration of the desiccant dehumidification system 

with traditional vapor compression refrigeration (VCR) 

air-conditioning system results in a hybrid cooling 

system that efficiently meets both the sensible and 

latent cooling loads by handling them separately. VCR 

system operates at higher evaporator temperature and 

requires no post-heating resulting in higher perfor- 

mance of the system. The desiccant cooling systems 

are very good at providing comfortable cooling by 

reducing the humidity ratio of air. Moreover, hybrid 

desiccant cooling systems limit the use of chloro- 

fluorocarbons (CFCs) as the size of the VCR cooling 

unit gets reduced by handling the latent heat load 

separately. Desiccant cooling systems also allow larger 

flow rates of ventilation air to improve indoor air quality 

by removing airborne pollutants. The desiccant cooling 

system can be cost-effective when used with renew- 

able (solar) or waste heat for regeneration. It also 

avoids microbial growth inducted by the use of dry 

cooling coils. Desiccant cooling is used in several appli- 

cations such as pharmaceutical plants, supermarkets, 

theatres, hotels, office buildings, hospitals, health clubs 

and swimming pools.  

Different configurations of desiccant cooling system 

has been proposed by many investigators so far to 

attain a higher system performance. The earliest form 

of desiccant cooling cycle was proposed by coupling 

dehumidifier with heat source and evaporative cooler  
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[1]. A similar cycle was proposed by Dunkle [2] using a 

dehumidifier of molecular sieve with an additional heat 

exchanger to achieve the better performance than the 

earlier one. Later on, Munter [3] further enhanced the 

performance of the desiccant cooling cycle by 

introducing parallel passages in the dehumidifier and 

provided backup of the vapour compression system to 

tackle the cooling load. Since then, a number of efforts 

have been made for the performance evaluation of 

rotary desiccant dehumidifiers used in the desiccant 

cooling systems. Important among those were the 

analogy theory by Banks [4], the pseudo-steady state 

model by Barlow [5], the combined potential technique 

by Jurinak [6], finite difference method for cross-cooled 

dehumidifiers [7] and finite difference method by 

Maclaine-Cross [8] which are now widely used by other 

researchers in getting better performance of desiccant 

cooling cycles [9]. Burns et al. [10] evaluated the 

performance of the hybrid desiccant cooling cycle used 

for supermarkets and shows better performance than 

the conventional VCR system [11-17]. 

From the literature review [18-27], one can observe 

that some researchers developed mathematical models 

for evaluating the performance of desiccant cooling 

systems while others conducted expensive experi- 

mental studies. The mathematical approach requires a 

large number of parameters defining the system, which 

may not be readily available and their predictions may 

not be sufficiently accurate in many cases [28-34]. As 

an alternative, the use of artificial neural networks 

(ANNs) requires less effort, time, and cost to model the 

system. This new modelling technique is used in many 

engineering applications, where classical approaches 
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are too complex to be used. So, ANNs allow the 

modelling of physical phenomena in complex systems 

without requiring explicit mathematical representations 

or without requiring exhaustive experiments. ANNs can 

predict the desired output of a system when enough 

experimental is data available.  

2. SYSTEM DESCRIPTION 

A test room having dimensions 3m × 3m × 3m, has 

been selected for the study. The sensible and the latent 

cooling loads are taken as 1.371 kW and 0.391 kW, 

respectively. Sensible heat ratio (SHR) has been 

obtained as 0.78. Flow rates of the process air stream 

and the regeneration air stream are measured as 322.7 

m
3
/hr and 196.8 m

3
/hr, respectively. The comfort 

conditions are taken as 50% relative humidity and 26°C 

dry bulb temperature.  

The schematic diagram and the photographic view 

of solid desiccant and vapor compression hybrid air-

conditioning system have been shown in Fig. 1. The 

return room air at state 1 passes through the rotary 

desiccant dehumidifier. Its moisture is adsorbed 

significantly by the desiccant material and the heat of 

adsorption raises its temperature up to state 2. The hot 

and dry air is first sensibly cooled in an air-to-air heat 

exchanger (2-3) and then in the cooling coil of the VCR 

system up to state 4. In the regeneration airline, 

ambient air at state 6 enters the air-to-air sensible heat 

exchanger and cools the supply process air. 

Consequently, its temperature rises when exiting from 

the sensible heat exchanger at state 7. At this point, it  

 

 
 

Figure 1: Schematic diagram of solid desiccant – VCR hybrid 

air-conditioning system. 

is heated to reach temperature at the state point 8 

which is high enough to regenerate the desiccant 

material. Moist air at the outlet of dehumidifier is 

exhausted to atmosphere at state 9. 

The rotary desiccant dehumidifier used is 360 mm 

diameter and 100 mm width. The rotational speed of 

the dehumidifier is kept constant at 20 rph. Synthesized 

metal silicate is the desiccant material used in the 

desiccant wheel [35-37]. 

3. MEASUREMENTS 

Experiments are carried out by simultaneous mea- 

surement of temperature, relative humidity, pressure 

drop and flow rate with the help of multifunctional 

temperature, humidity and velocity digital transmitters 

connected via Masibus- 85XX micro-controller based 

scanner with control panel, to control and operate the 

system. All the sensors are connected to a central 

computer via a data acquisition unit. The inaccuracies 

in measurement of temperature, relative humidity and 

flow rate are found + 0.3 K @ 296 K, + 2.0 %, + 3.0 % 

respectively. An energy meter is also used to measure 

the electrical power consumption of the system. The 

measurements were carried out once the temperature 

and humidity of the system attain steady-state 

condition. Measured data can be recorded continuously 

over the system running using Masibus data scanner. 

Experimental data were collected during the cooling 

period of March to September. Humidistat is fitted 

inside the test room to control the dehumidifier 

operation according to the room humidity [38-40]. 

Temperature controller is also fitted inside the test room 

to control the compressor operation through relay, so 

as to maintain the room temperature constant. 

4. UNCERTAINTY ANALYSIS 

Accurate measurement of physical quantities is very 

difficult. Uncertainties in measuring any physical 

quantity are always present due to instrumental, 

physical and human inadequacies. Uncertainty analysis 

is the procedure employed to assess the uncertainty 

from measured variables with known values of 

uncertainties. An important parameter for the present 

experimental scheme is the system performance in 

terms of its COP. It has a measurement error because 

of the least count or the accuracies defined for each 

measuring device. For the calculation of uncertainty, 

the root of the sum square is used in this study and can 

be expressed as 
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Where R is a given function of the independent 

variables x1,x2 .......,xn and w1,w2,....,wn are the 

uncertainties in the corresponding variables. The 

uncertainties for the deducted quantities such as 

dehumidifier effectiveness and humidity ratio are 

calculated as 10.8% and 9.7%, respectively. The total 

uncertainty associated with the coefficient of 

performance is found to be + 14.63%. 

5. DATA REDUCTION 

The performance of a solid desiccant – vapor 

compression hybrid air-conditioning system is 

evaluated by calculating the cooling capacity, power 

input and coefficient of performance (COP).  

The COP of the system based on electrical energy 

input is defined as the ratio of the cooling capacity to 

the total electrical energy input (E t) to the system. It is 

given [41-42] by  

CC

t

Q
COP = 

E
           (2) 

where, Qcc is the cooling capacity and it is defined [43-

44] as  

Qcc= ṁpa (h1-h4)          (3) 

where ṁpa is the mass flow rate of process air at the 

dehumidifier inlet. While in eq. (1) Etotal represents 

total electrical power used to drive the system. Hence, 

Etotal is calculated [45-51] as 

t c f o hE = E + E + E + E
         (4) 

where Ec and Ef  represent the electrical power used to 

drive the VCR compressor and fans. Fans are 

employed to force circulate the regeneration air as well 

as process air streams and also for the conventional 

VCR unit. Eo shows the electrical energy consumption 

of other equipments that are the desiccant wheel motor 

and heat wheel motor. Eh is electrical power 

consumption for the regeneration heater used in the 

dehumidifier. Et is measured by using an energy meter. 

6. ANN MODEL 

A neural network model consists of a large number 

of processing elements called neurons. They are 

interconnected by communication links called weights. 

A simplified ANN model has an input layer, an output 

layer, and at least one hidden layer. The selection of 

layers is determined by the form of the network and the 

method of input data required. A simplified neural 

network model (Fig. 2) consists of three basic 

elements; synapses or connecting link, summing node 

with a squashing function and an externally applied 

bias to increase or decrease the net input of the 

activation function.  

 
 

Figure 2: Structure of an Artificial Neural Network. 

The network performance is determined by the 

weights and biases value in every single neuron. The 

network needs to be trained to give the desired output 

using input data sets. The outputs from the ANN model 

are compared with the actual (experimental) output. 

There may be a difference between the network ’s 

output and the target output. The weights are adjusted 

such that the error function minimizes the differences 

between actual experimental outputs and model 

outputs. This process is continued until the error 

function comes under the desired tolerance limit. This 

repetitive process of training and correction of the 

weights, is known as back propagation algorithm. While 

training the ANN model, the weights and bias which 

minimize the error between the measured output and 

the ANN network output are obtained as [52-54] follows 

N

K K
K=1

Y= F (S) = F Σ X  w + b 
      

       (5)
 

 

The working of an artificial neural network model is 

described as follows. The experimental results are the 

input parameters to the model. Neural network 

understands the underlying correlations in the entered 

input data and stores them as inter-neuron connection 

strengths or corrected weights. The number of 

neurons, number of iterations and the desired accuracy 
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are gathered and the training sets and the target sets 

are developed. The network needs to be trained using 

training data set consisting of a group of input data and 

corresponding output data. Training involves the 

revision of synaptic weights. The network reads and 

processes each set of input data and produces an 

output, which is compared with the actual experimental 

output. Based on the difference between the network 

output and the target output, the model parameters are 

adjusted so that the network would exhibit the desired 

or targeted results. The network performance was 

largely determined by the weights and bias values in 

every single neuron. In the present ANN model, cooling 

capacity, power input and coefficient of performance 

(COP) are fixed as the output parameters, which are 

important in performing studies of the solid desiccant – 

vapor compression hybrid air-conditioning system. 

7. RESULTS AND DISCUSSION 

The ANN model was trained using back propagation 

technique with TRAINLM, LEARNGDM, MSE and 

TANSIG as training, learning, performance and transfer 

functions respectively. Twelve parameters namely flow 

rates of process and regeneration air streams, 

temperature and relative humidity of ambient, process 

air dehumidifier inlet, supply room air, regeneration air 

before and after the heater was employed at the input 

layer while three parameters; cooling capacity, power 

input and coefficient of performance (COP) were 

employed at the output layer. The cooling capacity, 

power input and coefficient of performance (COP) are 

the important parameters in studying the performance 

of solid desiccant – vapor compression air-conditioning 

system. The range of the operating parameters used 

for generating the data during experimentation is 

shown in Table 1. 

The artificial neural network (ANN) model has been 

trained to estimate the model outputs like dehumidifier 

effectiveness, MRR and system performance in terms 

of COP. Fig. (3) shows the performance graph of the 

training process. The performance graph describes the 

plot of mean square error (MSE) against the number of 

epochs (a run through all training input-output sets) or 

iterations. As the number of iterations increases, the 

mean squared error for the training plot reduces.  

The neural network training process was terminated 

when the maximum number of epochs was reached or 

when the minimum MSE of the validating sets was 

attained. The experimental results were used to train 

the feed-forward neural network. The best performance 

obtained by training in terms of the MSE with 12-12-3-3 

network structure is 0.015708 at epoch 53 as shown in 

Fig. (4). 

Table 1: Operating Parameters Used for Generating the 

Data 

Sr. 
NO. 

Operating Parameter Operating Range 

1 Process air dehumidif ier inlet 
temperature (oC) 

24.1 – 28.5 

2 Process air dehumidif ier inlet relative 
humidity (%) 

44.1 – 57.1 

3 Room supply air temperature (oC)  7.5 – 11.2 

4 Room supply air relative humidity (%) 76.2 – 94.6 

5 Regeneration air heater inlet 
temperature (oC) 

35.1 – 41.5 

6 Regeneration air heater inlet relative 
humidity (%) 

27.8 – 49.4 

7 Regeneration air heater outlet 

temperature (oC) 

98.6 – 141.0 

8 Regeneration air heater outlet 

relative humidity (%) 

1 – 3 

9 Ambient air temperature (oC) 26.1 – 33.2 

10 Ambient air relative humidity (%) 59.1 – 86.3 

11 Process air f low  rate (kg/hr) 32.12 – 474.14 

12 Regeneration air f low  rate (kg/hr) 165.67 – 204.40 

 

 

Figure 3: Performance plot. 

The training state of the system showing the 

gradient, mutation and validation check graphs for ANN 

are shown in Fig. (4). The magnitude of the gradient 

and the number of validation checks are used to 

terminate the training. The gradient becomes very 

small as the training reaches the minimum of the 

performance. If the magnitude of the gradient is less 
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than 0.000001, the training will stop. This limit can be 

adjusted by setting the parameter. The number of 

validation checks represents the number of successive 

iterations that the validation performance fails to 

decrease. If this number reaches 53 (in the present 

case), the training will stop. Plot (b) shows the learning 

rate (mutation) against increasing numbers of 

iterations. This plot shows that the network error 

reduces as training progresses. 

 

Figure 4: Training state plots for (a) gradient (b) mutation (c) 

validation checks. 

The regression plot between the predicted values 

from ANN and the experimental results is shown in Fig. 

(5). It depicts the correlation between output and target 

data. This plot also shows up to what extent the 

network is learned from the complex relationships of 

data. It is found that experimentally measured values 

show an excellent match with different outputs of the 

ANN model. Amongst the different trials, the correlation 

coefficient R of training results approaches to 1.0 and 

the corresponding results have the least MSE when the 

numbers of nodes in hidden layer are 12. The results 

show that R for training, validation, test, and for the 

combined set are 0.99934, 0.99822, 0.99829 and 

0.99889, respectively. Thus, the predicted values are 

found in excellent agreement with the experimental 

values. The selected ANN model demonstrates a good 

statistical performance with the standard correlation 

coefficient in the range of 0.998–0.999, and the mean 

square error (MSE) for the training and predictions are 

found to be very low compared to the experimental 

results. 

The effect of ambient air temperature and humidity 

ratio on the performance of the dehumidifier has been 

 

Figure 5: The regression plot between ANN predictions and 
the experimental results for (a) Training, (b) Validation, (c) 

Test, and (d) Combined set. 

observed. Figs. (6 and 7) illustrate the influence of 

ambient air temperature on dehumidifier effectiveness 

and moisture removal rate (MRR), respectively. Both 

effectiveness as well as moisture removal rate tends to 

decrease as ambient temperature increases. This is 

because as the ambient air temperature increases, the 

inlet temperature of process air also increases which in 

turn decreases the partial vapor pressure of process air 

at the inlet. Due to this, the vapor pressure difference 

between the air and the desiccant along the channel 

gets reduced. Since the moisture attraction by the 

desiccant material from process air is based on the 

difference in vapor pressure between the desiccant 

material surface in the channel and moist air flowing 

through it, the moisture removal rate and ultimately the 

effectiveness of the dehumidifier get reduced. Since 

the adsorption process inside the dehumidifier is  

exothermic hence it is favoured by low temperatures of 

process moist air. Results also show good agreement 

between outputs predicted by the ANN model and that 

by experiments for the dehumidifier effectiveness and 

moisture removal rate of dehumidifier. We got better 

agreement by using TRNSYS simulated dehumidifier 

process air outlet humidity ratio of ANN model instead 

of using directly predicted ANN results for dehumidifier 

effectiveness and MRR due to the inaccuracies 
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involved in the ANN model because of selection of 

hidden layer, learning rate, momentum, etc. 
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Figure 6: Influence of ambient air temperature on 
dehumidifier effectiveness. 
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Figure 7: Influence of ambient air temperature on moisture 

removal rate. 

Comparisons between the results predicted by the 

artificial neural network model and the experimental 

findings for validation purposes are shown in Table 2 

for the coefficient of performance (COP), respectively. 

It can be seen that the maximum difference between 

the results predicted by the ANN model and that by the 

experimental measurements for the COP are 13.40%, 

respectively, which can be considered as reasonably 

accurate. Further, it is worth mentioning that the 

accuracy of the artificial neural network model greatly 

relies on network structure, amount of training and 

testing data, and selection of learning as well as 

performance function. 

CONCLUSION 

An artificial neural network (ANN) model 12-12-3-3 

(neurons in input-hidden-output layers) has been 

developed to predict the performance of a solid 

desiccant – vapor compression hybrid air-conditioning 

system. Cooling capacity, power input and coefficient of 

performance (COP) are considered as output 

performance parameters. Experimental runs have also 

been performed and the results are compared with the 

ANN predictions. The ANN model demonstrates a good 

statistical performance through correlation coefficient 

(R) and mean square error (MSE) assessing the 

performance. Based on experimental and ANN results, 

the following conclusions were drawn: 

• The maximum percentage difference between 

the ANN predictions and the experimental 

values for the coefficient of performance (COP) 

were found to be 13.40%, respectively.  

• The results indicate that the accuracy of the 

ANN model is satisfactory and coincides with the 

experimental data.  

• The ANN model can be efficiently used to 

predict the performance of a hybrid desiccant 

cooling system in terms of coefficient of 

performance (COP).  

• The accuracy of prediction greatly depends on 

the type of model containing a particular 

combination of layers and nodes as well as on 

the database for training. The accuracy can 

further be improved by expanding the 

experimental database for network training.  

Table 2: Comparison of ANN Testing Results with the 
Experimental Data for the Coefficient of 

Performance 

ANN Experimental (%) Difference 

1.65 1.43 13.40 

1.61 1.65 -1.85 

1.22 1.24 -1.10 

1.21 1.20 0.29 

1.34 1.38 -2.52 

1.89 2.06 -8.68 

0.98 0.96 1.97 

1.11 1.07 4.08 

0.73 0.77 -5.37 

0.91 0.94 -2.86 

 

The accuracy of the artificial neural network (ANN) 

model greatly relies on the network structure, amount 

of training and testing data, the training and testing 
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characteristics, and on the selection of learning as well 

as performance function. Moreover, the variations in 

the dimensionality of the data set and the network 

architecture, specifically the number of hidden units 

and layers have a significant effect on the accuracy of 

the ANN model. The accuracy of the model for better 

prediction can further be improved by expanding the 

experimental database for training i.e. the size of the 

training data set, discriminating variables and by using 

the proper nature of the training and testing sets as 

well as network parameters. It can also be done by 

using swarm intelligent techniques to update the 

weights, noise reduction in the target data, stable data 

by use of cross-validation techniques, etc. The artificial 

neural network architecture is found to have slightly 

higher accuracies by using the larger and more 

complex networks. 

NOMENCLATURES 

a = actual output (experimental output) 

b  = bias 

E = energy consumption (kW) 

h  = enthalpy (kJ/kg) 

ṁ = mass flow rate (kg/hr) 

MRR  = moisture removal rate (kg/hr) 

p = predicted output (network output) 

R = correlation coefficient 

RH = relative humidity (%) 

RPH = revolutions per hour  

T = temperature (°C) 

TRNSYS  = transient system simulation 

w = synaptic weights 

X = input signal 

Y = output 

Subscripts 

c  = compressor 

f = fan 

i = inlet 

o = others 

pa = process air 

ra = regeneration air 

reg = regeneration 

t = total 

1,2, etc. = reference state points 
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