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Abstract: Steel tubular bridge pier with inner cruciform plates has high seismic performance. In this paper, the 
applicability of static-dynamic verification method for seismic design of steel tubular bridge piers with inner cruciform 
plates is studied. The ultimate strength and state of steel tubular stub columns with inner cruciform plate subjected to 
compression and bending were investigated through finite element analysis. The validity of the proposed design formula 
of the failure strain which was obtained from the stub column analysis was examined by analysis on tubular steel bridge 
piers with inner cruciform plates under cyclic loading. The dynamic response analysis of the same steel bridge piers was 
carried out on the basis of the spring-mass model and the fiber element model. These results indicated the static-
dynamic verification method of the seismic response analysis through the spring-mass model are good agreement with 
dynamic verification method of seismic response analysis by the fiber element model. 

Keywords: Steel tubular bridge piers, inner cruciform plates, seismic design, static-dynamic verification, failure 
stain. 

1. INTRODUCTION 

Based on the appearance of the severe 
earthquakes that have occurred in the past decades 
(e.g. Northridge earthquakes (1994) in USA, Kobe 
earthquakes (1995) in Japan, Wenchuan earthquakes 
(2008) in china, Tohoku region earthquakes (2011) in 
Japan), the research of the seismic performance of 
bridge structures and the seismic design method of 
bridge have rapidly developed. In the seismic 
performance aspect, investigations of the plastic 
ductility and the limited state of steel bridge piers under 
cyclic and dynamic loading have been carried out 
theoretically and experimentally by numbers of 
research organizations. The aim is to present a new 
type of steel bridge piers with high ductility during the 
strong earthquake [1-6]. In recent studies, steel bridge 
pier with inner cruciform plates have been proposed to 
improve the seismic performance of steel bridge piers 
[7-9]. Inner cruciform plates of the steel piers play a 
similar role as a shear wall in the earthquake-resistant 
structures. On the other hand, in the seismic design of 
highway bridges, the performance-based design is 
newly adopted in many countries [10-16]. This seismic 
design includes two seismic verification methods under 
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strong ground motions, one of which is the inelastic 
time-history analysis. That is the verification method of 
seismic performance-based on dynamic analysis. 
Although this method is a more powerful procedure for 
demand predictions, it is time-consuming, which 
hampers its broader application to common design. In 
seismic design of complex structures such as arch 
bridges, cable stayed bridges and suspension bridges, 
this verification method should be adopted. The other 
method is non-linear pushover analysis. That is the 
verification method of seismic performance-based on 
static analysis. Though there are some assumptions in 
this analysis, the target structure should be controlled 
by the fundamental mode. This verification method is 
widely applied to simple or regular reinforced concrete 
structures (e.g. Girder Bridge, Frame Bridge) or high-
rise building, since both geometric and material non-
linearity can be accounted for through the analyses 
[17-18]. However, non-linear pushover analysis could 
not be applied to seismic performance verification of 
steel bridge pier, because steel bridge piers are 
vulnerable to damage from local and global interaction 
bucklings under strong ground motion. One of the main 
efforts made in the study of such structures is to 
investigate the inelastic behavior of isolated plates or 
stub-columns. Thus, the static- dynamic verification 
method for seismic design of the steel bridge is 
developed [19-21]. 
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The flow of the static-dynamic verification method is 
shown in Figure 1. In order to apply the method to 
seismic design of the tubular steel bridge pier with 
inner cruciform plates, it is necessary to clarify the 
ultimate state (i.e. ultimate displacement and failure 
strain) of the segment of the steel bridge pier, which is 
assumed to fail when the steel element reaches the 
corresponding critical state. 

In this paper, the applicability of the static-dynamic 
verification method for seismic design of steel tubular 
bridge piers with inner cruciform plates is studied. 
Firstly, the ultimate strength and the ultimate state of 
steel tubular stub columns with inner cruciform plate 
subjected to compression and bending were 
investigated. The effect of the failure segment length, 
the radius-to-thickness ratio and the axial load ratio 
parameter on the ultimate strength and failure strain of 
the stub columns were examined. Based on the 
numerical results, design formulas of the ultimate 
strength and failure strain were proposed for tubular 
steel bridge piers with inner cruciform plates. Secondly, 
the validity of the proposed design formula of the failure 
strain was examined by analysis on tubular steel bridge 
piers with inner cruciform plates under cyclic loading. 
Finally, the dynamic response analysis of the same 
steel bridge piers was carried out through the spring-
mass model and the fiber element model. The 
applicability of the static- dynamic verification method 
for seismic design of tubular steel bridge piers with 
inner cruciform plates was demonstrated. In this paper, 
static analyses were carried out by the finite element 
package MARC (2005), dynamic analyses were carried 
out by the non-linear dynamic analytical program 
TDAPIII (2008). 

2. ULTIMATE STATE OF STUB-COLUMN 

In the past research, it was found that the local 
buckling at bottom of a pier has effect on the ultimate 
strength and ductility of the steel bridge pier with inner 
cruciform plates. Thus, in order to clarify the failure 
state of a tubular bridge pier with inner cruciform 
plates, numerical analysis of stub columns with inner 
cruciform plates was carried out by the MARC under 
the combination load of compression and bending. In 
this analysis, both residual stress and initial deflection 
have been taken into account. 

2.1. Analytical Model of Stub Columns 

Analytical model of stub column is shown in  
Figure 2. The stub column was divided into 32 

 
Figure 1: Flow of static-dynamic verification method. 

 
Figure 2: Analytical model of stub column. 
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elements along the circumference and 5～20 elements 
along the longitudinal direction corresponding to the 
height of the analytical model. Typical finite element 
meshes of the stub column are shown in Figure 3. In 
this analysis, a type of four-node doubly curved thick-
shell element (Element 75) provided in the MARC 
software was adopted. The elasto-plastic and large 
displacement analysis was carried out with the 
following main assumptions [22]: 

 
Figure 3: Finite element mesh (32 mesh). 

a. Von Mises yield criterion and kinematic 
hardening rule; 

b. Updated-Lagrange procedure; 

c. Iterative procedure of full Newton-Raphson 
method. 

The material was assumed to be SS400 steel (JIS) 
with a yield stress σy of 235 Mpa, Young’s modulus E 
of 206 Gpa, and Poisson’s ratio ν of 0.3. The stress-
strain curve was assumed to be multi-linear as shown 
in Figure 4, in which the strain hardening εst occurs at a 

strain 10 times of the yield strain εy, and the hardening 
modulus Est is; 

!
! y

= 0.556 1" exp "0.06
#
#y

"10
$

%
&

'

(
)

*

+
,
,

-

.
/
/

0
1
2

32

4
5
2

62
+1  (εst≤ε)          (1) 

An idealized rectangular form of residual stress 
distribution in inner cruciform plates and the tubular 
column is adopted due to the welding (Figure 5) [23]. 

 
Figure 5: Distribution of residual stress. 

 
Figure 6: Initial deflection modes. 

The initial geometrical deflections also are 
considered. A sinusoidal initial geometrical deflection 
curve is applied along the longitudinal directions of the 
stub E/40. The stress-strain curve was defined by Eq. 
(1) [23]. The column as shown in Figure 6(a), the initial 
deflection equation as the following [24]: 
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In which, ωc is outward deflection of stub column; ωcmax 
presents maximum initial displacement (=0.0025L); L is 
length of the column; R is radius of stub column; z is 
vertical coordinates in local coordinate system. 
Moreover, geometrical deflection is considered in 
cruciform plates, as the following equations [23]:  
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Figure 4: Stress-strain curve of material. 
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In which, ωx (or ωy) is initial deflection of inner plates, R 
is radius of stub column; ts is thickness of inner plates; 
and x and y is longitudinal and circumferential 
coordinates in local coordinate system, respectively. 

Because of the tubular section subjected to 
compression force or bending moment, a portion 
between two diaphragms would deform into half sine-
waves shape along the column length, which is 
occurred on local buckling. For this reason, the simply 
supported at both ends is assumed to simulate as a 
stub column with a single half-wave of initial deflection 
by the boundary conditions [25]. 

2.2. Axial Compressive Analysis 

A parametric study of stub columns with inner 
cruciform plates was firstly carried out under the axial 
compression. For a given value of a radius-to-thickness 
ratio, a critical length of the stub column can be 
obtained expecting the minimum ultimate strength. 
Then, a relationship between the critical length and the 
radius-to-thickness ratio was formulated. 

The parameters of radius-to-thickness ratio Rt of the 
stub column and width-to-thickness ratio RC of inner 
cruciform plates were defined as the follows. 
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The effect of L/D (L is a length and D is a diameter 
of the stub column) was analyzed to establish a design 
formula for the ultimate strength and the failure strain. 

The value of L/D was taken from 0.05 to 0.2 and the 
six ratios of Rt = 0.05, 0.07, 0.10, 0.15, 0.20 and 0.25. 
Analytical models with the radius-to-thickness ratio 
Rc = 0.8 were chosen, because the stub column with 
this ratio was assumed that the local buckling of the 
inner cruciform plate would not occur before that of the 
 

tubular plate. The numerical results for different values 
of Rt and L/D shown in Table 1. Figure 7 shows the plot 
of the non-dimensionalized ultimate strength σu/σy 
versus L/D curves for different values of Rt. For the 
stub column with the same ratio Rt, and a critical length 
Lc/D, the minimum ultimate strength was able to obtain. 
The critical length Lc/D was plotted along the radius-to-
thickness ratio Rt corresponding to the critical length Lc 
in Figure 8. And the relationship between Lc/D and Rt 
was determined by the following equation. 

Lc

D
= 0.0415 +

0.0086

Rt
0.97

           (8) 

Table 1: Numerical Results for Parameters of Rt and L/D 
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Figure 7: Effect of Rt and L/D on σu/σy.  
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Figure 8: Relationship between Lc/D and Rt and proposed 
curve. 

2.3. Compressive and Bending Analysis 

As piers of the bridges are constantly subjected to 
combined compression and bending, it is needed to 
investigate the ultimate state of tubular stub columns 
subjected to compression and bending as shown in 
Figure 9. 

 
Figure 9: Tubular stub column model subjected to 
compression and bending. 

Table 2 gives the geometrical parameters of the 
analytical models. Radius-to-thickness ratio Rt of the 
stub columns with inner cruciform plates ranges from 
0.05 to 0.5. Each length of the stub column is 
determined by Eq. (8). Thickness t is assumed to be 
4.5mm for all the tubes, while thickness ts of the inner 
cruciform plates varies from 4.5mm to 26.5mm 
according to R of the tube. To investigate the effect of 
axial loads on the ultimate strength and strain, the axial 
load P varies from 0.0 to 0.4Py.  

Table 2: Geometrical Parameters of Analytical Models 

Rt L/D t(mm) ts(mm) R (mm) L (mm) 

0.10 0.12 4.5 5.5 239 57.36 

0.15 0.10 4.5 8.0 358 71.60 

0.20 0.08 4.5 11.0 477 76.32 

0.25 0.075 4.5 13.5 597 89.55 

0.30 0.069 4.5 15.9 716 98.81 

0.40 0.062 4.5 21.0 955 118.42 

0.50 0.058 4.5 26.5 1194 138.50 

 

The analysis of stub column model with clamped- 
simple of the boundary condition was carried out. The 
initial crookedness and residual stresses were taken to 
be the same as those in the axial compression case. In 
the analysis, the moment-strain curve was obtained by 
applying the rotation angle displacement θ as shown in 
Figure 9. Axial strain ε at the outmost compressive 
edge was computed by the following equations. 

! =
"L

L
            (9)  

where ΔL is longitudinal displacement of the upper or 
lower end at the outmost compressive edge 

Figure 10 shows the computed failure strain εu/εy 
(εy: yield strain) of the stub columns with inner 
cruciform plates. The failure strain εu is defined as the 
ultimate strain at the point which is corresponding to 
95% of the ultimate strength after the peak load. From 
this figure, it can be found that values of εu/εy for the 
same Rt decrease rapidly with the increase of the axial 

 
Figure 10: Failure strain of stub column under compression 
and bending moment. 



6     International Journal of Architectural Engineering  Technology, 2016, Vol. 3, No. 1 Zhanfei et al. 

load, and the values of εu/εy decrease with the 
increase of Rt for the same axial load.  

The numerical results suggest the effects of the 
axial load and the radius-to-thickness ratio Rt on the 
behavior of tubular stub columns with inner cruciform 
plates are significant. 

The evaluation of failure strain εu/εy for tubular stub 
columns is proposed due to the different axial load 
ratios ranging by the following equations. 
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(when 0.1! Rt ! 0.5 , 0.0 ! P / Py ! 0.4 ). 

The ultimate bending moment Mu/My of all the 
analytical models is shown in Figure 11. The ratio of 
the ultimate bending moment Mu and the yield moment 
My is taken as the vertical axis. As illustrated in  
Figure 11, the ultimate bending moment decreases 
rapidly with the increase of the axial load P/Py and the 
radius-to-thickness ratio Rt. A general equation 
accounting for the effect of both parameters Rt and 
P/Py on the ultimate bending moment was found to fit 
well with the analytical results. 
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3. CYCLIC ANALYSIS OF STEEL BRIDGE PIERS 

To check the validity of the failure strain by Eq.(10), 
non-linear analysis of tubular steel bridge piers with 

inner cruciform plates was carried out under the cyclic 
horizontal load and the constant axial compression 
load. Not only the geometrical and structural properties 
of the analytical specimens but also the analytical 
results are shown on Table 3. The λ is the slenderness 
ratio of columns, which is defined by the Eq. (12); 

! =
2LP

"r

# y

E
         (12)  

In which, r is a radius of gyration of the cross 
section. 

Figure 12 shows the bending moment diagram of 
the tubular steel bridge pier with inner cruciform plates 
subjected to the horizontal load and L0 is the height of 
the inner cruciform plate. The reasonable height (L0) of 
inner cruciform plate is obtained from the condition that 
the bending moments of bottom segment (as symbol 
Lc) and hollow segment (as symbol Le) of the bridge 

 
Figure 11: The ultimate bending moment Mu/My of all the 
analytical models. 

Table 3: Analytical Specimens of Steel Bridge Pier with Inner Cruciform Walls and Results of Cyclic Loading  
Analysis (mm) 

Tube  Inner Walls 
Specimens 

R LP t tS L0 L0/L 
λ Rt Hy(kN)  δy H0.95/Hy δ0.95/δy Hs/Hy δs/δy 

In7430 180  1750  4.0 577.5  0.33 0.30  0.074  59.5 5.8 1.66 4.05  1.52  4.25  

In8315 200  942  6.0 329.5  0.35 0.15  147.7 1.5 1.67  5.20  1.74  4.00  

In8322 200  1442  6.0 504.5  0.35 0.22  96.5 3.6 1.68  4.74  1.66  4.50  

In8330 200  1942  6.0 679.5  0.35 0.30  71.6 6.6 1.62  4.20  1.70  4.00  

In8338 200  2442  6.0 854.5  0.35 0.38  

0.083  

57.0 10.4 1.63  4.05  1.72  4.00  

In9530 230  2250  4.5 787.5  0.40 0.095  77.7 7.5 1.69  4.10  1.78  4.00  

In11630 280  2750  6.4 1237.5  0.45 0.116  101.7 9.2 1.67  4.20  1.72  3.00  

In14630 350  3400  

4.5 

7.6 1700.0  0.50 

0.30  

0.146  134.8 11.1 1.65  3.50  1.71  2.50  
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pier achieve simultaneously the ultimate bending 
moment. So the height is obtained through the 
following equation: 

L0 = (1!
Msu

Mu

)LP         (13) 

In which, Msu is the ultimate bending moment of 
steel tubular stub column with hollow section obtained 
from Ref. 24(1998); Mu is the ultimate bending moment 
of steel tubular stub column with inner cruciform plates 
obtained from Eq.(11).  

Material properties were the same as those used in 
previous analysis. In the cyclic analysis, the magnitude 
of the constant axial load P/Py was 0.15. At each cycle, 
the horizontal displacement δ was increased by a value 
of δy (δy = yield displacement of bridge pier). (see 
Yamao et al., 2004) 

Figure 13 shows the flow of the estimation of the 
ultimate displacement of the bridge pier with inner 
cruciform plates under cyclic loading. The strain of the 
outmost edge of the pier reaches to the ultimate state 
(symbol ●), when the strain of the outmost edge of the 
bottom segment is equal to the ultimate strain εu 
obtained by Eq. (10) as shown in Figure 13(a). Then, 
the ultimate displacement δu is obtained from the 
applied horizontal displacement corresponding to the 
ultimate strain εu as shown in Figure 13 (b). Figure 14 
shows the horizontal load versus horizontal 
displacement hysteretic and envelope curves for 
specimens In7430 and In9530. In these analyses, the 
horizontal load H and the horizontal displacement δ 
were non-dimensionalized by Hy and δy, respectively. 
Symbols ● and ◎ in Figure 14 represent the ultimate 
state points. Symbol ● was obtained from the 

estimation method by Figure 13(b) and symbol ◎ was 
gotten from the envelope curve corresponding to 95% 
of the ultimate strength after the peak load. The 
ultimate displacement obtained by the proposed 

 
Figure 12: Bending moment diagram of bridge pier. 

 
Figure 13: Flow of the estimation of ultimate Displacement δu 
according to failure strain by Eq.(10). 
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method for the pier with inner cruciform plates showed 
good agreement with the numerical results obtained 
from the envelope curves. Figure 15 shows the 
estimated error of ultimate state obtained by the 
proposed method using the failure strain by Eq.(10) 
and envelope curves corresponding to 95% of 
maximum strength after the peak load. From this figure, 

it is found that the ultimate strength obtained by the 
proposed method for all specimens shows good 
agreement with ultimate strength by the envelope curve 
as shown in Figure 15(a). And the ultimate 
displacement obtained by the proposed method 
deviates from ultimate displacement by the envelope 
curve in some numerical results (see. Figure 15(b)). 
The main reason is that the ultimate displacement 
obtained from the applied horizontal displacement 
corresponding to the failure stain may not take the P-Δ 
effect for the slender into account. 

4. DYNAMIC RESPONSE ANALYSIS 

4.1. Analytical Model and Input Seismic Waves 
In this section, the dynamic response analysis for 

the three specimens was carried out using both the 
spring-mass model and the fiber element model. The 
spring-mass model in Figure 16(b) composed of a lump 
mass M, a spring stiffness K and a damping constant C 
(=0.002), respectively. The approximate skeleton curve 
for dynamic response analysis was approximated as 
two straight lines taking the energy absorption into 
account in horizontal load-displacement curve obtained 
by the pushover analysis as shown in Figure 16(a). The 
initial gradient of this curve was assumed to have the 
stiffness K0, and the second gradient the stiffness K1. 
Table 4 represents the structural parameters of the 
skeleton curve and the spring-mass model. 

In order to investigate the validity of the dynamic 
analysis by the spring-mass model, the numerical 

 
Figure 14: Comparison of the ultimate state obtained from 
two estimation methods. 

           
Figure 15: Estimated error of ultimate state obtained by proposed method and envelope curve corresponding to 95% of 
maximum strength after the peak load. 
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results were compared with the dynamic analysis using 
the fiber beam element model. The fiber model was 
modeled by 34 fiber-beam elements as shown in 
Figure 17. 

Table 4: Structural Parameters of Skeleton Curve and 
Spring-Mass Model 

Model names K0 (kN/mm) K1/ K0 δｙ  (mm) M (kg) 

In8330 9.49 0.012  11.1 20100 

In9530 9.67 0.003  13.5 23200 

In7430 10.91 0.007  20.1 35400 

 

 
Figure 17: Fiber element model. 

Two input seismic waves used in the dynamic 
response analysis are shown in Figure 18. These 
waves were recorded by the Japan Meteorological 
Agency (JMA) and the Japanese Railway Takatori 
Station (JRT) as strong ground motion. Numerical 

analysis was conducted by the nonlinear dynamic 
program TDAPⅢ(2008). A constant time step of 
0.001sec was utilized. The seismic response analysis 
with 1.2 times acceleration waves of JMA and JRT 
were used to reach ultimate state of the column with 
inner cruciform plates. 

 
Figure 18: Input seismic waves. 

4.2. Numerical Results 

Figure 19 shows the H-δ hysteretic curves at the top 
of the model subjected to JMA and JRT waves. The 
vertical axis y is the ratio of the horizontal reaction H at 
the bottom of the column and the yield horizontal load 
Hy. The horizontal axis x is the ratio of the horizontal 
displacement δ at the top of the column and the yield 
displacement δy. In these figures, solid lines represent 
numerical results through the dynamic analysis using 
the spring-mass model, and dashed lines indicate 

        
Figure 16: Approximated skeleton curve and spring-mass model. 
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numerical ones through the dynamic analysis using the 
fiber beam element model. Vertical dotted lines 
represent the ultimate displacement δu obtained by 
proposed method. Symbol ● was ultimate displacement 
obtained by the fiber beam model. It can be found that 
the ultimate displacement δu by the proposed method 
shows good agreement with the ultimate displacement 
point by the fiber beam model. Though, the responsive 
displacement of spring-mass model is larger than that 
of fiber beam model. From the results, the validity of 
static-dynamic verification method for tubular columns 
with inner cruciform plates is demonstrated. 

CONCLUSIONS 

In this study, applicability of static-dynamic 
verification method for seismic design of steel tubular 
bridge piers with inner cruciform plates was 
investigated. Numerical analysis was carried out by 
analytical programs MARC and TDAPⅢ. The main 
conclusions obtained by this study are summarized as 
follows. 

1) The failure strain and ultimate strength of tubular 
bridge piers with inner cruciform plates are 
obtained by the FEM analysis of tubular stub 
columns.  

2) The ultimate state by the proposed method for 
the column shows good agreement with 
numerical results obtained from the envelope 
curve beside of slenderness column with inner 
cruciform plates. 

3) The ultimate displacement δu obtained by the 
proposed method based on failure strain εu 
through Eq. (10) shows good agreement with the 
ultimate displacement point by the dynamic 
analysis using the fiber element model. 

4) From the numerical results, the validity of static-
dynamic verification method for tubular columns 
with inner cruciform plates is demonstrated. 

 

 
Figure 19: Comparison of the H-δ hysteretic curves using spring-mass model and fiber beam model, and of the estimated 
ultimate displacement. 
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