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Abstract: Wireless sensor networking research is a structural and computer related design that mainly focused on 
internal wireless sensor network issues such as MAC and routing protocols, energy saving, hard ware design and to 
some extent on the architecture of gateways that connect a wireless sensor network with the rest of the world. They offer 
a low-cost solution that provides a high data density. Information obtained from such systems are imprecise in nature but 
is used for important decision making tasks. This precipitates the need to dynamically compute the quality of information 
(QoI) based on sensor observations. However, the sensors deployed in an environment do not have the same belief 
level due to their differences in capabilities and imprecision in sensing and processing. The belief in a sensor represents 
the level of accuracy in accomplishing a task that can be computed either by comparing the current observation with a 
reference data set or by performing a physical investigation. It is essential to understand how the sensors are performing 
with respect to the objective tasks. In this paper we propose a modified Information-driven sensor query (IDSQ) 
algorithm using reward-and-punishment mechanism to dynamically compute the belief in sensors by leveraging the 
differences of the individual sensor’s opinion. In this structural, results show the suitability of utilizing the dynamically 
computed belief as an alternative to the accuracy of the sensors. The structural can then be used to distribute the model 
processing into the wireless sensor network. 

Keywords: Quality of information, Multi-sensor systems, QoI structural, Accuracy, Reward-and-punishment 
mechanism, Structural and computer related design, Sensor belief. 

1. INTRODUCTION 

In today’s environment the evolving of technology 
leads to the growth of different kind of low cost sense 
technologies that are utilized in various sectors. The 
technology that supports is wireless sensing 
technology it is done with the help of wireless sensor 
networks (WSN). WSN consists of a huge number of 
devices, often called motes or sensor nodes. For such 
a scenario to be feasible, the sensor nodes use cheap, 
low-quality components and often are battery-powered. 
A typical WSN node is equipped with various sensing 
devices, has a small amount of computing power, and 
is capable of relaying messages from other sensor 
nodes [1]. 

Combining WSN with the latest computer 
technology can be used in very extensive fields, such 
as industrial control, smart home, environmental 
monitoring, precision agriculture, military applications, 
space exploration, intelligent transportation, logistics 
management, and health monitoring. It has the 
advantage of reducing equipment complexity and 
maintenance costs, while also reducing labor costs and 
returning information in time. 
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By their nature wireless sensor nodes are prone to 
errors and failures. Typically, wireless transmissions 
are unreliable, node hardware can fail, sensors are not 
very accurate, and nodes can run out of battery power. 
In such an unstable environment, it is very essential to 
monitor and assess the quality of information (QoI) of 
the data provided by the WSN. QoI has been defined 
as a collection of attributes including timeliness, 
accuracy, reliability, throughput, and cost. The 
modeling of sensor network data is an important means 
to understand and measure QoI requirements in 
relation to fundamental characteristics of the sensor 
network, such as for example sampling rate, amount of 
data to be transmitted, and measurement accuracy. 
Defining an accurate model of sensor network data is 
not an easy task as a sensor network monitors the 
state of a physical system that often is unknown or very 
difficult to characterize. Due to the imprecision of 
sensor observation it is therefore very important to 
measure the QoI based on sensor-driven information, 
which is a very challenging task. The challenge lies in 
addressing the following issues [2]: 

• Modeling quality of information in terms of 
relevant parameters and dynamically assessing 
these parameters in a multi-sensor setting 

• Developing quality-aware application and 
demonstrating the impact of QoI in various 
application scenarios 
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• Addressing the flexibility of addition, removal and 
replacement of sensors, data processing units 
and other components in a dynamic sensor 
environment 

The first and second issues have been of interest of 
many researchers, who studied quality aspects QoI [3] 
or quality of context (QoC) [4]. On a wider note, both 
QoI and QoC have the similar objective of measuring 
the quality value of sensor-driven information, such as 
the information about what happened in the 
environment. The listed current works give a better 
understanding of QoI and its use in several application 
scenarios. However, they provide little information 
towards the development of a QoI framework for 
flexibly handling the addition, removal and replacement 
of several components, which is related to the third 
issue above.  

The belief in a sensor represents the level of 
accuracy in accomplishing an observation task [5]. The 
accuracy of an observation can be calculated by 
comparing the current observation with the reference 
data set and/or by performing physical investigation. 
However, performing a physical investigation or having 
a reference data set is not practical in an automated 
monitoring scenario. On the other hand, in a dynamic 
environment, new sensors may be added with the 
existing sensors, while nonfunctioning and/or unreliable 
sensors may be replaced on a demand basis.  

The present study in this field either compute the 
belief of the sensors based on predetermined belief 
levels [6] or are suitable in a particular application 
context [5]. In addition, they hardly provide any 
indication of how the measured belief may resemble 
the accuracy in a dynamic sensor environment. 
Furthermore, although very few of the works have used 
the group observation in determining belief [7], the 
proposed method fully controls such observations in 
determining the belief of the participatory sensors. 

In this paper, we propose a mechanism to 
dynamically compute and evolve the belief in sensors 
over a period of time not only for the WSN but also for 
the various multi sensors. Our approach determines 
the difference of opinions obtained by fusing the 
observations of the sensors and, based on a reward-
and-punishment mechanism [8], either increases or 
decreases the belief of the sensors. In the remainder of 
this paper, we briefly introduce a related work in 
Section II, show the general formulation of the problem 
in Section III, our proposed models are provided in 
Section IV, provide the implementation results in 

Section V, followed by the conclusion and future work 
plan in Section VI. 

2. RELATED WORK 

Sensor-network data modeling has been addressed 
in many research projects. Guestrin et al. [9] have 
proposed a model based on linear regression that 
exploits spatio-temporal data correlation. Their method 
uses this model in conjunction with Gaussian 
elimination to reduce the amount of data sent over the 
sensor network. Deshpande et al. [10] present a model 
based on time varying multivariate Gaussian random 
variables. Their approach, dubbed BBQ (Barbie-Q: A 
Tiny-Model Query System), treats sensors as 
multivariate Gaussian random variables. If the statistics 
of the Gaussian random variables (mean and 
covariance matrix) are known, then knowing the 
outcome for some of the variables in a particular 
experiment also increases the knowledge about the 
likely outcome of the unobserved variables. 

Researchers in multi-sensors have developed a 
number of algorithms for quantifying and estimating 
uncertainties in sensing and estimation applications. 
Information-driven sensor query (IDSQ) uses a set of 
information criteria to select which sensors to get data 
from and then incrementally combine the data. The 
belief update in IDSQ could use either an information 
filter or a more general non-Gaussian technique such 
as the sequential Monte Carlo method. IDSQ models 
the uncertainty in a geometric sense so that active 
sensor selection can be guided using the spatial 
configuration of the sensors. 

Wirelessly networked sensors often deploy a multi 
hop RF communication strategy to conserve energy. 
Pottie’s et al [11] recent work in data diffusion routing 
and more generally energy-aware communication 
attempts to minimize power consumption by using 
network parameters such as topologies or node power 
levels.  

Measuring the sensor belief has been an interesting 
research topic due to the uncertainty and imprecision 
involved in the sensor-based information gathering. To 
determine the sensor belief, the works in [12] have 
highlighted on finding out the rate of change in 
successive measurements from the sensor and argued 
that the greater the rate of change, the lower the belief. 
The rate of change is obtained based on the past data, 
the writers have defined some fuzzy rule sets to 
determine the self-belief of the sensors. Hughes et al. 
[7] compared the performance of one sensor with 
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another and derived a model for calculating the belief 
of the sensors. The performance of a sensor is 
determined based on the current detection outcome 
that supports an activity. The evidence from multiple 
sensors that support an activity from an abstract level 
is used to derive the belief value. Atrey et al. [5] 
propose a dynamic belief calculation approach in the 
framework of a multimedia surveillance system. Using 
this mechanism, the belief of a set of non-trusted 
sensory streams evolves based on their association 
with other trusted streams. However, it is apparent that 
the determination of trusted streams would require 
certain pre-computation, which might cause some 
overhead in obtaining the overall belief of the sensors 
and the information of interest. 

3. PROBLEM FORMULATION 
3.1. Sensing Model and Measure of Uncertainty 

Estimation problem is clarified using standard 
estimation theory. The time-dependent measurement, 

 of sensor i with characteristics, !i t( )  is related to 
the parameters, x(t) that we wish to estimate through 
the following observation model [13] 

          (1) 

where h is a (possibly non-linear) function depending 
on x(t) and parameterized by  which represents 
the (possibly time dependent) knowledge about sensor 
i. Typical characteristics,  about sensor i include 
sensing modality, which refers to what kind of sensor i 
is, sensor position xi and other parameters, such as the 
noise model of sensor i and node power reserve. 

In (1), we consider a general form of the observation 
model that accounts for possibly non-linear relations 
between the sensor type, sensor position, noise model, 
and the parameters we wish to estimate. A special 
case of (1) would be 

 

Where fi is an observation function, and wi is additive, 
zero mean noise with known covariance. 

In case fi is a linear function on the parameters, (1) 
reduces to the linear equation 

        (2) 

In order to illustrate our technique, we will later 
consider the problem of stationary target localization 
with stationary sensor characteristics. Here, we 

assume that all sensors are acoustic sensors 
measuring only the amplitude of the sound signal so 
that the parameter vector  is the unknown 
target position, and 

          (3) 

where xi is the known sensor position, and ! i
2  is the 

known additive noise variance. Note there is no longer 
a time dependence for x and !i  Assuming that 
acoustic signals propagate isotropically, the 
parameters are related to the measurements by 

          (4) 

where a is a given random variable representing the 
amplitude of the target, !  is a known attenuation 
coefficient, and  is the Euclidean norm. wi is a 
zero mean Gaussian random variable with variance ! i

2 . 

In the remainder of this paper, we define the belief 
as a representation of the current a posteriori 
distribution of x given measurements : 

 

Typically, the expectation value of this distribution  

 

is considered the estimate (i.e., the minimum mean 
square estimate), and we approximate the residual 
uncertainty by the covariance: 

 

In order to calculate the belief based on 
measurements from several sensors, we must pay a 
cost for communicating that information. Thus, 
maintaining what information each sensor node has 
about other sensor nodes is an important decision. This 
is why the sensor characteristics are clearly 
represented because it is important to know what 
information is available for various information 
processing tasks. Since combining measurements into 
the belief are now assigned costs, the problem is to 
intelligently choose a subset of sensor measurements 
which provide “good” information for constructing a 
belief state as well as minimizing the cost of having to 
communicate sensor measurements to a single node. 
In order to choose sensors to provide “good” updates 
to the belief state, it is essential to understand a 
measure of the information. 



Computing Quality of Information for Wireless Sensor Networks International Journal of Architectural Engineering Technology,  2018 Vol. 5     55 

3.2. Sensor Selection 

Given the current belief state, we wish to 
incrementally update the belief by incorporating 
measurements of other nearby sensors. Among all 
available sensors in the network, however, not all 
provide useful information that improves the estimate. 
Furthermore, some information might be useful, but 
redundant. The task is to select an optimal subset and 
to decide on an optimal order of how to incorporate 
these measurements into our belief update. Due to the 
distributed nature of the sensor network, this selection 
has to be done without explicit knowledge of the 
measurement residing at each individual sensor to 
avoid communicating less useful information. Hence, 
the decision has to be made solely based upon the 
sensor characteristics such as the sensor position or 
sensing modality and the predicted contribution of 
these sensors. 

Figure 1 shows the basic idea of optimal sensor 
selection. The image is based upon the assumption 
that estimation uncertainty can be effectively 
approximated by a Gaussian distribution, illustrated by 
uncertainty ellipsoids in the state space. In Figure 1, 
the solid ellipsoid indicates the belief state at time t and 
the dashed ellipsoids are the incrementally updated 
belief after incorporating an additional measurement 
from a sensor, S1 or S2, at the next time step. 
Although in both cases,  

 

Figure 1: Sensor selection based on information gain of 
individual sensor contributions. 

S1 and S2, the area of high uncertainty is reduced 
by the same amount, the residual uncertainty in the 
case of S2 maintains the longest principal axis of the 

distribution. Based on the underlying measurement 
task, we will choose case S1 over S2. 

3.3. Information Utility Measures 

It is essential to define a measure of information 
utility to quantify the information gain provided by a 
sensor measurement. We want to show that 
information content is inversely related to the “size” of 
the high probability uncertainty region. We first 
introduce an information-theoretic definition of the utility 
measure. There are many kinds of measuring methods 
(Covariance-Based, Fischer Information Matrix, 
Entropy of Estimation Uncertainty, Volume of High 
Probability Region, Sensor Geometry Based 
Measures) [13]. In this paper we only describe 
“Expected Posterior Distribution measures” [14] that 
prove to be practically useful. 

Our objective is to predict the information utility of a 
piece of nonlocal sensor data before obtaining the 
data. In practice, the prediction must be based on the 
currently available information: the current belief state 
and the characteristics of the sensor of interest which 
includes information such as the sensor position and 
sensing modality that can be established beforehand. 

We assume there are N sensors labeled from 1 to N 
and the corresponding measurements of the sensors 
are. Let U ⊂{1,…,N} be the set of sensors whose 
measurements have been incorporated into the belief. 
That is, the current belief is p(x| ). The sensor selection 
task is to choose a sensor whose data has not been 
incorporated into the belief yet and which provides the 
most information. To be specific, let us define an 
information utility function that assigns a value to each 
probability distribution. In this case, we ignore the cost 
term in the objective function. The best sensor, defined 
by the earlier objective function, is given by 

 

where V is the set of sensors whose measurements 
are potentially useful. 

Measures on Expected Posterior Distribution 

The idea of using expected posterior distribution is 
to predict what the new belief state (posterior 
distribution) would look like if a simulated measurement 
of a sensor from the current belief state is incorporated. 
The utility of each sensor can then be quantified by the 
entropy or other measures on the new distribution from 
the simulated measurement. We use the tracking 
problem to derive an algorithm for evaluating the 
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expected utility of a sensor. When a real new 
measurement is available, the new belief or posterior is 
evaluated using the familiar sequential Bayesian 
filtering [14] : 

 

         (5) 

where  is the current belief given a history 
of the measurement up to time 

 
p(specifies the predefined dynamics model, and 

 is the likelihood function from the 
measurement of sensor j and C is a normalization 
constant.  

How do we compute the expected value of 
without having the data  in the first 

place? The idea is to guess the shape of likelihood 
function from the current belief and the sensor position. 

Without loss of generality, the current belief is 
represented by a discrete set of samples on a grid of 
the state space. This nonparametric representation of 
the belief state allows to represent highly non-Gaussian 
distribution and nonlinear dynamics. Figure 2 shows an 
example of the grid-based state representation. The 
gray squares represent the likely position of the target 
as specified by the current belief. The brighter the 
square, the more likely the target is there. For a sensor 
i, given the observation model , 

where  is the sensor noise, we can estimate the 

measurement from the predicted belief and 
compute the expected likelihood function:  

       (6) 

Where the marginal likelihood is defined as 

 

And the prediction as 

       (7)  

Using the estimated likelihood function 
 from sensor i, the expected posterior 

belief can be obtained as follows: 

       (8)  

 

Figure 2: The expected likelihood function for each sensor(i 
or j) is a weighted sum of the marginal likelihood function 
conditioned at each grid in the predicted belief distribution. 

We can then apply measures such as the entropy to 
the expected belief , as an 
approximation to the true belief . This 
approach can apply to non-Gaussian belief since the 
discrete approximation of the belief state assumes a 
general form. To compute the expected belief, 
however, we have conditioned the expected likelihood 
function on the predicted belief state. 

4. PROPOSED MODEL 

We describe the information-driven sensor query 
(IDSQ) algorithms based on the fixed belief carrier 
protocol in which a designated node such as a cluster 
leader holds the belief state. The querying node selects 
optimal sensors to request data from using the 
information utility measures. To compute the belief 
state, we will use the reward-and punishment 
mechanism. 

4.1. IDSQ Algorithm 

We formulated the problem of distributed tracking 
as a sequential Bayesian estimation problem. This 
section outlines a sensor selection algorithm based on 
the cluster leader type of distributed processing 
protocol. Although the algorithm is presented using the 
cluster leader protocol, the ideas of guiding sensor 
selection using an information-driven criterion can be 
equally well supported by other methods such as the 
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directed diffusion routing. The description of the 
algorithm below will clearly discuss what information 
each sensor node has, even though this part of the 
algorithm is auxiliary to the sensor selection aspect of 
the algorithm. Figure 3 shows the flowchart of this 
algorithm which is identical for every sensor in the 
cluster.  

 

Figure 3: Flowchart of the information-driven sensor querying 
algorithm. 

The measurement model for each sensor i is 

          (9) 

 is the amplitude of the target uniformly 
distributed in the interval , 

 is the unknown target position, 

 is the known sensor position, 

 is the known attenuation coefficient and 

 is white, zero-mean Gaussian noise with variance 
. 

The representation  of the belief will be the history 
of the collected measurements from the sensors. Thus, 
the true belief p(x | ) and any statistics thereof can be 
calculated. 

4.1.1. Initialization 

Assuming all sensors are synchronized so that they 
are running the initialization routine simultaneously, the 
first calculation is to pick a leader from the cluster of 
sensors. Depending on how the leader is determined, 
the sensors will have to communicate information 
about their position. Assume also that the leader node 
has knowledge of certain characteristics of the 
sensors in the network such as the positions of the 
sensor nodes. 

The relevant characteristics of each sensor i are  

         (10) 

where xi is the position and  is the variance of the 
additive noise term. To be simple, the leader is chosen 
to be the one whose position xi is nearest to the center 
of the sensors, that is, 

       (11) 

To find the leader, all sensors communicate their 
characteristics  to each other. 

4.1.2. Follower Nodes and Initial Sensor Reading 

If the sensor node is not the leader, then the 
algorithm follows the left branch in Figure 3. These 
nodes will wait for the leader node to query them, and if 
they are queried, they will process their measurements 
and transmit the queried information back to the leader.  

If the sensor node is the leader, then the algorithm 
follows the right branch in Figure 3. When a target is 
present in the range of the sensor cluster, the cluster 
leader will become activated. The leader node l was 
activated when its amplitude reading satisfied . 

This basically means the leader node becomes 
activated when the target is less than some given 
distance away from the leader node, assuming there is 
no other sound source present. The leader will then 
store its amplitude value  which is its 
representation of the belief, and keep track of which 
sensors’ measurements have been incorporated into 
the belief state U = {l}. 

4.1.3. Belief Quality Test 

If the belief is good enough, based on some 
measure of goodness, the leader node is finished 
processing. Otherwise, it will continue with sensor 
selection.  
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4.1.4. Sensor Selection 

According to the belief state, , and 
sensor characteristics  pick a sensor node from 

 which satisfies some information criterion. 
Say that node is j. Then, the leader will send a request 
for sensor j’s measurement, and when the leader 
receives the requested information, it will update the 
belief state with zi to get a representation of 

, and add j to the set of sensors 
whose measurements have already been incorporated 

. We have four different criteria for 
choosing the next sensor : 

4.1.4.1. Nearest Neighbor Data Diffusion 

       (12) 
4.1.4.2. Mahalanobis distance 

First, calculate the mean and covariance of the 
belief state: 

 
And choose by 

     (13) 

4.1.4.3. Maximum Likelihood 

This is an ad hoc generalization of the Mahalanobis 
distance criterion for distributions that are multi-modal. 
For the special case when the true distribution is 
Gaussian, this criterion corresponds exactly with the 
Mahalanobis distance criterion. 

       (14) 

4.1.4.4. Reward-and-Punishment Mechanism  

We will show this algorithm in section B with details. 

Finally, go back to step 3 until the belief state is 
good enough. At the end of this algorithm, the leader 
node contains all the information about the belief from 
the sensor nodes by intelligently querying a subset of 
the nodes which provide the majority of the information. 
This reduces unnecessary power consumption by 
transmitting only the most useful information to the 
leader node.  

4.2. Reward and punishment mechanism 

4.2.1. Determining Initial Belief Based on Past 
Accuracy 

The static belief is computed from the past accuracy 
of each of the sensors. The past accuracy of the 

sensors is determined by comparing the observations 
provided by the sensor with the ground truth in the 
training session. The measure of the past accuracy of 
the sensors may be represented using four possible 
parameters including true positive (TP), false positive 
(FP), false negative (FN) and true negative (TN). For a 
sensor i, these parameters are used to compute the 
accuracy of the evidences for the occurrence of event j 
as [15], 

      (15) 

 is an average value obtained through multiple 
training repetitions. At the early state of placement, the 
past accuracy of the sensor observation will be 
assigned as the value of initial belief, i.e. 

 To further clarify this, let us 
consider that a sensor correctly identifies an event 
eight times (TP = 8) and wrongly misses it two times 
(FN = 2) out of ten occurrences of that event. 
Therefore, the  will be equal to 0.80 (TN = 0 and 
FP = 0). 

4.2.2. Analyzing the Current Observation of the 
Sensors 

The current observation is acquired as a score in 
the scale of 0–1, which indicates the probability of the 
occurrence of an event. Such a probability score can 
be acquired by using Bayesian classification strategies 
to classify a particular observation task or event based 
on the sensory data.  

In a multisensory environment, let there be  
sensors denoted by a set , which 
monitor the event  occurring in the 
environment. For a particular event  let  number of 
correlated sensors provide observations about  at 
time instant t, which are referred as the “current” 
observations. Among these  sensors, not all of them 
will always agree or disagree on the occurrence of an 
event. This is again due to the imprecision in the 
sensing, processing, and changing environment 
context. Therefore, there would usually be two groups 
of sensors  and , where  would be in support of 
the evidence, and  would not support the evidence.  

Each time a group of any two sensors  and  are 
used together for sensing an event , and their 
individual observation scores are in favor of the 
occurrence of the event, the group’s overall 
observation score is computed by using a Bayesian 
formulation as  

        (16) 
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where the term N is a normalization factor to limit the 
probability value within [0, 1], which is expressed as 

   (17) 

 and  are the individual observation scores of the 
sensors Si and Sk respectively. The terms 

 and  are the two 
factors computed from the past belief of sensors Si and 
Sk at time t − 1, where . In addition,  and 

 represent the weights assigned to the sensor 
observations based on their changing belief. 

The term  refers to the agreement 
coefficient between the sensors Si and Sk. This is used 
as a boosting factor when fusing the probability scores. 
The value −1 indicates a full disagreement, whereas 1 
indicates a full agreement among the sensors with 
respect to observing an event.  

       (18) 

 the term represents the past agreement 
between the sensors Si and Sk. The term 

 represents their current 
agreement value. The weighting factors !  and (1- ! ) 
are assigned to the current and past agreement 
coefficients, respectively. 

Finally, the overall observation scores  and  of 

the two sensor groups !1  and !2 , respectively, are 
computed by iteratively. Subsequently, if , 
then the final winning decision from the sensors would 
be the one provided by the group !1 , which is in favor 
of the occurrence of the event . Otherwise, the system 
will assume that the  event  did not occur, and the 
probability of nonoccurrence of that event is . These 
overall observation scores are further used to 
determine the dynamic belief of the sensors by 
adjusting the reward-and-punishment values for the 
two groups of sensors.  

4.2.3. Computing the Run-Time Belief Using the 
Reward-and –Punishment Mechanism 

In this section, we describe how the belief of 
sensors dynamically grows based on their initial belief 
and overall observation scores  and  for the two 
groups of sensors. The main idea of our method is to 
reward and punish the sensors by increasing and 

decreasing their belief levels, respectively, based on a 
group decision. The degree of reward and punishment 
is determined according to the margin by which a 
sensor group wins over the other. Precisely, we model 
the dynamic belief in each of the sensors as 

If  

    (19) 

where, the terms  are the 
evolving confidence of each of the sensors in group !1  
and , respectively, with respect to the event  based 
on the individual sensor stream. The exponential terms 

 and  are the growth and decay factors, 
respectively, based on current observations. The 
growth factor is used to positively evolve the belief of 
the streams that are in support of the overall decision. 
The value of . Also, α is the number 
that is used to control the rate of growth or decay in 
belief and is experimentally determined. The term Z is 
the normalization factor to keep the value of confidence 
in [0, 1].  

5. IMPLEMENTATION AND RESULT 

In this section we will prove the sensor selection 
algorithm. In the IDSQ algorithm, we will only 
implement on the sensor selection model using 
Reward-and-Punishment mechanism. To show the 
effectiveness of the suggested mechanism, we 
conducted an experiment with random data set 
obtained using Matlab. Our objective was to 
dynamically determine the belief of the sensors and the 
high-level information we obtained based on the 
observation of the sensors. To this end, we provide the 
details of our experiment in the following sections. 

5.1. System Setup and Computing Initial Belief 

In our experimental setting, we used random data 
sets which are training and test set. In order to 
calculate the initial belief status, training data set was 
used. We set the four data group in the zone. The 
zones refer to some logical partition based on the 
overall position. To evaluate our proposed method, we 
used 50 data observations from the four sensors. Each 
observation from a sensor was classified into a 
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supporting group or not supporting group using a 
Bayesian classifier, which provided a probability score. 

As mentioned before, the initial belief of the sensors 
may be based on their past accuracy, which can be 
calculated by using (15). However, the calculation of 
the past accuracy is often not practical due to the 
overhead it incurs and due to the varying environment 
context. Therefore, we intentionally ignore the accuracy 
computation for some sensors and set their initial 
accuracy as 0.50 on a scale between 0 and 1. 
However, for two of the sensors (S1 and S3), we set 
the initial accuracy as 0.90 and 0.70 each. 

5.2. Analyzing the Current Observation 

In our experiment, from the 50 sample observations, 
we apply our method to analyze the current 
observation of the sensors. We obtain the probability 
score from the sensors based on the empirical mean 
and variance value to determine whether the condition 
is support (C1) or not support (C2). For this, we made a 
threshold based on the probability of 0.5. Now, we 
compute the four probability scores as (S1, 0.52, C1), 
(S2, 0.46, C2), (S3, 0.44, C2), and (S4, 0.54, C1). The 
scores are grouped into two subsets: one is in support, 
and the other is not support. That means, given the 
example observation, the two groups would be  = 
{0.52, 0.54} and = {0.46, 0.44}, respectively. The 
fused scores for each of the groups are computed, for 
which we need to first determine the value of the 
agreement/disagreement factors among the 
participating sensors using (18). Given the two sensor 
observations, the agreement/disagreement among 
these sensors are computed as = 0.9650 and = 
0.9737 where the initial agreement/disagreement is 
assumed to be zero. Now, using (16), we compute the 
fused scores for each of the groups, which are = 

0.8848 and = 0.8507. In obtaining the fused scores, 
we assume that β is 0.4. 

We now compare the fused score of the two groups 
and observe that the  group has the highest fused 
scores ( = 0.8848); therefore, it is nominated as the 
winning group, whereas the  group is nominated as 
the losing group. In the next section, we will show how 
the belief of the individual sensors is computed based 
on the observations of the two fused scores. 

5.3. Obtaining the Run-Time Belief 

The proposed belief calculation method either 
rewards or punishes a sensor based on whether its 
observation supports the winning decision. Therefore, 
for the example case considered in the previous 
section, the belief of the sensors in group  will 

increase, whereas the belief of the sensors in group  
will decrease. Accordingly, the belief of the sensors S1, 
S2, S3 and S4 are computed using (19), resulting in 
their new belief values 0.9396, 0.3663, 0.5743 and 
0.6337. In this computation, the value of α is 
considered as 0.1, which controls the rate of growth or 
decay factor for belief evolution. Figure 4 shows the 
dynamically evolved belief over the 50 sample 
instances. We make the following observations from 
the results in Figure 4, which we summarize as follows. 

 

Figure 4: Run-time belief computed for all sensors using the 
proposed method. 

We computed the initial accuracy of sensor S1 and 
S3 based on the past accuracy via training (assumed 
0.9 and 0.7). Therefore, this value is likely to be more 
representative than if it was just set by the designer 
due to the unavailability of the training data. 
Consequently, we observe that the evolved belief was 
not increased much in the case of S1 and S3. The 
initial belief of sensors S2 and S4 were set as 0.50 
without any training. Therefore, we observe that their 
belief evolves much bigger than S1 and S3. The effect 
of reward and punishment is also visible from the 
individual sensor belief. For example, in the case of 
sensors S1 and S4 which is winning group, we notice 
that the slop of the belief increase is higher than S2 
and S3 which is losing group. It is also visible from the 
figure that, in some instances, the belief of the sensors 
remains the same as the past instance due to the fact 
that all the sensors either support or oppose the overall 
observation. 
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5.4. Computing Required Number of Experiment 

Finally, we can calculate the required number of 
repeat for the sensor selection. Figure 5 shows 
required experiment number for sensor 4 which is in 
winning group based on the growth and decay factor 
and threshold level. For example, if initial belief is 0.5 
and threshold level is 0.1, sensor selection belief status 
should be at least 0.6. In this figure, because sensor 4 
is in the wining group, based on the required the 
number of experiment is increased.  

 

Figure 5: Required number of experiment for sensor 4 based 
on the threshold level. 

Table 1 shows the comparison between our 
proposed method and Frolik et al. [12] in terms of the 
number of iteration for selecting the best sensor. In 
Tale 1, the initial belief is set to 0.5 and the growth and 
decay factor is set to 0.15 for both methods and three 
threshold levels, 0.05, 0.1, and 0.15 are used for 
comparisons. We can see that our method uses less 
number of iterations to selecting the best sensor. 

Table 1: The Comparison Between our Method and 
Frolik et al. [12] 

 0.05 0.1 0.15 

Our Method 5 14 30 

Frolik et al. [12] 6 20 35 

 

CONCLUSION 

In this paper we showed the structure to process 
sensor data models. Using data models can help to 
combine readings from different sensors to assess the 
quality of information (QoI) or to increase energy 
conservation. We have formulated the problem of 
distributed tracking using wirelessly connected sensors 
as an information optimization problem and introduced 
practically feasible measures of information utility. 
Introducing an information utility measure allows to 

dynamically select the best subset of sensors among 
all possible sensors within the sensor network.  

We presented experimental results on sensor 
selection model of IDSQ using Reward-and 
Punishment mechanism. The results show the potential 
of the proposed method and observe that the belief 
computed in this process may be used as a feasible 
alternative to the measure of accuracy in a dynamic 
sensor environment. In our experiment, we only used 
random data set but algorithm can be used to real time 
scenarios. We have presented a novel method to 
dynamically compute the belief of multiple sensors 
deployed in an observation environment. Our method 
learns the difference of opinions provided by a group of 
sensors and utilizes this difference to dynamically 
evolve their belief levels. In our model, we used an 
existing Bayesian fusion scheme to fuse the 
observations. 

In the future, we need to prove this algorithm to 
IDSQ and the other multi sensor networks which are 
camera and temperature sensors. In this way, the 
sensor network can seek to make an informed decision 
about sensing and communication in an energy 
constrained environment, which is well utilized for 
monitoring and testing in some harsh environments 
around the world. 
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