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Abstract: The aim of this paper is the study of the mass transfer resistance effects at the boundary of a fractured porous 
media. The boundary between the porous media adjacent to the fluid considers the transient effects. The numerical 
experiments show that the !  parameter has an influence that facilitates the mass transfer of the porous region to the 
fluid region. The !  parameter expresses the relation of the mass transfer resistances between the porous media and 
the homogeneous fluid; in the present work it is considered as a parameter which facilities mass transfer of the porous 
region to the fluid region. 
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1. INTRODUCTION 

Due to the transport properties of fractures, the flow 
through a fractured porous media differs drastically 
from that in a porous medium formed by intergranular 
porosity. The porous matrix provides the main storage 
for the fluids and the transport takes place in the 
fracture, whose study is of practical importance, e.g. 
the fractured petroleum reservoirs represent over 20% 
of the world´s oil reserves [1]. Fractured reservoirs are 
also found in the geothermal industry, where water is 
reinjected to reservoirs to maintain reservoir pressure 
[2]. 

The interfacial region between porous and fluid 
regions is essential for the process of mass transport, 
energy and momentum from the porous region to the 
fluid region, and for many years it has been the subject 
of numerous studies. The boundary region between a 
fluid saturated porous medium and an adjacent 
horizontal fluid layer was studied by Beavers and 
Joseph [3]. These authors presented a semi-empirical 
jump boundary condition to describe the process at the 
inter-region. Neale and Nader [4] analyzed a similar 
system and they introduced the Brinkman term for the 
porous side. In the decade of the 1980s, others studies 
emerged, e.g. [5-8]. It was not until the 1990's when 
these kind of studies were intensified with the works, 
e.g. [9-13]. However, in the new century it is important 
to highlight the work of Alazmi and Vafai [14], 
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Espinosa-Paredes [15], and Espinosa-Paredes et al. 
[16]. 

In this work a numerical analysis for mass transfer 
resistances in transient regime of the process of mass 
transport at the boundary between a porous media and 
a fluid layer is studied in detail. In this study the porous 
media fractured considered has three regions: (1) 
heterogeneous medium, (2) homogeneous medium, 
and (3) boundary region between the heterogeneous 
and homogeneous mediums. A previous work of Gwo 
et al. [17] considers the mass transfer with a two-region 
model. In this work the model of Espinosa-Paredes et 
al. [16] is applied for the mass transport process in the 
interfacial region. 

 
Figure 1: Schematic representation of the one-dimensional 
mass transfer two-regions and interfacial region. Where ! -
region represents the porous medium, ! -region is the fluid 
region, and interfacial region is located in y = 0 . 
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2. MATHEMATICAL MODEL 

The system under study is illustrated in Figure 1, 
where the porous media is assumed as isotropic and 
homogeneous, with periodic structure and two 
impermeable boundaries at y = L , and y = !" . The 
interfacial region between the porous and fluid regions 
is located at y = 0 . Therefore, the three-region model 
that describes the mass transfer process in the system 
illustrated by Figure 1, is given by Espinosa-Paredes  
et al. [16], 
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Initial and boundary conditions, 
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The form of the inter-region boundary condition 
given by Eq. (3) is consistent with the literature dealing 
with jump condition at the phase interfaces [18-19]. The 
transport equations, Eqs. (1) and (2), are coupled by 
the interfacial boundary condition given by Eq. (3), 
which includes mass transfer resistance and 
accumulation effects. 

3.1. Dimensionless Equations 

For convenience of mathematical formulation, we 
introduce the following dimensionless variables, 
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Then, the dimensionless form of the problem 
defined by Eqs. (1)-(8), is now defined by, 
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Initial and boundary conditions, 
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where 
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One of the advantages of homogenization is that it 
generates different up-scaled models when 
characteristic dimensionless numbers assume values 
of different orders of magnitude with respect to !"# . 
Other dimensionless numbers such as ! , ! , and !  
follow from the up-scaled model equations.  

4. NUMERICAL SOLUTION 

In the present solution, the fractured porous media 
is represented by a one-dimensional, mesh-centered 
grid consisting of a variable number of vertical 
elements. The governing equations are written for each 
element of the grid. The differential equations 
described previously are transformed into discrete 
equations using the technique of finite differences in 
explicit form. The spatial discretization scheme used in 
the present case is known as central-differences while 
forward-differences are used for the time derivative. 
Application of these discrete forms enables the 
equations for each region to be written as a single set 
of equations for the sweep in the vertical direction. 

4.1. Resistances between Porous Media and 
Homogeneous Fluid  

In order to study the process of mass transport from 
the porous region to the fluid region, the initial 
conditions are: U

p0
= 1,  and U f 0 = 0   

In this work ! =
2" 2#$
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isotropic media [20], which is used to calculate the 
parameter ! : 
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The !  parameter expresses the relation of the 
mass transfer resistances between the porous media 
and the homogeneous fluid. Then, in order to study the 
effect of the mass transfer by diffusion under transient 
conditions, we present the results of numerical 
experiments in Figures 2-4, for four values of ! : 0.1, 
0.5, 0.9, and 1.0. Figures 2 and 3 show the behavior of 
the average concentration in the fluid region, U f , 

and average concentration in the porous region U p , 

which are given by, 

U f = U f
0

1

! dY                     (20) 

and 
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L
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Up

0

"
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respectively. 

The concentration in the interfacial region, U f Y =0 ,  
is shown in Figure 4. The discussion of the behavior of 
the numerical results in this work is performed using 
the average concentrations for fluid and porous 
regions. 

 
Figure 2: Influence of the parameter !  (Eq. 19) on the 
average concentration of the fluid region, with Pe = 1  and 
! = 1 .  

 

 
Figure 3: Influence of the parameter !  (Eq. 19) on the 
average concentration of the porous region, with Pe = 1  and 
! = 1 .  
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The influence of the parameter !  on the U f  is 

presented in Figure 2. As it can be observed in this 
Figure, for ! < 1 , the concentration reaches a 
maximum and then decays exponentially with time, 
which implies that the mass transfer resistance in the 
porous region is greater than the mass transfer 
resistance in the fluid region, as expected. If ! = 1 , the 
mass transfer resistance in both regions is equivalent, 
which represents the limit case where the entire system 
is homogeneous. In this case, it can be observed that 
the steady state is reached before ! < 1 . In some 
applications where the mass transfer process is crucial, 
as for example in oil recovery in naturally fractured 
systems, the effects of mass transfer resistance is the 
technological challenge. 

Figure 3 depicted the transient behavior of the 
average concentration in the porous region, which 
decays exponentially with dimensionless time for ! < 1 . 
In general for ! < 1  the concentration in the porous 
region tends to zero, and this decay is slower as !  
decreases. When ! = 1 , the concentration reaches 
steady state at a value different from zero.  

The physical meaning of this behavior is due to 
mass transfer resistance. In all cases analyzed for 
! < 1 , the resistance to the mass transfer in the porous 

region is greater than in the fluid region, i.e., D! < D
*
" , 

where D*! = 1+ a"#$ Keq / %#$( )D! . When ! = 1 , the 

resistances to the mass transfer in both regions are 
equivalent, i.e., D! = D

*
"  and the system reaches the 

local mass equilibrium in a nonzero value, where the 
differences of the concentrations between regions 
maintain a mass diffusion process. 

 
Figure 4: Influence of the parameter !  (Eq. 19) on the 
interfacial concentration, with Pe = 1  and ! = 1 .  

The interfacial behavior is shown in Figure 4. As it 
can be observed, the interfacial concentration exhibits 

practically the same behavior that the concentration in 
the fluid and porous region (Figures 2 and 3, 
respectively). However, it is important to note that the 
interfacial phenomena govern the behavior in the 
adjacent regions, due that the interface region couples 
the porous region with the fluid region. Then, the 
physical phenomena that take place in the adjacent 
regions are transferred from the interface, specifically 
the mass concentration tends to zero in both regions 
for ! < 1 , due that the concentration in the interface 
also tends to zero (Figure 4), before that in the 
adjacent regions. Now, for ! = 1 , the interfacial 
concentration reaches a steady state with a value 
different to zero, causing a difference in concentration 
with respect to adjacent regions, which means that the 
mass transport is governed primarily by the diffusion 
process.  

CONCLUSIONS 

The numerical experiments show that the !  
parameter has an influence that facilitates the mass 
transfer of the porous region to the fluid region. In 
practice if we have a system with an !  value close to 
one, is a challenge because it describes the limit case 
with a physical interpretation that both regions can be 
considered as identical, i.e., the resistance to mass 
transfer in the both regions are similar. The !  
parameter expresses the relation of the mass transfer 
resistances between the porous media and the 
homogeneous fluid, and in the present work is 
considered as a parameter which facilities the mass 
transfer of the porous region to the fluid region. 

NOMENCLATURE 

a ! "  Interfacial area per unit volume of porous 
medium, m2/m3. 

D!  Mixture diffusion coefficient of the ! -phase, 
m2/s. 

D
!

 Component in y ! direction of the total 
dispersion tensor, m2/s 

C!   Solute characteristic concentration in the 
external fluid, mol/m3. 

C
A!

!

"
 Intrinsic average concentration of species A in 

the !  phase for the !  homogeneous region, 
mol/m3. 

CAj0  Initial solute concentration in fluid, mol/m3. 
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C
A!

!

"
 Intrinsic average concentration of species A in 

the ! "  phase for the porous media (! "  
region), mol/m3. 

L  Thickness of the fluid channel, m. 

Keq  Equilibrium coefficient for a linear adsorption 
(m). 

Pe   Peclet number, dimensionless. 

U j  Solute dimensionless concentration in region 

j j = f , p( ) . 

v! x

!

"
 Intrinsic average velocity of species A in the 

! -phase for the ! , m/s. 

Y  Dimensionless position. 

Subscrips 

f , p , Fluid and Porous medium, respectively. 

Greek Letters 

!  Thickness of the homogeneous porous layer, 
m 

!" #  Volume fraction of ! "  phase for the ! "  
region 

!  Dimensionless upscaled parameter 

!  Dimensionless time. 
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