
International Journal of Petroleum Technology, 2023, 151-162 

 

 

 

 

 

 

 

 

 

 

 
 

Published by Avanti Publishers 
International Journal of Petroleum 

Technology 
ISSN (online): 2409-787X 

Reservoir Characterization Using Seismic Inversion Based on Sparse 

Layer Reflectivity and Hybrid Genetic Algorithms: A Comparative 

Case Study of Blackfoot, Canada 

Nitin Verma 1, Ravi Kant 1, Raghav Singh1, Satya P. Maurya 1,*, Gopal Hema1,  

Ajay P. Singh 1 and Kumar H. Singh2 

1Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi 221005, India 
2Department of Earth Sciences, Indian Institute of Technology, Mumbai 400076, India 

 

 

ARTICLE INFO 

Article Type: Research Article 

Academic Editor: Ahmed Naseem Al-Dawood  

Keywords:  

Sand channel 

Pattern search 

Seismic inversion 

Genetic algorithm 

Sparse layer reflectivity 

Timeline: 

Received: October 10, 2023 

Accepted: November 28, 2023 

Published: December 08, 2023 

Citation: Verma N, Kant R, Singh R, Maurya SP, Hema Gl, 

Singh AP, Singh KH. Reservoir characterization using 

seismic inversion based on sparse layer reflectivity and 

hybrid genetic algorithms: A comparative case study of 

Blackfoot, Canada. Int J Petrol Technol. 2023; 10: 151-162. 

DOI: https://doi.org/10.15377/2409-787X.2023.10.11 

 

ABSTRACT 

This research paper introduces a comparative case study on reservoir 

characterization through seismic inversion techniques. The study specifically 

explores sparse layer reflectivity and a hybrid approach involving genetic 

algorithms and pattern search. The research assesses the effectiveness of these 

methodologies in delineating subsurface properties, with a particular focus on 

acoustic impedance. Through meticulous analysis, the paper aims to identify the 

strengths and limitations of each method, considering factors such as parameter 

estimation precision, computational efficiency, and adaptability to complex 

geological structures. The findings contribute valuable insights for selecting 

optimal seismic inversion techniques in reservoir characterization, advancing our 

understanding of how the integration of sparse layer reflectivity and hybrid genetic 

algorithms can enhance subsurface imaging accuracy and reliability. The results 

obtained from our inversion process significantly enhance the interpretation of 

seismic data by providing detailed insights into the subsurface. Both the sparse 

layer reflectivity (SLR) and hybrid genetic algorithm (HGA) algorithms have 

exhibited outstanding performance when applied to real datasets. The inverted 

impedance section reveals notable low acoustic impedance ranging from 8000 to 

8500 m/s g/cc. This distinct zone, identified as a reservoir (sand channel), is 

located within the time interval of 1040–1065 ms. Our observations indicate that 

HGA demonstrates superior correlation results not only in the vicinity of well 

locations but also over a broader spatial range, suggesting its potential to provide 

higher-resolution outcomes compared to SLR. 
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1. Introduction 

Reservoir characterization is a pivotal aspect of petroleum exploration and production, essential for 

understanding subsurface properties and optimizing reservoir performance [1-4]. The application of seismic 

inversion plays a pivotal role in reservoir characterization and integrated exploration and reservoir studies, aiding 

in the identification of potential hydrocarbon reservoirs and reducing exploration costs and risks. Seismic 

inversion is a mathematical process utilized to estimate subsurface acoustic impedance in inter-well regions by 

leveraging seismic reflection data [5-6]. These parameters offer crucial insights into subsurface rock and fluid 

properties that seismic reflection data alone cannot provide, making accurate estimation imperative for obtaining 

clear subsurface information [6-8]. Among the diverse array of inversion methodologies, this research delves into 

the comparative assessment of two promising approaches such as sparse layer reflectivity and hybrid genetic 

algorithms. SLR employs local optimization and these methods represent a category of sophisticated seismic 

inversion techniques that contribute valuable insights into subsurface geological structures. These techniques 

prove especially effective in accurately predicting essential reservoir parameters, including acoustic impedance. By 

utilizing the reflectivity information inherent in seismic data, SLR inversion generates detailed and high-resolution 

images of the subsurface, thereby facilitating reservoir characterization and enhancing exploration endeavors [9-

10]. In contrast, hybrid optimization, combining local and global optimization methods, emerges as a strategy to 

overcome the drawbacks of individual approaches. The proposed hybrid optimization algorithm in this study 

combines genetic algorithm and pattern search to achieve high-resolution subsurface acoustic impedance [11-13]. 

The methodology is evaluated real seismic data from the Blackfoot field in Alberta, Canada. The results 

demonstrate the efficiency of the SLR and hybrid optimization approach, especially in terms of accuracy and 

reduced computation time. This research embarks on a comprehensive case study, scrutinizing the performance 

of these techniques in reservoir characterization. The study aims to provide a nuanced understanding of the 

strengths and limitations associated with sparse layer reflectivity and hybrid genetic algorithms, considering 

factors such as precision in parameter estimation, computational efficiency, and adaptability to complex 

geological structures. Through this comparative analysis, the research contributes valuable insights that can guide 

the selection of optimal seismic inversion techniques, ultimately advancing our capabilities in subsurface imaging 

for reservoir characterization. 

1.1. Study Area 

The Blackfoot field, located in central Alberta, Canada, is renowned for its production of oil and gas extracted 

from the Glauconitic compound incised valley system. Similar to many other fields in Alberta, it significantly 

contributes to Canada's overall hydrocarbon output. The Western Canadian Sedimentary Basin, among the largest 

in North America, holds substantial reserves of hydrocarbons, including oil, natural gas, and oil sands. Fig. (1) 

illustrates the precise location of the study area. In 1996, seismic reflection data was collected through a survey 

conducted by Pan Canadian Petroleum and the Consortium for Research in Elastic-Wave Exploration Seismology. 

Geologically, the Blackfoot field is part of the Paleozoic sedimentary succession in the region, predominantly 

within the Lower Carboniferous (Mississippian-aged) Banff formation. This formation comprises carbonate rocks, 

such as limestone and dolomite. This study specifically utilizes seismic reflection data from the reef-prone 

glauconitic compound incised-valley system, employing 708 shots and 690 receivers. The recorded data has a 

frequency range of 5-90 Hz [14-16]. 

A glauconitic compound incised-valley system refers to a geological region where sedimentary deposits, rich in 

glauconite, serve as reservoir rocks for fossil fuels. In the Blackfoot Field, these incised valleys demonstrate a 

distinct geological pattern involving cyclical processes of filling and cutting. These cycles consist of the lower 

incised valley, the lithic incised valley, and the upper incised valley. Glauconite, a green mineral commonly found in 

marine environments, is recognized for its potential as a reservoir rock due to favorable porosity and permeability 

characteristics. The porosity and permeability of these reservoirs facilitate the storage and flow of hydrocarbons. 

Effective reservoir characterization and hydrocarbon extraction in the Blackfoot Field hinge on understanding 

the spatial distribution, shape, and properties of the lower, upper, and lithic incised valleys. The reservoir at 
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Blackfoot Field is filled with glauconitic sand from the Lower Cretaceous Glauconitic deposit. The Glauconitic 

Formation in the Blackfoot Field, composed of sediments with a grain size ranging from fine to medium, acts as 

potential reservoir rocks. Glauconite, imparting a greenish tint to rocks, is commonly present in these sediments. 

The formation may also contain shale and sands with lacustrine and channel origins. 

 

Figure 1: a) Map showing study area, the Blackfoot field, Alberta, Canada (highlighted by green circle) and b) depicts trend of 

seismic data with Glauconitic sand channel in the subsurface. 

2. Methodology 

2.1. Sparse Layer Reflectivity Inversion 

Sparse Layer Reflectivity (SLR) inversion serves as a geophysical method employed for deducing subsurface 

characteristics, including acoustic impedance and porosity, from seismic data. This technique operates on the 

principle of modeling the reflectivity series of subsurface layers and iteratively adjusting the model to align with 

observed seismic data [17-21]. In this context, sparse layer reflectivity algorithms play a significant role in 

modeling and interpreting the reflectivity information obtained from seismic traces. The Earth's subsurface often 

exhibits sparse and layered structures, and these algorithms capitalize on this by incorporating sparsity into the 

inversion process. Sparsity implies that certain layers or zones contribute significantly to the observed seismic 

data, while others may not [22-24]. To achieve this, algorithms for sparse layer reflectivity often employ 

regularization methods such as L1 regularization or total variation regularization. These techniques encourage the 

inversion models to have many zero or near-zero values, resulting in solutions that emphasize essential 

subsurface features and improve interpretability [25]. The benefits of these algorithms include enhanced 

resolution and accuracy, particularly in cases where distinct layered structures exist. However, challenges, such as 

selecting appropriate regularization parameters, correct initial model and addressing non-uniqueness in the 

sparse layer reflectivity inversion process, need careful consideration, making this method suitable for cases 

where a simple interpretable geological model is desired [26-29]. 

2.2. Hybrid Optimizations  

Hybrid optimization, particularly utilizing genetic algorithms (GA) and pattern search (PS), proves effective in 

mitigating drawbacks and improving results. GA is not reliant on the initial model and optimization process 

involves the evolution of a population of potential solutions over multiple generations. The algorithm starts with a 
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randomly generated population, and through selection, crossover, and mutation operations, it iteratively refines 

the solutions [30-34]. On the other hand PS is dependent on the initial model. It starts at a specific point in the 

solution space and systematically explores patterns or directions from that starting point. The effectiveness of 

pattern search can be influenced by the choice of the initial point and the patterns used for exploration [35-37]. A 

poor choice of the initial point may lead to suboptimal solutions, and the success of the algorithm is somewhat 

tied to the quality of the initial model. The present study addresses this challenge by introducing a methodology 

that integrates genetic algorithms and pattern search [38-44]. The approach involves providing a limited time for 

the genetic algorithm to obtain near-optimal results. Once proximity is achieved, local optimization methods, 

employing results from the genetic algorithm as an initial model, expedite convergence to the optimum solution. 

The rationale behind choosing GA as global optimization and PS as local optimization lies in their ease of 

implementation and lower expertise requirements. The steps in combining global and local optimization in this 

study include selecting seismic and well-log data, converting depth to time, implementing genetic operators to 

obtain an initial population, calculating reflectivity and synthetic traces, assessing RMS error between synthetic 

and input seismic data, and iteratively modifying the initial population to minimize RMS error within a limited time 

[45-46]. Subsequently, a pattern search algorithm is employed using the output of the genetic algorithm as the 

initial model. The process involves to calculating RMS error using equation (3), identifying the best solution. This 

iterative process continues until the program terminates, yielding the desired acoustic impedance. 

RMS Error (E) =
1

n
√∑(Sobs

i − Smod
i )

2
n

j=1

+
1

n
√∑(Zobs

i − Zmod
i )

2
n

j=1

   

Where n is the total number of sample points, Sobs
i  is input seismic data at the 𝑖𝑡ℎ sample, Smod

i  is the synthetic 

trace at the 𝑖𝑡ℎ sample. The other part of the equation is used here to constraints solution and this information 

comes from the prior study i.e. well–log in our case. Zobs
i  is the impedance at 𝑖𝑡ℎ sample estimated directly from 

well log data and Zmod
i  is the impedance at 𝑖𝑡ℎ sample generated by the genetic algorithm in its population. 

In summary we can say that the sensitivity to the initial model, assumptions made in the inversion process, 

and simplicity of sparse layer reflectivity models might limit their ability to capture complex geological structures 

accurately. In contrast in the hybrid approach, GA can explore a large solution space and discover global optima 

where as PS algorithms can efficiently refine solutions locally, potentially leading to improved convergence and 

solution quality. 

3. Well log Analysis 

The proposed research aims to analyze well log data and statistically assess petrophysical parameters to 

identify potential zones for hydrocarbon accumulation at different depths. The Blackfoot field in Canada features 

numerous wells and 3D post-stack seismic reflection data. While the seismic data records crosslines from one to 

119 and inlines from one to 81. Within this region, four wells—01-08 logs, 08-08 logs, 09-08 logs, and 11-08 logs—

are identified based on seismic data. Fig. (2) illustrates anvelocity, density and acoustic impedance curve for all 

four wells in the time period 900-1100 ms. Fig. (2) indicates that the majority of wells show low velocity, density, 

and acoustic impedance within the range of 1040 to 1065 ms. Opting for this approach to define an area of 

interest proves beneficial, since we have availability of seismic data from 0 to 1300 ms two-way travel time. It is 

more favorable to invert the data exclusively within the specified zone (900-1100 ms) due to constraints in time 

and cost associated with inverting the complete datasets. 

4. Results and Discussion 

In this study, the focus was on utilizing sparse layer reflectivity and genetic algorithm for determining acoustic 

impedance from post-stack seismic data in Canada's Blackfoot field. Despite having access to the complete 

seismic volume, a specific cross-section at inline 1 and crosslines 1 to 50 was chosen due to extended 

convergence periods shown in Fig. (3). The original well-log data is initially recorded in depth (measured in meters), 
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Figure 2: Petrophysical Analysis of wells 01-08, 08-08, 09-08, and 11-08, where (a) shows variation of (a) Velocity, (b) Density 

and (c) Impedance. The anomalous zone is highlighted with rectangle. 

 

Figure 3: Post stack seismic section with time interval between 600 to 800ms. 

while the analysis is conducted in the time domain. To facilitate alignment with seismic data, which is typically 

recorded in time, a depth-to-time conversion is carried out as illustrated in Fig. (4). In this figure, synthetic and 

composite traces are iteratively graphed multiple times, up to five repetitions. During this process, the synthetic 

trace undergoes adjustments, such as stretching or compressing, until a satisfactory peak-to-peak correlation is 

achieved with the composite trace. This iterative adjustment compensates for the difference in recording units 
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(depth versus time) and ensures precise alignment between the two datasets. This alignment is crucial for 

subsequent thorough analysis and interpretation. The p-impedance calculated at the well sites, as illustrated in Fig. 

(5), is subjected to interpolation to establish an initial impedance model for the acoustic impedance inversion. The 

examination of inversion at well sites serves as the initial phase in the seismic inversion procedure. The results 

obtained from the inversion analysis at well sites for both SLR and HGA demonstrate a commendable alignment 

between the all 4 well log (depicted in black) and the inverted impedance (depicted in red), as illustrated in Fig. (6). 

SLR exhibit average correlations of 0.86, 0.81, 0.85 and 0.86, where as HGA give 0.97, 0.93, 0.95 and 0.96 

correlations between the well impedance and the inverted impedance. Additionally, an examination of the output 

results from the inversion process involves a cross plot that compares the original impedance with the predicted 

impedance, as depicted in Fig. (7) where the scatter data closely aligns with the best-fit line, indicating a close 

enough to each other between the inverted and well log impedances. Fig. (8) showcases the comparison of 

amplitude spectra between the seismic section and those derived from HGA and SLR. The two sets of amplitude 

spectra consistently demonstrate agreement across the entire frequency range, with notably high correlation 

coefficients of 0.99 and 0.89, respectively. Once again, HGA exhibits superior correlation compared to SLR. The 

 

 

Figure 4: Seismic to well tie. 

 

Figure 5: Low frequency model of impedance with two horizons. 
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composite analysis further emphasizes that HGA achieves a higher correlation value, with more data closely 

clustered around the best-fit line. The research findings suggest that the inverted results from HGA closely 

resemble the original impedance as compared to SLR. 

 

Figure 6: Compare the inverted impedance values with 01-08, 08-08, 09-08 and 11-08well log using SLR and HGA optimization. 

The first row presents the outcomes obtained through SLR, while the second row displays the results of HGA. 

 

Figure 7: Cross plot between inverted and 4 well log impedance (a) generated from SLR (b) generated by HGA. 

Now, the acoustic impedance inversion is extended to cover the entire seismic sections. The methodology, 

utilizing both SLR and HGA, is applied trace by trace to the Common Depth Point (CDP) stack segment. The cross-

section, with a two-way travel duration ranging from 900 to 1100 milliseconds, is presented at inline 1 and 

crosslines 1 to 50. The high resolution achieved through CDP traces and the inversion technique accentuates a 

distinctive zone in the inverted image, possibly indicative of an interface between shale and sand, as evidenced by 

significant amplitude contrast and multiple strata in Fig. (9a). Fig. (9b,9c) specifically focus on the well site 01-08 

logs, showcasing the inverted impedance derived from well-log data and the inverted impedance obtained from 
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Figure 8: Compare the amplitude spectrum of seismic trace near the well 01-08 log to the synthetic traces which are generated 

by SLR and HGA inverted impedance. 

 

Figure 9: Inverted seismic volume with well 01-08 logs (a) seismic section, (b) Inverted impedance (SLR) and (c) Inverted 

impedance (HGA). 



Reservoir Characterization Using Seismic Inversion Verma et al. 

 

159 

seismic data using the SLR and HGA approaches. The comparison highlights the striking similarity between the 

two sets of results, with the high impedance layer (>11,000 m/s*g/cc) surrounding the low impedance reservoir 

zone (ranging from 8,000 to 8,500 m/s*g/cc) on both sides, defining the border at 1040 ms as a highly reflecting 

layer. The inverted sections provide enhanced resolution and within-layer information compared to seismic data, 

which primarily offers interface information. The investigation of the inverted acoustic impedance volume reveals 

an anomalous low-AI zone between 1040 and 1065 TWT, suggesting the presence of a sandstone reservoir 

potentially filled with glauconitic minerals. This anomaly is closely associated with a seismic high amplitude 

anomaly, reinforcing the interpretation of this area as a sand channel. Fig. (9) effectively illustrates the region with 

low acoustic impedance, with HGA demonstrating higher subsurface resolution compared to SLR. 

Further assessment involved comparing real seismic traces with inverted synthetic traces generated through 

forward modeling. Both SLR and HGA methods demonstrated remarkable similarity between Blackfoot seismic 

and reconstructed synthetic data shown in Fig. (10). Fig. (10) is divided into two panels for comparative analysis. In 

the first panel, the SLR method is employed to compare Blackfoot seismic data with replicated synthetic seismic. 

Meanwhile, the second panel utilizes the HGA method for the difference between actual seismic traces and the 

traces obtained through inversion. The correlation between original trace and synthetic trace is 0.86 and 0.98 

respectively. Quantitatively, HGA consistently outperformed SLR, showcasing higher correlation coefficients. In 

conclusion, the practical application of SLR and HGA in seismic inversion for real data in the Blackfoot field 

demonstrated the effectiveness of these techniques in accurately determining acoustic impedance and identifying 

subsurface features. The results consistently favored HGA over SLR in terms of correlation and resolution, 

highlighting the potential of these methods in enhancing subsurface characterization in oil and gas exploration. 

 

Figure 10: Cross-section compares reproduced synthetic from inverted impedance section and Blackfoot seismic section (left) 

along with their difference (right). 
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In order to validate the accuracy of the obtained results from SLR and HGA assisted by seismic attributes, a 

cross-validation process is conducted. Seismic attributes, which are quantitative measurements derived from 

seismic data, play a crucial role in providing key information about subsurface geology and are integral to the 

exploration and production of hydrocarbon reservoirs. Among these attributes, the amplitude envelope stands 

out as particularly valuable. It serves to highlight variations in seismic data and offers a meaningful indication of 

changes in seismic amplitudes, especially in regions where high amplitude zones align with low impedance zones 

within the same time interval, as depicted in Fig. (11). This enhancement facilitates the identification of specific 

geological features such as boundaries between rock layers, fault zones, and potential reservoirs. Consequently, 

the amplitude envelope proves to be an essential seismic attribute for tasks like reservoir characterization, 

geological interpretation, and the mapping of subsurface structures within the oil and gas industry. 

 

Figure 11: a) Blackfoot seismic traces, b) amplitude envelope attributes. 

5. Conclusion 

The developed flowchart for seismic inversion using HGA and SLR underwent rigorous evaluation with both 

synthetic and real data. Significantly, HGA consistently outperformed SLR across various well locations, 

showcasing its superiority not only at well log sites but also on a broader scale. The inverted impedance and 

predicted porosity models achieved unprecedented subsurface detail, capturing variations in impedance (8000 to 

12000 m/s g/cc) and also the HGA requires 48 seconds to invert a single trace of real data, while SLR takes 26 

seconds for the same task. Our analysis revealed a distinctive anomaly, characterized by low impedance (8000 to 

8500 m/s g/cc), within the time range of 1040–1065 ms two-way travel times. Crucially, this anomaly aligns with 

observed reservoir characteristics in well-log data. Based on our findings, we strongly advocate for the preference 

of HGA over SLR in exploration and production (E&P) projects, as HGA consistently provides high-resolution 

subsurface data. 
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