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ABSTRACT

Permeability is one of the key parameters in reservoir property studies. The existing
well log interpretation models could not predict the permeability accurately due to the
complexity and ambiguity of well logging curves, and the prediction results may
demonstrate significant contradictions with the production data. Based on the
comprehensive analysis of cores, well logs, laboratory tests, and thin section
observations, we take the first member of Liushagang Formation (L1) in Weizhou 11-
1N Oil Field as the target, and select median grain size, porosity, and resistivity to
establish a multiple nonlinear regression interpretation model of permeability. The
accuracy and applicability of this model is validated by the laboratory test data and ol
production performance. This permeability interpretation model is easy and practical
to operate. Furthermore, it bridges the geological characteristics and the production
performance.

©2021 Wang et al.; Avanti Publishers. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial
License which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
(http://creativecommons.org/licenses/by-nc/4.0/)




Wang et al. International Journal of Petroleum Technology, 8, 2021

1. Introduction

Permeability is one of the key parameters in reservoir physical property studies. Permeability could be
obtained from laboratory tests, but the samples are too limited to give a whole image of the reservoir.
Geophysical characteristics from well logs are employed to interpret the permeability. Resistivity has been a basic
source of permeability interpretation since 1930s '3, Porosity and water saturation are important properties
which directly link to permeability. Brace tested a relation of permeability and formation factors, and the
prediction result agreed to within about a factor of 2 over the 9 orders of magnitude range of permeability!;
Jackson et al. investigated the relationship of formation factor and porosity®; Katz and Thompson presented an
equation to calculate permeability from characteristic length (directly measured from mercury injection
experiments) and brine conductivity!® 7); de Lima adopted an analytical approach to model the electrical properties
of shaly sands and obtained water saturation and permeability from resistivity and porosity logs®. Along with the
progress in computer science, new technical means, such as NMR, neural network, and fuzzy logic, have been
explored to estimate permeability 22, More advanced algorithms have been adopted and/or developed along
with the fast development of data science and computer technics in recent years 23371, However, systematic
methods and more accurate prediction are still in pursuit as the subsurface reservoir is always a mystery.

The prediction model could be verified by laboratory test data and production data. Limited by the quality and
quantity of samples, and the accuracy of test, laboratory test data can-not represent the permeability in the
reservoir. Whereas the production performance is primarily controlled by the reservoir property, thus
permeability prediction can be and should be examined by the dynamic production data.

In this study, we established a multiple linear regression model of grain size, porosity, and resistivity to predict
the permeability of the first member of Liushagang Formation (L1) in Weizhou 11-1N oil field, Beibuwan Basin,
China. The accuracy and applicability of this prediction model is cross-checked with measured core results, and
validated by the production performance, which is rarely mentioned in previous permeability predictions.

2. Reservoir data

Weizhou 11-1N oil field is located in Beibuwan Basin in the South China Sea and is a lithologic reservoir in an
uplifted area. The first member of Eocene Liushagang Formation (L1), which is the target formation of this study, is
dominated by fan-delta front underwater distributary channel and shore-shallow lacustrine deposition. There are
five major oil-bearing layers in L1, namely Lql, Lill, LsIll, L1IV, and L1V from top to bottom.

2.1. Lithology and storage space

The L reservoir mainly consists of conglomerate, coarse sandstone, and fine-medium sandstone, and the
sandstones are primarily feldspathic quartz sandstone (Fig. 1). The rock samples demonstrate the particle-support
structure and porous cementation, and the size-sorting is of medium deviation. The cement are generally
argillaceous, carbonates and silicate (secondary enlargement). The storage space of L is dominated by residual
primary inter-granular pores and a small amount of inter-granular dissolution pores and feldspar dissolution
pores; a few intra-granular dissolution pores and matrix micro pores develop as well (Fig. 2).

Mercury injection experiment has been conducted on 23 samples to study the storage space characteristics.
The pore-throat size converted from mercury pressure indicates the pores and throats can be clearly
discriminated. The maximum connected throat diameter ranges 6.14~180 pm, with the averaged value of 55pm;
the median throat diameter ranges 0.71~29.01 pym, averaged at 8.97um (Table 1), demonstrates favourable
storage capacity.

The reservoir demonstrates strong heterogeneity, rapid sand body phase change, weak edge-bottom water
power and small natural water invasion. Flooding exploitation was implemented at the early production stage for
the oil field to keep the formation pressure, while artificial lift production is implemented currently.
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Figure 2: Images of pores in L1 reservoir samples from casting thin sections (left: intra-granular and inter-granular dissolution
pores; right: micro pores in matrix).

Table 1: Reservoir property from mercury injection (symbol definitions in the Nomenclature)

I Porosity Permeability Py Pso Rg Simax Shgr W,
Value % 103pm? MPa MPa pm % % %
Max 26.71 5834.61 0.046 1.036 29.01 96.11 82.11 35.37
Min 17.12 93.01 0.004 0.025 0.71 89.07 60.94 10.11
Mean 22.01 2217.23 0.016 0.160 14.20 92.36 74.31 19.49
Table 2: Lithology and physical property of effective reservoir in Weizhou Qilfield
. . . Effective Porosity Permeability Oil saturation
Formation Fluid Lithology %) (mD) %)
Ly oil Sand-conglomerate sandstone 212 >5.8 235
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2.2. Porosity and permeability

Porosity and permeability are tested for 523 core samples of L reservoir from 6 wells in Weizhou 11-1N Oil
Field.

Measured porosity of L in this area mainly distributes in a single peak with the range of 12%~24% (Fig. 3a).
Porosity within this range sum up to 85% of all samples; as listed in Table 2, the threshold of effective porosity is
set 12%.

Measured permeability of Ly in this area displays single-peak distribution. The values range 10~2000 mD, and
over 40% of the permeability is around 10 mD (Fig. 3b). The threshold of effective permeability is set 5.8 mD.

The measured porosity and permeability demonstrate the L; reservoir is mesoporous and medium-high
permeable reservoir, and can be categorized as good reservoir.
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Figure 3: Porosity and permeability distribution histogram of L1 core samples.

Porosity and permeability vary greatly over different lithologies. Porosity in pebbly sandstone and coarse
sandstone ranges 12%~28%, with permeability ranges 100~10000 mD; while in siltstone and fine-medium
sandstones, porosity and permeability ranges 14%~24% and 100~1000 mD, respectively (Fig. 4). Overall, the
reservoir property turns to be better with the coarsening of grain size.

2.3. Current status of permeability prediction

Porosity is a key parameter to estimate permeability in petroleum engineering practice. Porosity correlates
positively with permeability in most cases. However, there may probably be a wide range of permeability
correlating to one specific porosity value due to the complexity of pore structures. As in Fig. 6, the cross plot of
porosity and permeability of L1 reservoir samples shows a generally positive relationship, but permeability varies



Permeability Prediction and Validation Using Static Wang et al.

60

m mudstone

m siltstone

50 4 fine-mid sandstone
m coarse sandstone

40 —

30+

20

Frequency(%o)

10 4

0- | ;

2 4 6 8 10 12 14 _16 18 20 22 24 26 28 30
Porosity(%)

m mudstone
m siltstone
30— fine-mid sandstone
m coarse sandstone

Frequency(%)

000 10000

1 10

100 1
Permeability(mD)

Figure 4: Porosity and permeability of different lithologies.

over orders of magnitude at the same porosity value (Fig. 5). Therefore leaning on porosity solely cannot lead to
accurate permeability prediction. More parameters need to be considered to get a more reliable permeability
prediction for reservoir evaluation and production planning.
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Figure 5: Scatter diagram of porosity and permeability of L1 reservoir samples.
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3. Method

As permeability can have direct reflections in production performance, we use static data to build a prediction
model of permeability, then validate the prediction results by dynamic data.

3.1. Interpretation of static parameters

Grain size, porosity, and pore structure are the dominant static parameters controlling permeability. Marine
core samples are even more difficult to get hence few test data can be obtained, but they can be estimated
through the analysis of corresponding features of common well logs.

3.1.1. Grain size (median grain diameter, M,)

As shown in Fig. (4), the reservoir property demonstrates a positive relationship with grain size in this clastic
reservoir. In this study, median grain diameter (M,), which is the median value of grain size in sandstone reservoir,
is employed to estimate permeability. While core samples are discontinuous and not easy to get, well logging
corresponding patterns are used to determine the M,. In this study, the M, values of 25 core samples are
correlated to the well logs at the same depths. Based on these correlations, density (p), neutron (y), and gamma
(GR) logs are selected to establish a calculation model for Md. The model is presented as following:

M, = 0.001y3 + 4.089 X p3 — 0.095 X y? — 17.723 X p? + 0.002 X GR? + 2.497 X y + 18.775 X p — 0.346 X GR (M

in which M;: median grain diameter
y: value of neutron log
p: value of density log

GR: value of gamma-ray log

3.1.2. Porosity (®)

Neutron density logging has been carried out for all the wells in Weizhou 11-1N Oil Filed. After the quality
control and additive correction of neutron density curves, the neutron-density intersection method in Geo frame
Petroview Plus module has been done to calculate the porosities in L1 reservoir in this area.

3.1.3. Pore structure indicator (resistivity, R)

Pore-throat diameter is the key factor determining the pore structures 3 3%, Though the pore throat diameter
could not be directly interpreted by well logs, the value of water saturation can be used to indirectly evaluate the
pore-throat diameter. The Simandoux equation ¥ is commonly used for estimating the water saturation of

sandstones with shale content:
g a X Rw Vsh Rw (2)
= —_— x —_—
W= Rexom " 04 x Rsh

in which Sw: water saturation
Rw: formation water resistivity, Q'm
Rt: true resistivity of the formation, Q'm;
@: porosity, f
Vsh: shale content, f
Rsh: shale resistance, Q'm
a: lithology coefficient, constant

m: cementation index, constant
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3.2. Nonlinear regression method

When the three parameters®, M, R are determined, these parameters are correlated with measured
permeability to build a nonlinear regression model.

3.3. Validation using dynamic data

We use the predicted permeability k to calculate the formation coefficient (kH), which is the multiplication of
the effective reservoir thickness and effective permeability, the kH portion, which is the portion of the kH of
specific layer out of all layers in a well, productivity test data, production log (PLT) profiles to validate the accuracy
of permeability prediction.

4. Results

Permeability is controlled by the grain size, porosity, and pore structure. Multiple parameters are investigated
and evaluated to appropriately represent the three controlling factors mentioned above, and a prediction model
using these parameters is established.

4.1. Interpretation results of Static parameters

The grain size, porosity, and pore structure indicator are not always convenient, but they can be estimated
through the analysis of corresponding features of common well logs.

4.1.1. M,

Grain size interpreted from well logs fits well with the measured ones (Fig. 6), indicating the model is applicable
in this area.
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Figure 6: Cross-plot of interpreted and measured median grain diameters (My).

4.1.2. ¢

The porosity interpreted from neutron density log is consistent with the core porosity (Fig. 7). Most of the
points are in a range with relative error smaller than 8% (average error is 0.3%), which is acceptable in reserve
calculation.

4.1.3R

The water saturation is supposed to be a parameter for permeability prediction along with Md and porosity.
But as porosity is already a stand-alone parameter, it will be redundant to use porosity again in water saturation

7
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calculation. Therefore the resistivity (R) is taken as the third parameter instead of the water saturation to keep the
model concise and avoid redundant computation. In this study, the Pe4 log is selected to represent the resistivity.

25 -
+8/y
/
4 7
,0/ ® /3%
20 ,’ ’/
o’ 2%,
& [ 4
./"/ L
S157 o, P
)
o ././ .
|51 )
g yZa
510 A Ad
2 A
= /
74
4
///
5 2z owell2
//// oWell 4
V4 Well A3
®Well A4
0 T T T T
5 10 15 20 25

Measured @ (%)

Figure 7: Comparison of interpreted porosity and core porosity in Weizhou 11-1N Oil Field (different colors represent different

wells).

4.2. Static-data based permeability prediction model

As the three parameters®, M, R are determined, these parameters are correlated with measured permeability
(Fig. 8). Permeability demonstrates a positive correlation with porosity, while a negative correlation with resistivity.
Though there is no clear trend between permeability and grain size, grain size is still taken as a parameter
considering the significance of pore-throat structure.
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Figure 8: Scatter diagram of permeability with porosity (®), grain size (M), and resistivity (R).
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Based on the understanding of reservoir physical property and characteristics of the cross plot of the
parameters, curve estimation has been carried out between the parameters and permeability with SPSS software.
The permeability prediction model is eventually established after fitting of single parameter and non-linear
analysis of multiple parameters. It is assigned in the permeability model the interpreted permeability equals 3
when it is unreasonable (smaller than 1 mD):

K =—27.7 % My "5% + 2.1 x 107* x ®*7 + 10 x R~ 3)

_ (Ks1K=3

= { R2=0.408
K>1,K

In which k: permeability, mD
M,: median grain diameter, calculated from equation (1), pm
@: porosity, calculated from the neutron-density method

R: resistivity, P1en log in this area

5. Discussion

The permeability implied in dynamic production data (obtained from formation test and production) is more
reliable and closer to the “true” permeability of the reservoir, and could be used to calibrate the permeability
prediction together with core test data. Thus, the accuracy and applicability of the permeability prediction model
are double-checked by the laboratory test data and production performance.

5.1. Accuracy evaluation of permeability prediction

The permeability calculated from the prediction model fits well with the core test data from the well profile and
the cross plot (Figs. 9, 10). The predicted permeability is mostly greater than the measured permeability. This
phenomenon might have been caused by errors in porosity calculation. The neutron-density method gives a result
of bulk porosity, which is always greater than effective porosity.

5.2. Validation of permeability estimation by dynamic production performance

Formation coefficient (kH), which is the multiplication of the effective reservoir thickness and effective
permeability, can be used to determine the production allocation proportion of the oil-bearing layers of the wells.
The kH portion is the portion of the kH of a specific layer out of all layers in a well, which represents the weight of
this layer among all production layers. The comparison of production allocation proportion and productivity data
or production log (PLT) profiles could then validate the accuracy of permeability prediction. The results of kH
portion, productivity test, and PLT of 6 representative wells are listed in Table 3 and Fig. 11.

The kH portion and productivity are much the same within each oil-bearing layer. Considering the effective
thickness of the oil layers does not vary much between wells, the correlation can be stated as oil layers with better
productivity are with better porosity and permeability. This conclusion indicates the predicted permeability is
appropriate.

When correlated with the productivity index and water absorption index, good reservoir quality tends to yield
better productivity and water injection performance (Table 4). Well A3 and A4 are with better porosity and
permeability than Well A2, A5, and A6, accordingly the productivity index is better of the former two wells than of
the other three. This correlation demonstrates reservoirs with better porosity and permeability has more
favourable production ability than those with the poor property. This conclusion is consistent with common sense,
proving the predicted permeability is reliable.
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Table 3: Formation coefficient ( kH), productivity test and PLT data of selected wells
. . kH portion Productivity PLT
Well Oil-bearing layer kH (%) (%) (%)
Lql 32333 86.79 90.52 78.45
L, IIT 1602 4.30 3.74 11.12
A1
LIV 1985 533 4.35 10.43
LV 1335 3.58 1.39 0.00
Lql 13657 67.44 71.05 58.30
A2 Lqll 2171 10.72 15.04 17.35
LIV 4421 21.83 13.91 24.34
Lqll 4623 59.59 77.24
A4
LIV 3234 40.40 22.76
Lqll 3225 39.08 44,35 38.27
A5
LIV 5027 60.92 55.65 61.73
Lqll 2565 74.09 80.93 80.46
A6
LV 897 25.91 19.07 19.54
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Figure 11: Comparison of kH and productivity in different oil-bearing layers (There is only one set of data for L1Ill and the kH is

close to the productivity; In Well A4 there is no productivity test so the PLT data is adopted to demonstrate the consistency
of kH and production performance.)
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Table 4: Comparison of physical property and Liquid production/water absorption capability estimation of L1 Il oil layer

Well Thickness | Porosity Permeability (mD) Productivity index Water absorption index
m % Ave. Min. Manx. m3/(MPa-d-m) m3/(MPa-d-m)
A2 12.3 13.7 73.8 3.0 373.4 0.20
A3 27.9 16.9 148.4 3.0 1031.8 1.11
A4 21.7 15.4 135.6 3.0 819.2 0.95
A5 38.7 14.9 105.9 3.0 365.3 0.47
A6 41.4 14.2 81.1 3.0 265.9 0.62
A8 24.9 12.8 53.8 3.0 3435 4.42
A9 30.9 16.3 125.7 3.0 276.1 29.40
A10 23.4 12.3 46.9 3.0 204.9 10.55
AT1 16.7 13.0 122.0 73.5 157.8 24.20
A13 25.6 17.0 154.5 3.0 356.5 27.97

5. Conclusion

(1) Grain size, porosity and resistivity can be employed to predict the permeability of L1 reservoir in Weizhou
11-1N Oil Field. The prediction result is consistent with the laboratory test data and production performance. The
permeability model is accurate and applicable in this area and bridges the geological parameters and production
performance.

(2) Multiple linear regression, instead of a single parameter (porosity), is more reasonable and practical in
permeability analysis. But it is noteworthy that the multiple linear regression model for permeability prediction
should be constrained by actual geological factors and validated by the production performance.

Nomenclature

P,: Displacement pressure

Pso: Mercury saturation median pressure
Rsy: Median pore radius

Smax: Maximum injected mercury saturation
Shgr- remaining mercury saturation

W,: mercury withdraw efficiency

M,: median grain diameter, um

@: porosity, f or %

y: value of neutron log

p: value of density log

GR: value of gamma ray log

k: permeability, mD (1mD=0.987x10-3um?)

kH: the multiplication of the effective reservoir thickness and effective permeability

12
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