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1. Introduction 

Introducing and studying new classes of analytic functions using operators is a classical method for conducting 
studies regarding complex-valued functions. The operator used in the present study is obtained using fractional 
integral, a function that has given a great number of interesting results in the last years. A nice review on the 
evolution of the study related to fractional calculus can be seen in the introductory part of [1]. Many applications 
of fractional calculus have appeared recently. Fractional derivative operators associated with fuzzy sets theory are 
considered in [2, 3]. Another application of fractional calculus can be seen as new computations for the two-mode 
version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method 
[4]. Generalized fractional integral operators are considered in the research presented in [5] and a generalized 
fractional integral operator is used for obtaining Hermite–Hadamard type inequality for  -convex functions in [6]. 
An investigation of the sufficient conditions for the existence of solutions of two new types of coupled systems of 
hybrid fractional differential equations involving  -Hilfer fractional derivatives is conducted in [7]. Several 
algebraic aspects of the fuzzy Caputo fractional derivative and fuzzy Atangana–Baleanu fractional derivative 
operator in the Caputo sense are investigated in [8]. Atangana-Baleanu fractional integral of Bessel functions is 
used for obtaining differential subordinations results in [9]. Fractional differential and integral properties of 
Mittag-Leffler function are studied in [10-12]. 

Applications of fractional integral for obtaining new operators and defining new classes have recently provided 
interesting outcomes as it can be seen citing papers published in the last three years [13-19]. 

Investigations for obtaining fuzzy differential subordinations involving different operators were investigated in 
recent years [20, 21]. Motivated by such results, in a recently submitted paper [22], the following operator was 
defined: 

Definition 1.1 ([22]) Let AA :,,
m

gnD   the linear differential operator defined by 

    ,=0
,, zgfzfD gn   

            ,111=1
,, zgfzzgfzfD 'nn
gn    

            ,,111= 1
,,

1
,,,, UzzfDzzfDzfD

'm
gn

nm
gn

nm
gn  

 
 

where ., Nnm  

Denote by AA :,
m
nD  ,  

   .= ,,, zfDzfD m
fn

m
n   

If 
A j

jj
zazzf

2=
=)(

, then  

      .,111= 2

2=
, UzzajzzfD j

j

mn

j

m
n 





 

We remind the definition of fractional integral: 

Definition 1.2 ([23]) The fractional integral of order   ( 0> ) is defined for a function f  by  
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   
 

 
,

1
=

10
dt

tz

tf
zfD

z

z 


 


 
 

(1.1) 

where f  is an analytic function in a simply-connected region of the z -plane containing the origin, and the 

multiplicity of   1 tz  is removed by requiring  tz log  to be real, when   0.>tz    

Using Definition 1.1 and Definition 1.2, in [17] we define the fractional integral associated with the linear 
differential operator 

   
 

 
=

1
= 1

,

0, dt
tz

tfD
zfDD
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nzm

nz 





 


 
 

(1.2) 

   
   

   
,

1111
10

2

2=
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dt
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t
a

j
dt
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t jz

j

mn

j

z
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 
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which can be written, after a simple calculation, by the following relation  

   
     

  ,
1

1111

2

1
= 2
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1
,



















  j

j

mn

j
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nz za

j

jj
zzfDD

 

for the function A j
jj
zazzf

2=
=)( . We note that    .1,1,  

 AzfDD m
nz  

Following the ideas from [13] and [14] for this operator we introduce a new class of analytic functions and 
study several aspects regarding distortion bounds, extreme points and radii of close-to-convexity, starlikeness and 
convexity. 

The study presented in this paper is done in a well-known environment. 

Denote by 1}|<|:{= zzU C  the unit disc of the complex plane and )(UH  the space of holomorphic 
functions in U . 

Let   },,=)(:)({=,
=

UzzazzfUftp j
jtpj

p  


HA  with   AA =1,1  and 

},,=)(:)({=],[ 1
1 UzzazaazfUfta t

t
t

t  
 HH  where Ntp, , Ca . 

2. Main Results 

Firstly, we define the new class of analytic functions using the operator given by relation (1.2).: 

Definition 2.1 The function f  belongs to the class ),,,,(, nmD  if it satisfies the following relation:  

     

     
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(2.1) 

where 1,<0   0>,,,  , Nmn, , Uz .  
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Next, we get coefficient bounds and extreme points for functions in class ),,,,(, nmD . 

Theorem 2.1 Consider the function Af . Then ),,,,(, nmf D  if and only if  

       
 

 
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
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(2.2) 

The result is sharp for the function )(zF  defined by  
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(2.3) 

Proof. Consider f  satisfies (2.2). Then we obtain, for 1<z ,  
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 
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Applying the maximum modulus Theorem and (2.1), we obtain ),,,,(, nmf D . 

Conversely, we assume that  
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Condition ,)( zzRe   Uz , implies 
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(2.4) 

Considering values of z  on the real axis so that       'm
nz

m
nz zfDD
z

zfDD
)(1 ,

,





 


  is real and put 

1z  through real values, we get the inequality (2.2).  

Corollary 2.2 If Af  be in ),,,,(, nmD , then  
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
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(2.5) 

with equality only for functions of the form )(zF .  

Theorem 2.3 Let zzf =)(1  and  
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(2.6) 

for 1,<0   0>,,,  , Nmn, . Then f  belongs to the class ),,,,(, nmD  if and only if it can be 

written as  

),(=)(
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zfzf jj
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(2.7) 

where 0j  and 1.=
1= jj
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Proof. Consider )(zf  written as in (2.7). Then  
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Thus 
),,,,(, nmf D

. 

Conversely, let ),,,,(, nmf D . Then by using (2.5), setting  
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. The proof of Theorem 2.3 is complete.  

Distortion bounds for class ),,,,(, nmD  are given in the next proved result. 

Theorem 2.4 If ),,,,(, nmf D , then  
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holds when the sequence 
2=)},,,,,({ jj nm  is non-decreasing, and  



Characteristics of a Subclass of Analytic Functions Alina Alb Lupas 
 

81 

 
   

     )(
112

3
21

2

1 zfr '
mn




























 

(2.9) 

 
   

     rmn

























112

3
21

2

1

 

holds when the sequence 
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The bounds in (2.8) and (2.9) are sharp, for )(zf  given by 
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Hence (2.8) follows from (2.12). 
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Further,  
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In the next results, the radii of close-to-convexity, starlikeness and convexity for the class ),,,,(, nmD  

are investigated. 

Theorem 2.5 The function Af  belonging to the class ),,,,(, nmD  is close -to-convex of order ,k  
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(2.13) 

The result is sharp, the extremal function )(zf  is given by (2.3).  

Proof. We have to show, for Af , that 
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(2.14) holds true if  
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Or, equivalently,  
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which completes the proof.  

Theorem 2.6 Let ),,,,(, nmf D . Then 
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2. f  is convex of order k  in the disc ,< 2rz  1<0 k , and  
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The results are sharp for the extremal function )(zf  given by (2.3).  

Proof. 1. We have to show that  
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Since ),,,,(, nmf D  if and only if  
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Or, equivalently,  
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the starlikeness of the family is obtained. 

2. Since f  is convex if and only if 'zf  is starlike, we can prove (2) analogue with (1). The function f  is convex 
if and only if  
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(2.16) holds true if  
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or, equivalently,  
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which yields the convexity of the family.  

3. Conclusion 

A new class of analytic functions is defined in this paper using a previously introduced fractional integral 
operator. The class is studied regarding various characteristics such as distortion bounds and starlikeness and 
convexity. The results contained here could inspire further studies on the functions of this class regarding 
subordination and superordination results involving the fractional integral operator used in the present paper. 
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