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ABSTRACT 

Both adaptive dynamic programming and other intelligent algorithms can solve the 

economic dispatch problem in the microgrid. Adaptive dynamic programming can 

reduce the computational burden, which the intelligent algorithms suffer from, by 

using function approximation structure to approximate performance index function. 

In recent years, it has been also widely used in economic dispatch in the microgrid. In 

this article, we introduce some recent research trends within the field of adaptive 

dynamic programming based economic dispatch. Adaptive dynamic programming is 

firstly reviewed. Then, the current research works about adaptive dynamic 

programming based economic dispatch are summarized and compared. Furthermore, 

we point out some topics for future studies. 
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1. Introduction 

The microgrid has received more and more attention as an indispensable part of the construction of smart 

grids. Modular distributed energy sources are integrated into the microgrid, such as fuel cells, wind, solar, 

storage devices, and loads, which improve grid reliability and supply sustainable and quality electric power. 

However, it is the suitable economic dispatch that ensures normal operations and optimality. Hence, the 

economic dispatch of the microgrid is vital [1]. However, challenges are brought with the topology of the microgrid 

becoming more and more complex. Computational intelligence technique is necessary for energy management in 

the future [2].  

The economic dispatch of the microgrid can be formulated as an optimization problem with some constraints. 

The optimization can be classified into static and dynamic optimization. Generally, the traditional method, such as 

linear programming, and intelligent method, such as particle swarm optimization, belong to static optimization. 

The constraints of static optimization are presented by algebraic equalities and inequalities. Authors in [3] 

propose a price-based power scheduling scheme for a community-scale microgrid to maximize the expected 

benefit while minimizing the operating cost. It should be noted that accurate mathematical models are required in 

these methods, but the uncertainties brought by the renewable energies and load demands lead to the loss of 

accuracy. Furthermore, the performance of these methods depends on the predictive error of uncertainty. To 

solve this problem, the authors in [4], energy storage units, and responsive loads are studied through analyzing 

their uncertainty natures, and a Monte Carlo simulation-based stochastic optimization method was proposed to 

account for the uncertainties. But computational pressure is rather large. The static optimization algorithm takes 

effect on the energy dispatch. However, they all suffer from high computational costs with the increase of 

scheduling horizons. On the other hand, these algorithms are not able to adapt to the change in user behavior 

patterns due to their static nature. Moreover, an accurate prediction for the residential load profile with high 

volatility is difficult, which will affect the optimality of these algorithms.  

Reference [5] proposes a new class of fractional-order six-neuron bi-directional associative memory neural 

network containing multiple delays and proves the existence, uniqueness and boundedness of the neural network 

solution. Reference [6] proposed a two-bit-triggered control and built an improved fuzzy logic system to prove the 

boundedness of all system signals. Reference [7] established a fractional Oregonator model including time delay 

to describe the relationship between different chemical components. Reference [8] proposed a new fractional-

order delayed financial crisis contagion model. 

Feedback control theory is the means for developing human-engineered systems to guarantee performance 

and reliability [9, 10]. The optimal feedback control scheme discusses a dynamic optimization problem. The 

constraints are presented by differential equations or difference equations. Dynamic programming is useful to 

solve the optimal control sequence in the finite horizon problem. Authors in [11] present a probabilistic 

constrained approach to model the microgrid system and use dynamic programming to find the optimal day-

ahead scheduling. However, dynamic programming is not very practical in real engineering problems. It is not 

robust, and the curse of dimension greatly increases the computational burden. 

Adaptive dynamic programming (ADP), firstly proposed by Werbos, is a useful tool to design optimal controllers 

offline or online. The ADP algorithm aims to solve an optimal control law instead of a control sequence. Once the 

optimal control law is calculated, the control value at each time step can be directly computed. For this reason, the 

ADP algorithm does not suffer from the curse of dimension. Werbos proposed the basic framework of the ADP in 

[12]. Before 2008, the researchers in ADP community developed the algorithms based on the four basic structures 

proposed by Werbos, which are Heuristic Dynamic Programming (HDP), Action Dependent Heuristic Dynamic 

Programming (ADHDP), Dual Heuristic Dynamic Programming (DHP), Action Dependent Dual Heuristic Dynamic 

Programming (ADDHP) [13]. In this period, the ADP was used to deal with a challenging problem, such as the 

controlling problem of the inverted pendulum [14]. Until 2008, the authors in [15] proposed a zero-initialization 

value iteration algorithm firstly with convergence proof. From then on, the iterative forms of ADP receive great 

attention from people. In [16], the authors developed the value iteration algorithm for the general nonlinear 
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system, implemented by DHP. The authors in [17] proposed the semi-definitive-initialization based value iteration. 

The utility function is not required to be quadratic form. Furthermore, the authors in [18] developed a local value 

algorithm, which updates the subset of the state space instead of the whole state space. Policy iteration is another 

form of iterative ADP algorithm, which required an initial admissible control. The authors in [19] firstly developed a 

policy iteration for the discrete-time nonlinear system with convergence proof. The initial admissible control can 

be also obtained by the HDP structure. Reference [20] developed an adaptive self-triggering tracking control 

method.Reference [21] proposed an event-triggered prescribed build-time consistent adaptive compensation 

control method for a class of uncertain nonlinear systems with actuator faults. The ADP algorithms mentioned 

above have been applied to many problems, such as zero-sum games [22], multi-agent systems [23, 24], 

temperature control of water gas shift reaction [25], etc. 

Characterized by strong abilities of self-learning and adaptivity, ADP is also considered to be the potential to 

solve the economic dispatch problem. For the first time, authors in [26] proposed an ADP based algorithm to 

make optimal dispatch decisions for residential EMS. In [27] 7 and [28], the authors consider the combination of 

renewable energy, extending the mathematical model. These algorithms establish the basic framework of the 

ADP-based EMS, implementing their algorithm with two feedforward neural networks to learn the optimal energy 

schedule. However, only with enough times of trials can the optimal dispatching solution be solved. ADP is applied 

to more complex scenes by other researchers. Considering the different user behaviors among four seasons, the 

authors in [29, 30] design multiple controllers for the EMS in various seasons. To overcome the uncertainty in the 

microgrid, the authors in [31 and 32] models the dynamics of the microgrid as a Markov process, proposing an 

optimal controller design method in the sense of expectation. The effectiveness of ADP-based EMS is verified in 

multiple nodes testbed. Furthermore, ADP-based EMS is also applied to appliance level control [33]. The above 

ADP-based method is consistent, implemented by the actor-critic structure. However, they search for the optimal 

parameters of the controller by trials and errors, which is sensitive to the initial state. Moreover, the convergence 

property of the ADP algorithm is still not discussed in a theoretical sense, which restricts its application. To 

improve and perfect the theoretical base of the ADP-based EMS, the authors in [42] firstly proposed a theoretical 

framework, named dual Q-Learning algorithm, analyzing the properties of the algorithm. Then, the ADP-based 

algorithm for EMS, which takes renewable energy into account, is proposed in turn [34, 35]. The convergence 

property ensures the effectiveness and reliability of the ADP algorithm. However, most of the convergence proof 

requires restricted assumption for the outer parameter, i.e. the periodicity of the load curve and electricity rate. 

Their performance of them may not satisfactory under the highly fluctuating load profile. It should be pointed out 

that the implementation of the theoretical framework is not limited to the feedforward neural network. In [36], the 

authors use the echo state network as the parametric structure instead of the feedforward neural network. The 

authors in [37] approximate the iterative value function by fuzzy structure.  

 As an algorithm with self-learning and self-adaptive capabilities, ADP has great potential in energy dispatching 

management of smart grids and can solve various energy dispatching management problems in smart grids. 

However, there is currently no article that systematically and comprehensively addresses this direction, which 

motivates our work. Therefore, we make a systematic review of ADP-based smart grid energy management in the 

past literature. 

Even though ADP has been used to the economic dispatch for some research, the systematic comparison of 

these algorithms in the perspectives of the methodology is rare. This paper aims to summarize the state-of-the-art 

ADP algorithms and their application to the economic dispatch problem. The paper is organized as follows. In 

Sect. 2, we briefly describe the optimal control problem, and the dynamic programming algorithm is reviewed. In 

Sect. 3, the iterative ADP algorithms and their implementation are reviewed. In Sect. 4, the ADP based economic 

dispatch algorithms are summarized and compared. Section 5 gives some comments for future study. In Sect. 6, 

we have the conclusion. 

2. Nonlinear Optimal Control Theory 

In this section, the discrete-time optimal control problem is formulated, and a well-known dynamic 

programming algorithm is briefly reviewed, which is the fundamentals of the iterative ADP algorithm. Also, the so-
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called curse-of-dimension problem is demonstrated so that the motivation of ADP can be clearly understood. For 

more details about optimal control theory, a reader can refer to [38].  

2.1. State Feedback Control Scheme 

A general feedback control system can be shown in Fig. (1). 

 

Figure 1: General feedback control scheme. 

The feedback control scheme is depicted in Fig. (1). Adaptive dynamic programming aims to design an optimal 

feedback control law, which minimizes the user-defined performance index function. In the basic ADP theory, the 

reference input 𝑦𝑟 is set to be zero, and the problem is an optimal regulator problem. State feedback is mostly 

considered in optimal control because state variables can well present the inside of the system. Seldom literature 

discuss output feedback control for general nonlinear system with ADP algorithm [39.  

2.2. Problem Formulation 

The mathematical model of the controlled plant is the state space equations defined as the form as eq. (1) 

�̇�𝑡 = 𝐹(𝑥𝑡 , 𝑢𝑡), 𝑡 ∈ [0, ∞) (1) 

where 𝑥𝑡 is the state vector, defined within a compact set 𝛺, i.e. 𝑥𝑡 ∈ 𝛺 ⊂ 𝑅𝑛 ,𝑢𝑡 is the control vector, and 

𝐹(. )denotes the continuous-time system function. Most literature discusses deterministic nonlinear time-invariant 

dynamical systems because they cover most of the application areas. For the purpose of digital implementation, 

numerical computation, such as Runge-Kutta method, is used for the discretization of a system (1). A deterministic 

discrete-time time-invariant nonlinear system is defined as 

𝑥𝑘+1 = 𝐹(𝑥𝑘 , 𝑢𝑘), 𝑘 = 0,1,2, . ..  (2) 

where 𝑥𝑘 is the state vector at a time 𝑘, 𝑢𝑘 ∈ 𝑅𝑚 is the control vector. 𝐹(. )is the discrete-time system function. The 

optimality of the controller is defined by the user-defined performance index function as eq. (3)  

𝐽(𝑥0, 𝑢0) = ∑ 𝑈(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

+ 𝜑(𝑥𝑁)  (3) 

where 𝑈(. )is the utility function, which is a positive function, and 𝜑(𝑥𝑁) is the terminal performance index. 𝑢0 =

{𝑢0, 𝑢1, ⋯ , 𝑢𝑁−1} is a finite control sequence.  

Equations (1) and (2) formulate the finite-horizon optimal control problem, i.e. 𝑁 < +∞. The problem turns into 

an infinite-horizon problem when𝑁 → ∞. We reformulate the problem as the infinite-horizon form. Given the 

system model (2) and performance index function  

𝐽(𝑥0, 𝑢0) = ∑ 𝑈(𝑥𝑘 , 𝑢𝑘)

∞

𝑘=0

  (4) 

Note that the discussion about the infinite-horizon optimal control problem should be under the following 

assumptions,  
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Assumption 1: The system function 𝑥𝑘+1 = 𝐹(𝑥𝑘 , 𝑢𝑘) is Lipschitz continuous for 𝑥𝑘 and 𝑢𝑘. 

Assumption 2: The system is absolutely controllable. 

Assumption 3: 𝑥𝑘 = 0is an equilibrium state of (4) under control 𝑢𝑘 = 0, i.e. 𝐹(0,0) = 0. Furthermore, we assume 
𝑈(0) = 0.  

Remark 1: The infinite-horizon problem is essentially different from the finite-horizon one. Firstly, we not only 

minimize 𝐽but also require 𝐽 < +∞ the infinite horizon problem to ensure stability. The stability of the finite-

horizon problem is not discussed, because 𝑁 is finite, which forces the system stable. Secondly, the state feedback 

control sequence in infinite one is a time-invariant mapping, i.e 𝑢𝑘 = 𝜇(𝑥𝑘), which is convenient for engineering 

implementation while the finite one is time-varying, i.e 𝑢𝑘 = 𝜇(𝑥𝑘 , 𝑁), because there is a super parametric 𝑁. We 

will mainly discuss the infinite horizon problem. Assumptions 1-3 are not necessary for the finite-horizon problem, 

because the system state 𝑥𝑘 in a finite-horizon problem will not reach to ∞, that is, the system is stable whatever 

control policy is taken.  

Remark 2: Actually, the utility function is to describe a reward for taking action 𝑢𝑘 = 𝑢(𝑥𝑘). Intuitively, it can be 

designed for any form according to the special scenario of the application. For example, the utility function is set 

to a binary value for the control problem of the inverted pendulum. In other cases, quadratic forms utility function 

is adopted because it is brief and usually has clear physical meaning. A typical case is the LQR problem. In some 

real applications, the utility function is diverse. State variables and control variables may be coupled in the utility 

function [30].  

2.3. Dynamic Programming 

In this subsection, we will briefly review dynamic programming. Theoretically, dynamic programming can 

design an optimal controller for a complex nonlinear system. However, it is not so powerful in engineering 

applications since the so-called curse of dimension, which widely exists in the data science community. From a 

mathematical point of view, we can see the finite-horizon optimal control problem as a common optimization 

problem. Consider the state space equation (2) as a constraint, we have an optimization function  

𝐽(𝑢0) = 𝑈(𝑥0, 𝑢0) + 𝑈(𝐹(𝑥0, 𝑢0), 𝑢1) + ⋯ 

             + 𝑈(𝐹（𝐹（… 𝐹(𝑥0, 𝑢0) …）, 𝑢𝑁−2）, 𝑢𝑁−1) 

             + 𝑈(𝐹（𝐹（… 𝐹(𝑥0, 𝑢0) …）, 𝑢𝑁−1)) 

(5) 

this is the extremum problem of multivariate function. The necessary condition of optimality is that the partial 

derivatives are equal to zero, i.e.  

𝜕𝐽

𝜕𝑢0

= 0

𝜕𝐽

𝜕𝑢1

= 0

⋮
𝜕𝐽

𝜕𝑢𝑁−1

= 0

 

 (6) 

The solution space of Eq. (6) is a combination space. It is nearly impossible to solve nonlinear equations. 

However, we can find that we can solve the equations from bottom to top, which reduces the computational 

pressure. The reason why it works is that the solution of the 𝑖th equation is also of the 𝑖 − 1th equation (𝑖 =

2,3, ⋯ , 𝑁). That is the famous "principle of optimality". Actually, the computational pressure in each time step is 

the same. This principle can be expressed as the famous Bellman equation  

𝐽∗(𝑥𝑘) = min
𝑢

 {𝑈(𝑥𝑘 , 𝑢) + 𝐽∗(𝑥𝑘+1)} (7) 
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Figure 2: Forward-in-time method. 

 

Figure 3: Forward-in-time method.  

Figure (2 and 3) respectively show the process of searching the optimal trajectory forward in time and DP 

algorithm, from which we can see the forward-in-time method the number of possible trajectories grows at an 

exponential rate. DP algorithm, which is a back-ward in time method, well contracts the search space, and reduce 

the computational pressure  

Although dynamic programming is theoretically a useful tool towards optimal control problems in theoretical 

meaning, it may not suitable for real control system control. Firstly, dynamic programming is a backwards-in-time 

method, which means that it cannot run the system until the control sequence 𝑢0, which does not consider the 

disturbance from the environment. Secondly, the computational pressure becomes very large when the 

dimension of the state vector or the number of time step increase. Finally, even the dynamic of the system 

(environment) is deterministic, some actual systems are so complex that they cannot exactly be written by 

formulations.  

3. Iterative ADP Algorithm 

The machine will still suffer from the curse of dimension although DP algorithm has well contracted the search 

space. From the Bellman Equation (7), if we know the optimal performance index function at a time 𝑘 + 1, 

i.e.𝐽∗(𝑥𝑘+1), the optimal control policy 𝑢𝑘 can be directly calculated. However, it is hardly possible to get 𝐽∗(𝑥𝑘+1) 

directly, because this is not causal. ADP indirectly seek the optimal performance index function 𝐽∗(𝑥) by an 

iterative value function 𝑉𝑖(𝑥). Also, the optimal state feedback control 𝜇∗(𝑥) is approximated by an iterative control 

policy 𝜇𝑖(𝑥). For this reason, the most popular algorithm in the ADP community is called Iterative Adaptive 

Dynamic Programming (IADP).  
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Value iteration and policy iteration are the two main schemes to solve the infinite horizon optimal control 

problem. It is believed that the value iteration requires less computation at the cost of missing the guarantee of 

system stability during the iteration process, i.e. the iterative control policy 𝜇𝑖(𝑥𝑘) may not be stable for some 𝑖. 

Compared with value iteration, the initial control law 𝜇0(𝑥𝑘) for policy iteration should be an admissible control 

law.  

3.1. Value Iteration 

Initialize. Choose any semi-positive function 𝑉0(. ). 

Policy Improvement Step. The iterative control law is improved by  

𝜇𝑖(𝑥𝑘) = 𝑎𝑟𝑔 min
𝑢

 {𝑈(𝑥𝑘 , 𝑢) + 𝑉𝑖(𝑥𝑘+1)} (8) 

Value function Update Step. The value function is updated by 

𝑉𝑖+1(𝑥𝑘) = 𝑈(𝑥𝑘 , 𝜇𝑖(𝑥𝑘)) + 𝑉𝑖(𝑥𝑘+1)  (9) 

In addition, many recent papers have provided initial value function 𝑉0(. )and the corresponding convergence 

analysis associated with the algorithms developed. In [15], the authors first propose the zero initialization value 

function, i.e. 𝑉0(. ). Meanwhile, convergence proof is given. It is noted that the utility function is 𝑈(𝑥𝑘 , 𝑥𝑘) = 𝑄(𝑥𝑘) +

𝑢𝑘
𝑇𝑅𝑢𝑘, and the system function is limited to the affine nonlinear system. In [16], the authors develop a value 

iterative algorithm for a non-affine nonlinear system with the quadratic form utility function 𝑈(𝑥𝑘 , 𝑢𝑘) = 𝑥𝑘
𝑇𝑄𝑥𝑘 +

𝑢𝑘
𝑇𝑅𝑢𝑘. Furthermore, the authors in [17] propose a very general value iteration algorithm. The plant is a general 

nonlinear system, and the utility function is only required to be positive definite.  

Figure (4) is the sketch map showing the iterative process. The value function 𝑉𝑖(𝑥𝑘) in limiting iteration is 

asymptotically approximated the optimal performance index function 𝐽∗(𝑥𝑘). Meanwhile, the iterative control law 

is asymptotically approximate the optimal control law 𝜇∗(𝑥𝑘). Specifically, ‖𝑉𝑖+1(𝑥𝑘) − 𝐽∗(𝑥𝑘)‖∞ ≤ ‖𝑉𝑖(𝑥𝑘) − 𝐽∗(𝑥𝑘)‖∞.  

 
Figure 4: The sketch map of iterative value function. 

3.2. Policy Iteration 

Definition 1: (Admissible Control) A control policy 𝜇(𝑥𝑘) is a admissible control with respect to 4 on 𝛺 if the state 

feedback control 𝜇(𝑥𝑘) not only stabilizes system 4 but also make 𝐽(𝑥𝑘) finite for all 𝑥𝑘 ∈ 𝛺.  
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Initialize. Choose any admissible control law 𝜇0(. ). 

Policy Evaluation Step. The iterative control law 𝜇𝑖(𝑥𝑘)(𝑖 = 0,1, ⋯ ) is evaluated by 

𝑉𝑖(𝑥𝑘) = 𝑈(𝑥𝑘 , 𝜇𝑖(𝑥𝑘)) + 𝑉𝑖(𝑥𝑘+1)  (10) 

Policy Improvement Step. The value function is updated by  

𝜇𝑖+1(𝑥𝑘) = 𝑎𝑟𝑔 min
𝑢

 {𝑈(𝑥𝑘 , 𝑢) + 𝑉𝑖(𝑥𝑘+1)} (11) 

The authors in [19] propose an algorithm to obtain the initial admissible control law 𝜇0(. ). It should be noted 

that it is essentially a trial-and-error method. For the LQR problem, the initial admissible control law is very easy to 

obtain by choosing a proportional gain matrix 𝐾, s.t. The eigenvalues of 𝐴 − 𝐵𝐾 are all less than zero. However, for 

the complex nonlinear system, it is very hard to obtain the admissible 𝜇0(𝑥𝑘).  

The policy evaluation (14) is a fixed point equation. To solve the policy evaluation 𝑉𝑖(. ), we firstly assume that 

𝑉𝑖(𝑥𝑘) = 𝛷0(𝑥𝑘) for 𝑖th iteration, then update the 𝛷𝑗(𝑥𝑘) by 

𝛷𝑗+1(𝑥𝑘) = 𝑈(𝑥𝑘 , 𝜇𝑖(𝑥𝑘)) + 𝛷𝑗(𝑥𝑘+1)  (12) 

Since the map 𝛤: 𝛷𝑗(𝑥𝑘) → 𝛷𝑗+1(𝑥𝑘) is a contract map. Let 𝐽 → ∞, we have 

𝛷∞(𝑥𝑘) = 𝑈(𝑥𝑘 , 𝜇𝑖(𝑥𝑘)) + 𝛷∞(𝑥𝑘+1)  (13) 

then, the policy evaluation 𝑉𝑖(𝑥𝑘) = 𝛷∞(𝑥𝑘). 

Remark 3: Compared with the value iteration algorithm, policy iteration requires the iterative control policy 

𝜇0(𝑥𝑘), containing prior knowledge, as an admissible control, but does not require the positive semi-definite value 

function. Value iteration requires less information than policy iteration because the initial value function is 

arbitrary. Since policy iteration carries more information at the start of the iteration, policy iteration converges 

faster than value iteration in most cases. 

3.3. Generalized Policy Iteration 

In subsection III-A and III-B, the difference between value iteration and policy iteration is illustrated. It is 

worthwhile mentioning that they are consistent to some extent.  

Policy Evaluation Step in generalized policy iteration. The iterative control law 𝜇𝑖(𝑥𝑘)(𝑖 = 0,1, ⋯ ) is 

evaluated by 

𝑉𝑖(𝑥𝑘) = 𝑈(𝑥𝑘 , 𝜇𝑖(𝑥𝑘)) + 𝑉𝑖(𝑥𝑘+1)  (14) 

where for 𝐽 = 1,2, ⋯ , 𝑁𝑗 − 1, 

𝛷𝑗+1(𝑥𝑘) = 𝑈(𝑥𝑘 , 𝜇𝑖(𝑥𝑘)) + 𝛷𝑗(𝑥𝑘+1)  (15) 

and 𝑉𝑖(𝑥𝑘) = 𝛷𝑁𝑗
(𝑥𝑘). 

It should be noted that generalized policy iteration is meaningful for the real application. The number of 

iterations can not reach infinity.  

3.4. Implementation for Iterative ADP Algorithm 

In the previous part of this paper, we review the value iteration and policy iteration algorithms. It was assumed 

in the convergence proof that the iterative control law and value function update equations can be exactly solved 
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at each iteration. Actually, these equations are difficult to solve for complex nonlinear systems. Given that, for 

implementation purposes, function approximation structures are used to approximate the iterative solutions. 

According to the problem formulated in section II, we know that parametric structures are required. Firstly, the 

system function is sometimes unknown or so complex that we can not write it. So a model network is required to 

identify the system model based on an online or offline data set. Secondly, we cannot calculate the performance 

index function 𝐽∗(𝑥𝑘) at time k because it is an infinite series. Therefore, a critic network is also required to 

approximate the 𝐽∗(𝑥𝑘). Finally, the optimal control 𝜇(𝑥𝑘) is also needed to be approximated by a neural network 

to ensure its optimality. 

3.4.1. Function Approximation Structures 

Neural networks, fuzzy structure, quadratic form, etc. are widely used in the implementation of the ADP 

algorithm. The most used parametric structure is a feedforward network with the activation function 𝜙𝑐,𝑖 and 𝜙𝑎,𝑖  

is defined as the tanh function. All the parameters in the three neural networks are undetermined. The model 

network should be well trained firstly because it is the plant in the control system. Then the performance index 

function should be approximated by the critic network. Finally, the action network can be adjusted according to 

the approximated performance index function. The model network is like the four limbs of the athlete. While the 

critic network is the referee, and the action network is the brain of the athlete.  

 

Figure 5: The HDP structure diagram. 

Now we define the model network as 

�̂�𝑘+1 = 𝑊𝑚2𝜙𝑚
(𝑊𝑚1𝑧𝑘

+ 𝑏𝑚)  (16) 

where 𝑧𝑘 = [𝑥𝑘 , 𝑢𝑘]𝑇. 

The parametric structures for iterative value function, i.e. critic network, can be consistently defined as  

�̂�𝑖(𝑥𝑘) = 𝑊𝑐,𝑖𝜙𝑐
(𝑥𝑘)  (17) 

Similarly, the action network can be consistently defined as 

�̂�𝑖(𝑥𝑘) = 𝑊𝑎,𝑖𝜙𝑎
(𝑥𝑘)  (18) 

where 𝑊𝑐,𝑖,𝑊𝑎,𝑖 are undetermined coefficients. It should be noted that the approximation error is unavailable, i.e. 

𝑉𝑖(𝑥𝑘) = �̂�𝑖(𝑥𝑘) + 𝜀𝑐,𝑖(𝑥𝑘)  (19) 

and 

𝜇𝑖(𝑥𝑘) = �̂�𝑖(𝑥𝑘) + 𝜀𝑎,𝑖(𝑥𝑘)  (20) 
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where 𝜀𝑐,𝑖(𝑥𝑘) and  𝜀𝑎,𝑖(𝑥𝑘) denote the approximation errors. 

In some literature [40], a quadratic form structure is also used as the parametric structure. The activation 

function is a vector with 
𝑛(𝑛+1)

2
 dimensions  

𝜙(𝑥) = [𝑥1
2, 𝑥1𝑥2, … , 𝑥1𝑥𝑛 , 𝑥2

2, 𝑥2𝑥3, … , 𝑥2𝑥𝑛 , … , 𝑥𝑛−1𝑥𝑛 , 𝑥𝑛
2]𝑇  (21) 

the weight vector 𝑊 ∈ 𝑅
𝑛(𝑛+1)

2  

The connection between the three networks is shown in Fig. (5), which is the HDP (Heuristic Dynamic 

Programming) structure.  

We take VI algorithm as an example to illustrate the training strategy. Before the iteration of the critic network 

and action network, we train the model network offline with pre-collected data set.  

Remark 4: In a model-based optimal control problem, we will train the model network before training another 

network, and then keep its weights unchanged. Therefore, we need off-line data. In a model-free optimal control 

problem, the model network is not required, i.e. ADHDP(Action Dependent Heuristic Dynamic Programming) 

discussed later.  

 

Figure 6: Action network training process. 

 

Figure 7: Critic network training process. 

Then, we start the iteration. The optimal performance index function is unavailable, resulting in the failure in 

training critic network by traditional supervise learning. Firstly, initialize the critic network satisfy that �̂�0(𝑥) ≥

0, ∀𝑥 ∈ 𝛺 ⊂ 𝑅𝑛, which is a semi-positive definite function we guess. The approximated iterative control policy �̂�0(𝑥) 

is obtained by tuning the weights of the action network, shown in Fig. (6). 

𝑊𝑎,𝑖
𝑗+1

= 𝑊𝑎,𝑖
𝑗

− 𝛥𝑊𝑎,𝑖
𝑗

  (22) 

the �̂�0(𝑥) approximates 𝑢0(𝑥) with bounded error 
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𝜀𝑎,0(𝑥) = 𝑢0(𝑥) − �̂�0(𝑥)  (23) 

Afterwards, the critic network would be trained, shown in Fig. (7). 

the updating rules of action network weights is 

𝑊𝑐,𝑖
𝑗+1

= 𝑊𝑐,𝑖
𝑗

− 𝛥𝑊𝑐,𝑖
𝑗

  (24) 

the �̂�1(𝑥) approximates 𝑉1(𝑥) with bounded error 

𝜀𝑐,1(𝑥) = 𝑉1(𝑥) − �̂�1(𝑥)  (25) 

For 𝑖 = 1,2, ⋯, the target of action network and critic network are 

�̅�𝑖(𝑥) = arg min
𝑢

𝑈(𝑥𝑘 , 𝑢) + 𝑉𝑖(�̂�𝑘+1)  

�̅�𝑖+1(𝑥𝑘) =  𝑈(𝑥𝑘 , �̂�𝑖(𝑥𝑘)) + �̂�𝑖(�̂�𝑘+1) 

(26) 

Then, the iterative control policy and iterative value function can be updated and satisfy that 

�̂�𝑖(𝑥) = �̄�𝑖(𝑥) + 𝜀𝑐,𝑖(𝑥), 𝑖 = 1,2 … 

�̂�𝑖(𝑥) = �̂�𝑖(𝑥) + 𝜀𝑐,𝑖(𝑥), 𝑖 = 2,3 … 

(27) 

Remark 5: Different from the theoretical analysis in subsection 3.1, there exists unavoidable error in the real 

application of the iterative ADP algorithm. In most cases, the numerical error is so small that it will not make the 

result bad. To make sure that the ADP algorithm will converge with the finite error at each iteration, the authors in 

[38] proposed a finite-error-bound ADP algorithm, helping to control the error in using the iterative ADP method. 

Remark 6: The NN implementation for iterative ADP algorithm in this subsection is essentially an offline 

method, more details of which will be discussed later. The difference between the offline algorithm and the online 

algorithm is whether we iterate at time 𝑘 or time 𝑘 + 1. In the offline algorithm, we can estimate the state 

trajectory at a time 𝑘 + 1, i.e. �̂�𝑘+1 through the model network. An online algorithm is a model-free scheme since 

we can collect the system trajectory online. The model network is not adopted in the online algorithm so we can 

get the state until time 𝑘 + 1.  

3.4.2. Offline and Online Implementation 

ADP algorithm can be implemented offline or online. In the offline algorithm, a state variable set 

𝜒 = {𝑥𝑘
(1)

, 𝑥𝑘
(2)

, … , 𝑥𝑘
(𝑃)

}  (28) 

is chosen. The sample 𝑥𝑘
(1)

 is uniformly distributed in the compact set 𝛺. According to 26, the target of the action 

network and critic network can be calculated, then the problem is supervised learning at each iteration. Batch 

mode or non-batch mode for weights tuning can be chosen depending on a special case. Theoretically, offline 

implementation ensures synchronous convergence between the critic network and the action network.  

Rather than offline implementation, online ADP also receives attention. On one hand, the offline method is 

mainly based on system identification theory or big data, which requires lots of data. However, the computational 

pressure of such data sometimes is also unbearable, while online implementation reduces the computational 

cost. On the other hand, online tuning the weights of the approximator may really realize the adaptability of the 

system. In an online ADP algorithm, the system state pairs (𝑥𝑘 , 𝑥𝑘+1) will be used to iterate at time 𝑘 + 1. So we 

desire that after the system runs for some time, the weights of the critic network and action network will 

converge. 
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The online algorithm updates each iteration step 𝑖 at each time step 𝑘, which implies 𝑖 = 𝑘, while the offline 

algorithm requires both iteration index 𝑖 and time index 𝑘 and update at each iteration step 𝑖 but not each real-

time step 𝑘. 

In both offline and online algorithms, we must make sure the stability of the neural network. The proof 

indicates that we can only ensure stability when fixing the weight of the first layer in NN. In the present literature, 

authors choose an arbitrary weight matrix in the first layer. Here we want to note that the powerful ability of 

neural networks is from its flexibility in tuning basis function, so only tuning the second layer will limit the 

approximate ability of the neural network unless the arbitrary weight matrix is luckily chosen. In some cases, it 

even performs worse than the quadratic form parametric structure, which indicates that the structure of the 

parametric structure is also as important as the stability of the neural network. In the offline algorithm, the data 

set will help NN learn well than the online case, but it is not convergent in mathematical meaning. In engineering 

practice, people assume that it converges if the data set is large enough and the state trajectory is acceptable. In 

summary, there is a gap between the theory and application of ADP. Given that, it is meaningful to develop the 

related initialization algorithm of the neural network to make sure the convergence of NN for the iterative ADP 

algorithm, especially in online cases. 

 

Figure 8: The structure of microgrid. 

4. ADP With Application to Economic Dispatch 

A smart grid is a very stomatic and highly nonlinear system. It consists of multiple power stations, step-up 

substations, long-distance transmission, step-down distribution stations, power load, etc. The microgrid is a new 

small-scale power system, which can work on grid-connected mode and isolated island mode, depending on 

whether it connects to the PCC (Point of Common Coupling). There are many distributed equipment in the 

microgrid, including distributed generators, storage systems, etc. Also, the loads can be classified into many 

classes such as industrial load, household load, etc. The energy flow among these elements in microgrids should 

be well scheduled. In this section, we will review the ADP based microgrid control technique. 

4.1. Structure of Microgrid 

A general structure of the smart microgrid system is shown in Fig. (8), which is comprised of a utility grid, a 

battery storage system, solar photovoltaic (PV) panels, wind-turbine generators, and loads. The central controller 

manages energy flow. The direction of electricity transmission (bidirectional/unidirectional) is shown in Fig. (8). 

Wind turbines and photovoltaic produce electrical energy. Then the energy will be sent to loads, storage systems, 

and the utility grid in priority order. Batteries are used to store and buffer electrical energy. Excessive energy will 
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be transmitted to the utility grid at a lower price. The core issue of controlling the energy scheduling system is 

making an optimal control policy, which can coordinate all the subsystems. We assume the microgrid runs in a 

grid-connected mode and actively participates in the real-time electricity market to take advantage of the real-time 

electricity prices. The interval for each time step is 1 hour. 

4.2. Summary of Current Literature 

Table 1 summarizes the current literature about the ADP based economic dispatch problem. The Notations 

throughout this paper are defined as follows 

𝑘 time index 

𝑃𝐺,𝑘 power of the utility grid 

𝑃𝐿,𝑘 load demand 

𝑃𝑅,𝑘 the output power of the renewable energy 

𝐸𝐵𝑄,𝑘 energy of the 𝑄th battery 

𝐸𝐵𝑄,min minimum energy of the 𝑄th battery 

𝐸𝐵𝑄,max maximum energy of the 𝑄th battery 

𝑃𝐵𝑄,𝑘 power of the 𝑄th battery 

𝑃𝐵𝑄,min minimum power of the 𝑄th battery 

𝑃𝐵𝑄,max maximum power of the 𝑄th battery 

𝑃𝐵,𝑘 the total battery power 

𝜆 the periodic of 𝑃𝐿,𝑘, 𝑃𝐺,𝑘and C𝑘 

�̄� uncontrollable system function 

𝑁𝑇 scheduling horizon 

According to the power balance relationship, we have 

𝑃𝐺,𝑘 = 𝑃𝐿,𝑘 − 𝑃𝐵,𝑘 − 𝑃𝑅,𝑘  (29) 

the total battery power is the sum of each single battery 

𝑃𝐵,𝑘+1 = ∑ 𝑃𝐵𝑄,𝑘

𝑛𝑏

𝑄=1

 
 (30) 

The dynamic of each the 𝑄th single battery is modelled by 

𝐸𝐵𝑄,𝑘+1 = 𝐸𝐵𝑄,𝑘 − 𝜂𝑄(𝑃𝐵𝑄,𝑘, 𝑇)𝑃𝐵,𝑘  (31) 

and 

𝐸𝐵𝑄 , 𝑘𝐵𝑄,𝑚𝑎𝑥
𝐵𝑄,𝑚𝑖𝑛

  (32) 

The battery power is limited by its rated discharging/charging power 

𝑃𝐵𝑄 , 𝑘𝐵𝑄,𝑚𝑎𝑥
𝐵𝑄,𝑚𝑖𝑛

  (33) 

The utility function in different papers is listed in Tbl. 1. They are all time-varying due to the electricity price 𝐶𝑘 

varies with time 𝑘. 
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Equations (29)-(33) represents the deterministic part of the mathematical model in the economic dispatch 

problem. The literature in Tbl. 1 is all based on them. 

However, the variables are not the same in all the literature. The deterministic part, 𝐸𝐵𝑄,𝑘 are defined as the 

state variables, and 𝑃𝐵𝑄,𝑘 are the control variables. For the convenience of analysis, we divide the current literature 

into three types. 

Type 1 literature mainly represents rather early research work. In [28], the electricity price 𝐶𝑘, the renewable 

energy 𝑃𝑅,𝑘 and the load profile 𝑃𝐿,𝑘 are the other three state variables. Then, the mathematical model in the form 

as 

𝑥𝑘+1 = �̄�(𝑥𝑘 , 𝑢𝑘)  (34) 

and the utility function 𝑈(𝑥𝑘 , 𝑢𝑘) is time-invariant. It should be emphasized that the property of �̄� is different 

from 𝐹. Since 𝑃𝑅,𝑘, 𝑃𝐿,𝑘 and 𝐶𝑘 are not influenced by the battery discharging/charging power, they are not 

controllable. Therefore, the iterative adaptive dynamic programming for the controllable system is invalid. Two 

neural networks are used for the implementation of the ADP algorithm proposed in [28]. The modification of 

parameters in the action network and critic network is based on the trial-and-error based method. The system 

starts to run from an initial state 𝑥0 to the terminal time of the scheduling horizon 𝑁𝑇. At each time step, the action 

network and critic network are updated. An episode is defined as the states run from 𝑥0 to 𝑥𝑁𝑇
. The optimal 

parameters are solved by carrying out enough episodes. In other literature of type 1 marked in Tbl. 1, such as the 

authors extend the scene to the multi-houses case. The training process of neural networks depends on historical 

data. Hence, the generalization ability of the controller may be reduced when the uncontrollable part is very 

uncertain. 

The type 2 literature is firstly proposed by the authors in [42]. The iterative adaptive dynamic programming 

scheme is used for the economic dispatch for residential buildings. Different from the type 1 literature, 𝑃𝑅,𝑘 and 

𝑃𝐿,𝑘 are defined as the external parameters of the system. Hence, the system function is time-varying instead of 

the time-invariant one. The dynamic electricity price is the time-varying parameter in the utility function. Then, the 

mathematical model in the form as 

𝑥𝑘+1 = 𝐹(𝑥𝑘 , 𝑢𝑘, 𝑃𝑅,𝑘 , 𝑃𝐿,𝑘)  (35) 

and 

𝑈(𝑥𝑘 , 𝑢𝑘, 𝑘) = 𝑥𝑘
𝑇𝑄𝑘𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘
  (36) 

For the general time-varying system 𝑥𝑘+1 = 𝐹(𝑥𝑘 , 𝑢𝑘, 𝑘), the optimal controller is also time-varying, i.e. 𝑢𝑘
∗ =

𝜇𝑘
∗ (𝑥𝑘). It is nearly impossible to solve the optimal controller for the general time-varying system. Hence, in the 

type 2 literature, except for [45], the authors make the periodic assumption for the external parameters, i.e. 

𝑃𝑅,𝑘+𝜆 = 𝑃𝑅,𝑘,𝑃𝐿,𝑘+𝜆 = 𝑃𝐿,𝑘 and𝐶𝑘+𝜆 = 𝐶𝑘. Hence, it is proven that the iterative control law converges to an optimal 

periodic control sequence, i.e. {𝑢0
∗(𝑥𝑘), 𝑢1

∗(𝑥𝑘), ⋯ , 𝑢𝜆−1
∗ (𝑥𝑘)}. To implement the iterative algorithm for the time-

varying system under the periodic assumption, two iterative loops are introduced in type 2 literature. The authors 

also extend their algorithms to a more complex case. In [43, a multi-battery system is considered. To reduce the 

problem caused by the high dimension state vector, a virtual battery @ is defined to present the worse case of all 

the batteries, which simplifies the computation. To limit the battery power, the term related to the control variable 

is modified as ∫ (Ψ−1(𝑠))𝑇 𝑑𝑠
𝑃𝐵𝑄,𝑘𝜂𝑄

(𝑇,𝑃𝐵𝑄,𝑘
)

0
, where 𝛹(·) is a monotonic odd function with its first derivative bounded 

by a constant 𝑀. The discount factor is defined as a parametric variable to overcome the disturbance of the 

periodic load profile. The authors in type 2 paper establish the mathematical model of the economic dispatch, 

which is easy to give the convergence proof. Therefore, the methods proposed in type 2 papers are more reliable. 

However, the theoretical analysis will become more complex with the model becoming complicated. 



Adaptive Dynamic Programming and Its Application Chen et al. 

 

27 

Table 1: Summary of current literature. 

Reference Year Load Profile State Variables Time-Varying Parameters Controllable 

[26] 2013 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 N N 

[27] 2013 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 , 𝑃𝑅,𝑘 N N 

[28] 2013 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 , 𝑃𝑅,𝑘 N N 

[29] 2015 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 N N 

[42] 2015 periodic 𝐸𝐵,𝑘 , 𝑃𝐺,𝑘 Y Y 

[43] 2015 periodic 𝐸𝐵𝑄,𝑘 , 𝑃𝐺,𝑘 Y Y 

[34] 2016 periodic 𝐸𝐵𝑄,𝑘 , 𝑃𝐺,𝑘 Y Y 

[44] 2016 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 , 𝑃𝑅,𝑘 N N 

[35]  2017 periodic 𝐸𝐵,𝑘 , 𝑃𝐺,𝑘 Y Y 

[36] 2017 periodic 𝐸𝐵,𝑘 , 𝑃𝐺,𝑘 Y Y 

[45] 2017 quasi-periodic 𝐸𝐵,𝑘 , 𝑃𝐺,𝑘 Y Y 

[46] 2017 periodic 𝐸𝐵,𝑘 , 𝑃𝐺,𝑘 Y Y 

[30] 2018 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 , 𝑃𝑅,𝑘 N N 

[31] 2018 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 , 𝑃𝑅,𝑘 N N 

[32] 2018 nonperiodic 𝐸𝐵,𝑘 , 𝑃𝐿,𝑘 , 𝐶𝑘 , 𝑃𝑅,𝑘 N N 

[37] 2019 periodic 𝐸𝐵,𝑘 , 𝑃𝐺,𝑘 Y Y 

 

The type 3 literature is similar to the reinforcement learning technique. The authors in [31 and 32] define the 

microgrid system as a Markov decision process. And they define the optimal control law in the sense of 

expectation. The type 3 algorithms reduce the dependency of optimality on the forecast information. 

It is worthwhile pointing out that the parametric structure can greatly affect the result of algorithms. In most of 

the literature, a feedforward network is adopted to approximate the iterative value function and iterative control 

law. However, other neural networks may work better than traditional feedforward networks, such as recurrent 

neural networks, deep residual networks. 

4.3. Dynamic of Uncertain Part 

It is worthwhile mentioning that the dynamic of the load is not considered in most of the current literature. 

Actually, the load profile used in the iterative algorithm is the load consumption in the future, which is required to 

be predicted. Hence, the prediction error is unavoidable, which will have an effect on the performance of the ADP 

algorithm. 

There are different mathematical models to describe the behavior of users. In [37], an exponential smoothing 

model [47, 48] is used to predict the load profile and electricity price in the future. The next-day load consumption 

and price are predicted by 

�̂�𝐿,𝑑(𝜏) = 𝜔�̂�𝐿,𝑑−1(𝜏) + (1 − 𝜔)𝑃𝐿,𝑑−1(𝜏)  (37) 

and 

�̂�𝑟,𝑑(𝜏) = 𝜔�̂�𝑟,𝑑−1(𝜏) + (1 − 𝜔)𝐶𝑟,𝑑−1(𝜏)  (38) 

where �̂�𝐿,𝑑−1(𝜏) and �̂�𝑟,𝑑−1(𝜏) are predictions for the previous day, and 𝑃𝐿,𝑑−1(𝜏) and 𝑐𝑟,𝑑−1(𝜏) are actual value in the 

previous day, and 𝜏 ∈ {0,1,2, ⋯ , 𝜆 − 1} is hour index. 𝜔 is the smooth parameter. 
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The feedforward network-based forecast scheme is the most widely used in the literature. Given a time series 

of active load, we can model the load profile by a feedforward network 

�̂�𝐿,𝑘+1 = �̂�(𝑃𝐿,𝑘, 𝑃𝐿,𝑘−1, ⋯ , 𝑃𝐿,𝑘−𝑁𝑃
) (39) 

where �̂� denotes the neural network and 𝑁𝑃 + 1 is the number of historical data. 

The exponential smoothing model and feedforward network-based forecasted model is rather simple. It 

should be noted that for a quasi-periodic load profile, the prediction error is small because the change of load 

consumption is slow. However, it may be invalid when the load profile is highly stochastic. 

The methods proposed in type 1 and type 2 literature greatly rely on the result of load forecasting. Hence, a 

more effective load forecast algorithm for the external parameters with high volatility is necessary to be 

developed. 

5. Comments and Topics for Future Studies 

ADP is a powerful tool to solve the difficult optimal control problem of complex systems. Current literature 

reveals the potential of ADP in dealing with the economic dispatch problem. However, existing literature about 

ADP mainly discusses optimal control of nonlinear time-invariant systems. The economic dispatch problem, it 

brings new challenges to the traditional ADP algorithm. Firstly, the iterative ADP algorithm for the partly 

controllable system should be developed to support the analysis of the ADP based economic dispatch design. 

Secondly, the periodic assumption may restrict the application in an engineering problem. The residential load 

profile is quite stochastic and has very high volatility. 

Given that, in order to apply the iterative ADP algorithm to the economic dispatch problem with highly volatile 

loads, there are three directions that can be the focus in the future. 

Firstly, the mathematical model of economic dispatch can be specified. The existing models only consider the 

power balance. The voltage, current, and reactive power can be also considered in the mathematical model. 

Meanwhile, the battery model is also simplified in the existing literature. The output of renewable energy is 

assumed to be the maximum. All these may be oversimplified. In the future, it is very meaningful to establish 

hardware in loop experiments to test the effectiveness of the iterative ADP when applying to the real world. 

Secondly, it is the parametric structure that plays a very important role in the ADP algorithm. Until now, there is 

seldom literature discussing the proper parametric structure for the economic dispatch system. The suitability is 

more significant than the complexity of the function approximation structure. If a neural network is used as the 

parametric structure in the LQR problem, it may not have perfect performance as using the quadratic form 

structure. Since the existence of approximation error, the complex structure may lead to failure in weights 

convergence. 

Finally, the error between the infinite horizon and finite horizon problem is worth discussing. Only the authors 

in [49] discuss this topic. However, the system in [49] is time-invariant. Until recently, there is some lack of 

knowledge about the ADP algorithm for finite-horizon economic dispatch. Usually, we just need to focus on the 

scheduling horizons, such as one day, one week, and one month. Furthermore, the prediction error may become 

vary largely in the far future. A more effective predictive algorithm is also needed to be developed. 

6. Conclusion 

In this paper, we review the state-of-the-art online ADP based economic dispatch algorithms. The relationship 

between the optimal control framework and the ADP algorithm is revealed. By reviewing the ADP algorithms, the  
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advantage of the ADP based economic dispatch method is illustrated. A comparison of the existing literature is 

given, and we point out three directions for the ADP based economic dispatch method. 

In future work, we will consider more practical factors on the basis of the three directions of the ADP-based 

economic dispatch method proposed in this paper, build a more realistic smart grid economic dispatch 

management system model, collect more relevant data, and conduct more In-depth research makes this research 

more practical and valuable. 
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