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ABSTRACT 
We study the problem of small motions of an ideal stratified liquid with a free surface 
totally covered by an elastic ice. The elastic ice is modeled by an elastic plate. We 
reduce the original initial boundary value problem to an equivalent Cauchy problem 
for a second-order differential equation in a Hilbert space. We obtain conditions 
under which there exists a strong (with respect to time) solution of the initial boundary 
value problem describing the evolution of the hydrodynamic system under 
consideration. We also study the spectrum of normal oscillations, the basic properties 
of the eigenfunctions. 
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1. Introduction 

In connection with the needs of applied sciences, an interest in the study of dynamic characteristics of liquids 
with different specific properties has increased. Such liquids are, in particular, stratified. The interest is due to not 
only practical needs but also to the theoretical content of the arising problems. In many cases, mathematical 
models for such problems are essentially nonlinear and could be investigated by numeric methods, only. But 
some interesting and useful problems can be investigated in terms of linear models leading to non-traditional 
initial-boundary value problems. This defines an independent mathematical interest in such problems. 

By stratified liquid we mean a liquid whose physical characteristics (density, heat capacity, dynamical viscosity, 
etc.), in the stationary state, change either continuously or abruptly in only one selected direction. In other words, 
in the stationary state, the physical characteristics of the liquid are functions of a unique space variable. 
Stratification of liquid occurs due to different physical reasons; the most common of them is gravitation. In the 
liquid, gravitation produces such distribution of its particles, dissolved salts, and suspensions that inhomogeneity 
of liquid density along the direction of the gravitational field arises. As the experiment shows, stratification of 
density has the most significant impact on the dynamical properties of liquid and the distribution of its inner 
waves. Therefore, further by stratified liquid we will mean a liquid with stratification of density, induced by 
gravitation. 

To date, various analytical and numerical approaches have been developed to study the behaviour of various 
structures interacting with a liquid [1-7]. At the same time, a number of methods based on functional analysis and 
the theory of operators in abstract Hilbert spaces are known in mathematical physics. As an example, we can cite 
the theory of quadratic operator beams, which is widely used in the study of various problems of mechanics and 
hydrodynamics related to the problem of small motions and normal oscillations (see, for example, [8-18]). 

The paper is a continuation of the papers [11-13], in which initial boundary value problems of the dynamics of 
a liquid covered with ice were studied. Namely, in work [11], the problem of small movements of an ideal 
homogeneous liquid was studied, the free surface of which consists of three regions: the surface of a liquid 
without ice, the region of elastic ice and the region of crumbling ice. As well as the most general formulation of the 
problem, when on the free surface there are regions of the elastic ace of different density with different stiffness 
coefficient and regions of crushed ice different densities. The elastic ice is modelled by an elastic plate. The 
crumbled ice is understood as weighty particles of some matter floating on the free surface. The conditions under 
which there is a strong (in time) solution of the initial boundary value problem are obtained, and the spectrum of 
normal oscillations is studied. A similar problem of small movements of a stratified fluid (in the general case) is 
studied in [12]. In [13], a special case was considered when the free surface is completely covered with elastic ice. 
The presence of stratification complicates the corresponding problem from [11], namely, the structure of the 
operator coefficients has a more difficult structure to study. The conclusion of the conditions for the existence of 
the solution was carried out formally. 

Thus, the purpose of this work is to present the results obtained, related to the derivation of the basic 
conditions for the existence of a solution from work [13], as well as study of the spectrum and properties of 
eigenfunctions (the problem of normal oscillations). 

2. Mathematical Statement of the Problem 

We consider an ideal stratified liquid whose density 0  varies along the vertical axis 3Ox  in the quiescent 

state, )(= 300 x . The liquid fills partially a stationary vessel and in the quiescent state, it fills a domain   
bounded by a hard wall S  and a free surface   totally covered by elastic ice. We denote the surface density of 
the elastic ice by 1 . We assume that the origin O  of the Cartesian coordinate system 321 xxOx  is taken on a free 

equilibrium surface   which is flat and is located perpendicular to the acceleration of the gravity 3= egg


 , 
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where 3e


 is the unit vector of the axis 3Ox . We also assume that the hard wall S  is a Lipschitz surface and 
 =S  is a Lipschitz curve. We consider the main case of a stable stratification of the liquid with respect to the 

density:  
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(1) 

The function )( 3xN  is called Brunt-Vaisala frequency or buoyancy frequency. Physically, 3)(xN  is equal to the 

frequency of oscillations made by a particle of a liquid at const=3x  in the stratified liquid once this particle is 
moved from this level. 

Consider small motions close to the state at rest. Let ),(= xtuu


, ),,(= 321 xxxx , we denote the velocity 

field of the liquid, by ),(= xtpp , the deviation of the pressure field from the equilibrium pressure )(= 300 xPP , by 

),(= xt , the deviations of the density field from the original field )( 30 x , and by )ˆ,(= xt , x̂ , the 

deviation of the freely moving surface )(t  of the liquid from   along the normal n


. In addition, we believe that 

a small field of external forces ),( xtf


 acts on the hydrodynamic system under study in addition to the 
gravitational field. 

The linear statement of the initial boundary value problem of oscillations of the hydrodynamic system under 
study has the form (see [13])  
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(2) 

The last two conditions are the initial conditions added to the problem for the completeness of its statement, 

0= d  is the condition of the preservation of volume. 

Here K  is the linear differential operator defined by the differential expression:  

 gdK (0):= 0
2
2   

on the domain   ,)(0=/=:=)( 4   CKD  where 0>d  is the coefficient of rigidity of ice,   is the 

unit vector of the outward normal to   and 2
2

22
1

2
2 //= xx  . Moreover, the operator 

)()()(: 22  LLKK D  (to be more precise, it’s Friedrichs extension) is an unbounded self-adjoint positive 
definite operator (see, e.g., [13]). 

In the initial boundary value problem (2), we can eliminate one unknown function, namely, the density field 
),( xt , by replacing the velocity field ),( xtu


 with the field ),( xtv


 of small displacements of liquid particles, 

which is related to ),( xtu


 as  
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(3) 

Then we obtain the relations  
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(4) 

In view of the above considerations, we rewrite original problem (2) as  
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(5) 

where )(/)(),(:=)( 30300 xexgfxtfx  
 . 

The initial boundary value problem (5) contains only two unknown functions: the vector field ),( xtv


 and the 
scalar field ),( xtp  of pressures. Knowing a solution ),( xtv


 of the problem (5), we can determine solutions 

),( xtu


 and ),( xt  of the problem (2) by formulas (3) and (4). 

Note that in [13], problem (5) was reduced to the Cauchy problem for the differential second-order equation in 
Hilbert space 21= HHH   of the following form  
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(6) 
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tyytyy );(=)(= 21  is an unknown function, tggtgg );(=)(= 21  is a given function, iI  1,2)=(i  are the identity 

operators acting in the spaces iH , respectively. 

The conditions are holding for the operator coefficients  

0 ≪ 𝐾଴ = 𝐾଴
∗, 𝐷(𝐾଴) = 𝐻ଶ, 0 ≤ 𝐵஼ = 𝐵஼

∗ ∈ 𝐿(𝐻), 0 < 𝐶 = 𝐶∗ ∈ 𝑆ஶ(𝐻ଶ), 

L(H) and Sꚙ(H2) are the space of bounded operators and the space of compact operators, respectively. 

3. An Existence Theorem for the Strong Solution 

Let’s rewrite equation (6) in the following form:  
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(7) 

We make the change 22
1/2
0 = wyK  in (7), then we apply the operator );(diag 1/2

01
KI  to both sides of the 

equation, as a result , we come to the equation  
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Thus we get the following Cauchy problem:  
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where BI  is a linear bounded self-adjoint positive definite operator, )(=)( FFIB DD . 

Let us introduce the following equivalent norm in the space H : ),;(:=];[ 21
1

21 vvIvv B
  then  
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consequently, FI B=A  is a self-adjoint operator, moreover, it is unbounded and positively defined. 

Definition 1 By a strong (by the variable t) solution to problem (8) on ][0;T  we call a function )(tz , taking 
values in H , such that: 

1.  )()( ADtz  for every ][0;Tt  and  HA ];[0;)( TCtz  , 

2.   H];[0;)( 2 TCtz  , 

3.  the equality (8) takes place where all summands are from  H];[0;TC , and the initial conditions hold.  

Theorem 1 If the conditions  
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take place, then problem (8) has a unique strong solution on ][0;T .  
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Proof. Since the operator FI B=A  is self-adjoint and positive definite in a space with an equivalent norm, 
therefore it is a generator of a family of cosine-functions acting in this space (see [19, pp. 175-177]). Further, since 
the operator R  from (8) is bounded, the operator RFIR B  =A , according to Theorem 8.5 from [19, p.177], is 
also a generator of a family of cosine-functions. It follows that if the conditions (9) are met, the problem (8) has a 
unique strong solution on ][0;T  (Definition 1).  

Let the conditions (9) take place, then the Cauchy problem (8) has a unique strong solution on [0;T] (Theorem 1). 
Then, taking into account the changes 220

= zwAK  and 22
1/2
0 = wyK , we have  
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Here the operator 1/2
0
K  is a bounded operator. Thus, the following theorem is proved  

Theorem 2 If the conditions  

 ,];[0;)(),(),( 11/2
01

11/2
01

0 HDD TCtgKHuKHy   (10) 

take place, then problem (6) has a unique strong solution on ][0;T .  

The rest of the proof is based on the reverse transition from the Cauchy problem (6) to the initial boundary 
value problem (5) and then to a problem (2). Thus, the Cauchy problem (2) has a unique solution, strong with 
respect to t, under the initial conditions of Theorem 1 of the work [13]. 

4. Spectral Problem 

In the absence of external forces (except for the gravitational field), i.e., for 0=),( xtg , consider the eigen-

oscillations, which are solutions to problem (6) depending on time by the law )(=),(:)(exp xyextyti ti . For the 
amplitude elements )(= xyy , we obtain the spectral problem  

 ĝ  
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.:=,= 2 yy KBC  (11) 

Since 0= KK BB  and )()(=0 *11 HLCC    then the spectrum of the problem (11) is real and positive. 
Note that in the case when an ideal stratified liquid completely fills an arbitrary vessel, the corresponding spectral 
problem can be reduced to the problem 1111 = yyB  , 11 Hy  . In this case, there is a point spectrum, dense on 

the segment ][0; 2
0N , and the modes of eigen-oscillations give internal waves due to the presence of a stratified 

liquid. 

4.1. About the Existence of Internal Waves 

Consider the case ][0; 2
0N  (see (1)) and establish the presence of internal waves in a stratified fluid. 

Let’s write equation (11) in components and rewrite it in the following form  
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Let’s make an assumption  
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inverse operator )()(1 HL M . 

We express the value of 2y  from the second equation of the system (12) and substitute it into the first one, we 
get  
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Theorem 3 The limiting spectrum of the pencil )(T  coincides with the segment ][0; 2
0N .  

Proof. Recall that the limit spectrum of an operator is the set of the points of the continuous spectrum, the 
limit points of the point spectrum, and the eigenvalues of infinite multiplicity. 

Let’s fix an arbitrary ][0; 2
01 N  and consider the problem  
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This eigenvalue problem for a self-adjoint operator 11B  is perturbed by a compact operator 

21
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1
11/2

12 )( BCMCB  . The spectrum of operator 11B  is the limit and fills the entire segment ][0; 2
0N . According 

to Weyl’s theorem, for every ][0; 2
02 N  there is an orthonormal sequence Weyl 

1=}{ iiy , depending on 1  and 

2 , for which  

ฮ൫𝜆ଶ𝐼ଵ − 𝐵ଵଵ + 𝐵ଵଶ𝐶ଵ/ଶ𝑀ିଵ(𝜆ଵ)𝐶ଵ/ଶ𝐵ଶଵ൯𝑦௜ฮ → 0        (𝑖 → ∞). 

Choosing 12 =   and the corresponding Weyl sequence, we conclude that for it  
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ฮ൫𝜆ଵ𝐼ଵ − 𝐵ଵଵ + 𝐵ଵଶ𝐶ଵ/ଶ𝑀ିଵ(𝜆ଵ)𝐶ଵ/ଶ𝐵ଶଵ൯𝑦௜ฮ → 0        (𝑖 → ∞). 

This means that the arbitrarily selected point ][0; 2
01 N  belongs to the limit spectrum of the problem (14). 

Since the points lying outside the segment ][0; 2
0N , can only be finite-multiplicity eigenvalues, the specified 

segment coincides with the limiting spectrum of the pencil )(T .  

An important consequence of the obtained theorem is the following statement: in a stably stratified ideal liquid 
partially filling a vessel of arbitrary shape with elastic ice on a free surface, there are internal waves due to the 
presence of buoyancy forces; the square of the frequencies of internal waves form the set ][0; 2

0N . 

4.2. On the Properties of Surface Wave Modes 

Consider the case 2
0> N  when surface waves are expected. Let’s replace 2

1/2
02 = zKy   and applying the 

operator 1/2
0
K  to the second equation (12), we obtain  

 
 











0.=

0,=

2
1/2

0
1/2

22
1/21/2

0121
1/21/2

02
1/2

021
1/2

022

2
1/2

0
1/2

12
1

111
1

1

zKCBCKyBCKzKICKzI

zKCByBI




 

Since 𝜆 > 𝑁଴
ଶ and ‖𝐵ଵଵ‖ ≤ 𝑁଴

ଶ (see [13]), then the operator 𝐼 − 𝜆ିଵ𝐵ଵଵ is invertible. Let’s rewrite the last  
system  

 










0.=

0,=)(

2
1/2

0
1/2

22
1/21/2

0121
1/21/2

02
1/2

021
1/2

022

2
1/2

0
1/2

12
1

11
11

11

zKCBCKyBCKzKICKzI

zKCBBIyI




 

Excluding 1y , we arrive at the spectral problem for the operator pencil )(L :  

  ,>0,=)(:=)( 2
02

1
02 NzFBBIzL C    (15) 

,:=,)(:= 1/2
0

1/2
22

1/21/2
00

1/2
021

1/2
0

  KCBCKBKICKBC 
 

.)(:=)(,)(:=)( 1
11

11/2
0

1/2
1221

1/21/2
0

  BIRKCBRBCKF 
 

Further research is based on the idea of factorization of the pencil )(L , i.e. on its decomposition into 
operator multipliers of a certain type. To do this, we will need the following result (see [17, p.69-75]). 

Theorem 4 Let the conditions 

1. ∃𝑡 ∈ (0; 𝑟): ‖𝐴‖𝑡ିଵ + ෍

∞

௞ୀଵ

‖𝐵௞‖𝑡௞ିଵ < 1 

2. k
k

k

BB  


1=

:=)( , <<0,|<| rr ; 
*= AA , *= kk BB , 1,2,=k  

be satisfied for the operator a self-adjoint operator pencil  

).(:=)(  BAIM   (16) 
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Then 

1. )(M  admits the factorization ))((=)( ZIMM   , where )(M  is holomorphic and holographically 
invertible for t||  , )(0,rt , and );()( ttZ  , operator Z  is similar to a self-adjoint operator. 

2. If the conditions )(HSA , {0}=kerA , )(1 HSB  are additionally hold, then the problem 0=)( zM   
has a discrete spectrum on the interval ),( tt   

),(0,}{{0}=)( 1=   jZ jjj 
 

where )(= Zjj   is the isolated finite multiplicity eigenvalues of the operator Z . The set of eigenelements 

(there are no associated) H
1=}{ jj  corresponding to these eigenvalues forms the Riesz basis in H : 

jj zF1/2= , 1,2,=j , where 
1=}{ jjz  is an orthonormal basis consisting of elements of a self-adjoint compact 

operator 1/21/2 )(  FZFF .  

After substitution 1=   in (15) we obtain  

  0,=)(=)(:=)( 22
1

2 zBBIzLzG C  

 (17) 

.<),(:=)( 2
0

12
0

 NFBB 
 

Problem (17) is a problem for a pencil of the form (16), since )( 1F  is a holomorphic function with respect to 
 :  

.=,=)( 1/2
0

1/2
121121

1/21/2
0

0=

1 


  KCBBBCKFFF k
kk

k

k


 

At the same time  

𝐵(𝜇) : = −𝜇𝐵଴ − 𝜇ଶ𝐹(𝜇ିଵ) = −𝜇𝐵଴ − 𝜇ଶ ෍

∞

௞ୀ଴

𝜇௞𝐹௞ = −𝜇𝐾଴
ିଵ/ଶ

𝐶ଵ/ଶ𝐵ଶଶ𝐶ଵ/ଶ𝐾଴
ିଵ/ଶ

−

−𝜇ଶ𝐾଴
ିଵ/ଶ

𝐶ଵ/ଶ𝐵ଶଵ𝐵ଵଶ𝐶ଵ/ଶ𝐾଴
ିଵ/ଶ

− 𝜇ଷ𝐾଴
ିଵ/ଶ

𝐶ଵ/ଶ𝐵ଶଵ𝐵ଵଵ
ଶ 𝐵ଵଶ𝐶ଵ/ଶ𝐾଴

ିଵ/ଶ
− ⋯ =

=: − ෍

∞

௞ୀଵ

𝜇௞𝐵௞ ,   where ‖𝐵௞‖ ≤ (𝑁଴
ଶ)௞ ⋅ ‖𝐾଴

ିଵ‖ ⋅ ‖𝐶‖.

 

Lemma 1 If 2
0<|=| Nt  for )(G  then  

‖𝐵஼‖ ⋅ 𝑡ିଵ + ෍

∞

௞ୀଵ

‖𝐵௞‖ ⋅ 𝑡௞ିଵ <
𝜌௠‖𝐾଴

ିଵ‖

𝑡
+

‖𝐾଴
ିଵ‖ ⋅ ‖𝐶‖

𝑡 ⋅ (1 − 𝑡𝑁଴
ଶ)

. 

Proof.  

‖𝐵஼‖𝑡ିଵ + ෍

∞

௞ୀଵ

‖𝐵௞‖𝑡௞ିଵ =
‖𝐾଴

ିଵ/ଶ
(𝐶 + 𝜌ଵ𝐼ଶ)𝐾଴

ିଵ/ଶ
‖

𝑡
+ ‖𝐵ଵ‖ + ‖𝐵ଶ‖𝑡 + ‖𝐵ଷ‖𝑡ଶ + ⋯ ≤ 
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≤
‖𝐾଴

ିଵ‖ ⋅ ‖𝐶‖ + 𝜌ଵ‖𝐾଴
ିଵ‖

𝑡
+ 𝑁଴

ଶ ⋅ ‖𝐾଴
ିଵ‖ ⋅ ‖𝐶‖ + (𝑁଴

ଶ)ଶ ⋅ ‖𝐾଴
ିଵ‖ ⋅ ‖𝐶‖𝑡 + ⋯ = 

=
𝜌ଵ‖𝐾଴

ିଵ‖

𝑡
+

‖𝐾଴
ିଵ‖ ⋅ ‖𝐶‖

𝑡
⋅ (1 + 𝑁଴

ଶ𝑡 + (𝑁଴
ଶ)ଶ𝑡ଶ + ⋯ ) = 

=
𝜌ଵ‖𝐾଴

ିଵ‖

𝑡
+

‖𝐾଴
ିଵ‖ ⋅ ‖𝐶‖

𝑡 ⋅ (1 − 𝑡𝑁଴
ଶ)

.        

A corollary of Lemma 1 and Theorem 4 is the lemma. 

Lemma 2 Let the following condition hold true  

𝐷: = (𝜌ଵ ⋅ ‖𝐾଴
ିଵ‖ ⋅ 𝑁଴

ଶ − 1)ଶ − 4 ⋅ 𝑁଴
ଶ ⋅ ‖𝐾଴

ିଵ‖ ⋅ ‖𝐶‖ > 0. (18) 

Then )(G  from (17) admits the factorization  

𝐺(𝜇) = 𝐺ା(𝜇)(𝜇𝐼 − 𝑍),  |𝜇| < 𝑡 ∈ (𝑡ି; 𝑡ା),

𝑡±: =
(𝜌ଵ ⋅ ‖𝐾଴

ିଵ‖ ⋅ 𝑁଴
ଶ + 1) ± √𝐷

2𝑁଴
ଶ ,  𝑡ା < 𝑁଴

ିଶ.
 

where )(G  is holomorphic and holographically invertible for );(||  ttt , and );()( ttZ  .  

The obtained facts allow us to prove the following theorem.  

Theorem 5 If condition (18) take place, then )(L  from (15) admits the factorization  

);)((=)( ZILL    

where )(L  is holomorphic and holographically invertible for  

𝜆 ≥ (𝑡ି)ିଵ > 𝑁଴
ଶ,  𝑡ି =

(𝜌ଵ ⋅ ‖𝐾଴
ିଵ‖ ⋅ 𝑁଴

ଶ + 1) − √𝐷

2𝑁଴
ଶ , 

and problem (15) has a discrete spectrum 
  Rkk 1=}{ ,   1)(= Zkk   consisting of isolated finite multiplicity 

eigenvalues with a limit point  . The eigenvalues 
1=2 }){( kkz , )()(=)( 22 Zzz kk  corresponding to these 

eigenvalues ),)[(}{ 1
1=  


 tkk  form the Riesz basis in 0H .  
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