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ABSTRACT 
This paper aims to present a survey on certain fuzzy subordination properties for 
analytic functions defined in the open unit disk. The new results are derived by 
considering a certain differential operator. By making use of two differential properties 
of the operator we determine sufficient conditions to find the fuzzy best dominants 
for several fuzzy differential subordinations. Some interesting further fuzzy 
consequences are also considered.  
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1. Introduction 

The new notion of fuzzy subordination was defined and studied recently in the papers [18-20]. This theory was 
developed in order to extend the classical differential subordination theory introduced and studied by S.S. Miller 
and P.T. Mocanu in [14]. The basis of this fuzzy concept lies in the well known fuzzy set term introduced by Lotfi 
Zadeh. In 1965 Zadeh published his Pioneering paper on fuzzy sets and many examples have been supplied to 
understand the notion [23]. From here it derives many other important topics in mathematics. The theory of fuzzy 
logic appears in the fuzzy sets theory context. A real number belonging to the interval [0,1] is assigned to a specific 
element from a certain class. This is stated as a fuzzy set. The theory of fuzzy logic emerges by associating degrees 
of truth to different propositions. The interval [0,1] is the true-values set. The number 0 is allocated for “ totally 
false” and the number 1 is allocated for “totally true”. The rest of the numbers are associated with partial truth, 
which is the intermediate degrees of truth. 

In this context, the substantiation of fuzzy differential subordination became a very natural one. Since its 
appearance, the theory of fuzzy differential subordination it developed at a very fast level as we can see in the 
recent papers [16,21,22]. The present study aims to lead to obtaining certain outcomes that involve both the 
notion of fuzzy differential subordination and that of differential operators. In this direction were outlined recently 
several papers [3,10,11,13]. Such works demonstrate once again the interest shown in this topic. Motivated by a 
joint earlier work of the author [12] and a recent paper [5] where it was introduced a differential operator, we 
establish in this article an interesting application of best fuzzy dominants for certain differential fuzzy 
subordinations. For future work, it can be useful to consider similar results as in [8] aiming an integral operator. 

Further, we recall here some preliminary concepts and results which are used further. We are familiar with the 
well-known concepts from Geometric Function Theory. 

Let us denote by H  the set of analytic functions defined in the open unit disc 1}|<|:{= zzU C . Consider 
also ],[ naH  a subset of H  with the following form of functions  

.=)( 1
1  


n
n

n
n zazaazf

 

Consider ),( npA  the set of functions )(zf  that are normalized by 

}).{1,2,3,:=,(,=)(
=

N 




npzazzf k
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npk
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We denote pp AA :=,1)(  and .=:=(1,1) 1AAA  Let }=)(),({= 1
1  


n
nn zazzfUf HA  with AA :=1 . 

We provide further, a brief description of basic elements of fuzzy differential subordination theory. 

Definition 1.1. [23] A function 0;1]: XF  is named fuzzy subset, where X  is a non-empty set. Another 

definition, would be the next one: A pair ),( AFA , with :AF  0;1]X   

  ),,(sup=1)(<0:= AA FAxFXxA   

is named a fuzzy subset of X . Set A represents the support of the fuzzy set ),( AFA . Also AF  is named the 

membership function of the fuzzy set ),( AFA . One can also denote ),(sup= AFAA .  

Remark 1.1. [20] Let be the inclusion relation XA  . Then we have ifllxFA 1{=)( x A if0 x A .. 
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The real number 0, for a fuzzy subset, is the smallest membership degree of Xx  to A . Likewise, the real 
number 1 is the biggest membership degree of Xx  to .A  

The entire set X  is associated with XxxFX 1,=)(  and the empty set X  is associated with 

XxxF  0,=)( .  

Definition 1.2. [18] Consider two functions )(, Dgf H  and CD , Dz 0  being a fixed point. We say that 

the function f  is a fuzzy subordinate to g  and written as 

)(),()( Dzzgzforgf FF   

if the following relations are verified: 

(1)  );(=)( 00 zgzf  

(2)  .),()( )()( DzzgFzfF DgDf    

Definition 1.3. [19] Consider CC U3:  and let h  be an univalent function in U , satisfying ,0;0)(a  
ah =(0)= . We say that p  is named a fuzzy solution of the fuzzy differential subordination if p  is an analytic 

function in U , such that ap =(0)  and verifies the next (second-order) fuzzy differential subordination:  

𝐹ట൫஼య×௎൯𝜓(𝑝(𝑧), 𝑧𝑝′(𝑧), 𝑧ଶ𝑝′′(𝑧); 𝑧) ≤ 𝐹௛(௎)ℎ(𝑧),     𝑧 ∈ 𝑈. (1.1) 

For all p  satisfying  1.1 , the univalent function q  is named a fuzzy dominant of the fuzzy solutions for the 

fuzzy differential subordination, or a fuzzy dominant, if )()( )()( zqFzpF UqUp  , Uz . A fuzzy dominant 𝑞
~

 which 

verifies 𝐹
௤
~

(௎)
𝑞
~

(𝑧) ≤ 𝐹௤(௎)𝑞(𝑧), 𝑧 ∈ 𝑈, for all fuzzy dominants q  of  1.1  represents the fuzzy best dominant of  1.1 .  

Definition 1.4. [20] Let Q  be the set of all functions f  that are analytic and injective on the set )( fEU  , 
where  

}=)(lim:{=)( 


zfUfE
z 


 

such that 0)( 'f  for )( fEU  . 

Theorem 1.1. [20] Consider the function q  is univalent in the open unit disc U  and let   and   be analytic in 
a domain D  containing )(Uq  with 0)( w  when )(Uqw . Set  

).())((=)()),(()(=)( zQzqzhzqzzqzQ '   

Assume that 

(1)  )(zQ  is starlike univalent in   and 

(2)  0>
)(

)(
Re









zQ

zzh'
 for Uz . 
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If p  is analytic with (0)=(0) qp  and DUp )(  and  

))(()())(())(()())(( )()( zqzzqzqFzpzzpzpF '
Uh

'
Up  

 

then  

)()( )()( zqFzpF UqUp 
 

and q  is the fuzzy best dominant.  

Definition 1.5. [5] Consider Af . For the numbers {0}=, 0  NNm , R , 0 , 0l , we consider 

differential operator ),(, lI m   defined on A  and having the form  

  k
k

m

k

m zakC
l

klk
zzflI ,
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and  





 {0},=1),(1)(

0=1,
:=)(

0NNnnaaa

n
a n


 

is Pochhamer symbol.  

Remark 1.2. We reobtain several operators obtained earlier by various researchers. Recall here the 
Ruscheweyh operator 

  DI ,0)(0,  defined in [15], the S a


l a


gean derivative operator (1,0),0mI  mD , studied 

in [17], the generalized S a


l a


gean operator mm DI  ,0)(,0  defined by Al-Oboudi in [1], the generalized 

Ruscheweyh operator 
  ,

1, ,0)( DI   introduced in [9], the operator mm DI 
  ,

, ,0)(   defined by K. Al-Shaqsi 

and M. Darus in [2] and for 0=  a similar operator introduced in [4]. The operator mm II   ),1(,0  (for 𝑝 = 1) 
was developed by Cho and Srivastava [6] and Cho and Kim [7].  

By making use of a simple computation technique one obtains the following result. 

Proposition 1.1. [5] Consider the numbers 0, Nm , 0 , 0l   

  .))(),(()(),()(1=)(),()(1 ,,1, 'mmm zflIzlzflIzflIl    
 (1.2) 

and regarding parameter   

  ).(),()(),()(1=)(),( ,1,, zflIzflIzflIz mm'm    
 

(1.3) 

The main object of the paper is to derive sufficient conditions required for analytic functions f  which verify 
certain differential fuzzy subordination types. 
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In the present work, we deduce several interesting theorems regarding the best fuzzy best dominants for 
certain fuzzy differential subordinations .  

2. Main Results 

Theorem 2.1. Consider C ,,,,, cba , 0 , 0 , 0>  and the function q  is a univalent one in the 
open unit disc U  with 0)( zq . 

Assume that 
)(

)(

zq

zzq'

 is a starlike univalent function in U . Consider  
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If q  verifies the next fuzzy subordination  
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(2.3) 

then  
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(2.4) 

where 
 




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, Uz , 0z , 0,   C  and q  is the fuzzy best 

dominant.  

Proof. Define the function )(zp  by  
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(2.5) 

By a straightforward computation, one obtains  
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Using the identity  
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By substituting the above equality into (2.3) we get  
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By setting  
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one can easily notice that the function   is analytic in C ,   is an analytic function in {0}\C  and that 0)( w , 
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we find that 0.>
)(
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
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Using Theorem 1.1, the assertion (2.4) of Theorem 2.1 is obtained.  

For the various form of the functions q , namely 
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10    replaced in Theorem 2.1, one obtains the following two results. 

Corollary 2.1. Consider the numbers C ,,,,, cba , 0 , 0 , 1<1  AB  with  
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(2.7) 

If Af , then fuzzy differential subordination  
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, fcbalm  
  is given in (2.2) and 
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If Af , then differential fuzzy subordination  
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where );,,,(,,,
, fcbalm  
  is given in (2.2) and 
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Replacing the function Azezq =)( , with  |<| A  in Theorem 2.1 we deduce the following corollary. 

Corollary 2.3. Consider the numbers C ,,,,, cba , 0 , 0 ,  |<| A  and  
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If Af , then fuzzy differential subordination  
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implies  
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(2.15) 

where the function );,,,(,,,
, fcbalm  
  is given in (2.2) and Aze  represents the fuzzy best dominant.  

Selecting B
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Bzzq
)(

)(1=)(





, <<1 AB  1, 0B , one obtains the next known result. 

Corollary 2.4. Consider the numbers C ,,,,,, cba , 00,   , 0 , <<1 AB  1, 0B  with  
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If Af , then fuzzy differential subordination  
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where );,,,(,,,
, fcbalm  
  is given in (2.2) and B
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


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 represents the fuzzy best dominant.  

One noticed that the function B
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Bzzq
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


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 is univalent if and only if either  
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1.1
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Regarding parameter   we derive the next result. 

Theorem 2.2. Consider q  a univalent function in the open unit disc U  with 0)( zq , C ,,,,, cba , 
0 , 0  and 0>  . 

Assume that 
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 defined a starlike univalent function in U  and inequality  2.1  holds. Let the function 
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If the function q  verifies the next fuzzy subordination  
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then  
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0,0,,   CzUz , and q  represents the fuzzy best dominant.  

Proof. Consider p  being given as in (2.5)  

By using the identity  
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By substituting the last equality into (2.20) we get  
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we notice that the function   is analytic one in C , also   is an analytic function in {0}\C  with 0)( w , 
{0}\Cw . Considering  
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we deduce that )(zQ  represent a starlike univalent function in U  with  
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0).,,,,(   Ccba  

Using Theorem 1.1, the relation (2.21) of Theorem 2.2 is obtained.  

Remark 2.1. One can notice here that Theorem 2.2 can be reformulated for various forms of the functions q  
(as in Corollaries 2.1-2.4).  
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