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ABSTRACT 
In this paper, the response of the rigid block under rectangular pulse excitation is 
investigated using two different modeling approaches and solvers. The first approach 
relies on the numerical integration of the differential equation of motion. The second 
approach is based on the formulation of the dynamic problem in terms of a special 
class of mathematical programming problem that is the linear complementarity 
problem. A validation study is carried out comparing the solutions given by the 
proposed formulation with the ones given by the numerical integration of the 
differential equation of motion obtained from ODE solvers available in MATLAB®. 
Potentialities and limitations of the mathematical programming formulation are 
discussed in terms of energy dissipation and restitution coefficient at impacts and in 
terms of solution times. 
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1. Introduction 

The assessment and evaluation of rocking response of rigid blocks under ground excitation is a topic 
investigated mainly within the framework of structural researchers, considering that it is a suitable modeling 
approach to analyze the seismic structural capacity of a large variety of structures. Historic masonry structures, 
which usually do not exhibit a box behavior, can be conveniently modeled as an assemblage of rigid parts, the so-
called macro-elements. As a matter of fact, the rocking failure modes of macro-elements effectively assess the 
structural capacity of ancient masonry buildings under seismic actions [1]. The rocking response of rigid blocks 
can be handled numerically, starting from the position of the equation of motions. In the case of a single rigid 
block, the typical motion of the rocking block is an alternate rotation of the block around two vertexes at the base. 
At each ground impact, the block dissipates a certain amount of energy, the angular velocity decreases, and the 
rotation reverses. The amount of energy loss per impact is a function of the block slenderness and of the 
properties of the contact at the base. Plastic deformations may occur at contact points, but the corresponding 
amount of energy loss is usually neglected in the formulations [2,3]. 

Several approaches and formulations have been proposed in the scientific literature. Among others, it is worth 
mentioning the seminal work by Housner [4], who first proposed to analyze the dynamic behavior of the rocking 
blocks by posing the formulation of the inverted pendulum. The author defined the equation of motion of a 
rocking block under the assumption of a fully rigid model where displacements arise soon after the activation of 
rocking motion. Starting from this study, many other formulations have been developed with the aim to step 
forward Housner’s assumptions and move towards the analysis of multiple-blocks structure, also considering 
flexible foundations or deformable blocks. Further details can be found in [4-7]. 

In recent times, force-based and displacement-based approaches, either in the static or dynamic field, have 
been developed to assess the rocking response t of historic masonry structures[8-16]. Many literature applications 
in the field of seismic assessment are based on the development of the finite element method (FEM) and distinct 
element method (DEM) [17,18]. Nevertheless, an emerging and valid alternative is the Non-Smooth Contact 
Dynamics (NSCD) method, which poses the problem of the dynamic of rocking motions in terms of mathematical 
programming problem: equilibrium equations and complementary conditions are given at contact points, and the 
dynamic solution is found by using optimization methods for which, nowadays, efficient solvers exist [19-24]. The 
possibility to adopt mathematical programming methods for the equilibrium analysis of rigid blocks was firstly 
investigated in [25] within the field of limit analysis. Since then, many approaches have been developed [26-32], 
formulating the different types of contact model, flow rule, and involved failure conditions. A fundamental 
contribution was provided in [33,34], where the overall system for the solution of the problem was presented in 
terms of a linear complementary problem. Significant advancements were presented [35,36] where the Authors 
showed the possibility to express the linear complementary problem in terms of dual quadratic programming 
problems, corresponding to a force-based and a displacement-based problem, respectively. 

Within this framework, this paper presents an application of the formulation proposed in [32,37] to analyze the 
rocking response of a wall subjected to rectangular pulse excitations using mathematical programming. The novel 
contribution of the present study is related to the evaluation of the numerical damping, which is implicitly 
associated in the considered configuration, to the adopted time-stepping scheme for the integration of the 
equations of motion. The wall is modeled as a single rigid block, and a support block is used to apply the 
acceleration time history. The results obtained from the numerical formulation based on mathematical 
programming are compared with those obtained from the numerical integration of the differential equation of 
motion. The comparison is carried out in terms of rotation and angular velocity time history. A sensitivity analysis 
was carried out on the numerical model based on mathematical programming to investigate the influence of the 
time step size on the energy dissipation associated with the adopted time-stepping scheme. 

The paper is organized as follows. In Section 2, the ordinary differential equation (ODE) in the case of the 
rocking motion of a rigid rectangular block is described. The proposed numerical formulation of the mathematical 
programming problem for the dynamic analysis is presented in Section 3, as well as the incremental solution 
procedure adopted for the analysis of the dynamic contact response among the two following steps. Finally, the 
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outcomes obtained by using ODE and the proposed optimization problem are compared in Section 4 concerning 
the case study of a free-standing wall subjected to rectangular pulse excitation. 

2. The Differential Equation of Motion of the Rigid Block 

It is well known from the literature that, for rectangular blocks, the equation of the rocking motion about the 
center of rotations at the base can be posed in compact form as follows, assuming that no sliding occurs [38]: 

�̈�(𝑡) = −𝑝ଶ ൜𝑠𝑖𝑛[𝜑sgn[𝜔(𝑡)] − 𝜔(𝑡)] +
𝑎௚

𝑔
𝑐𝑜𝑠[𝜑sgn[𝜔(𝑡)] − 𝜔(𝑡)]ൠ (1) 

where 𝜔 is the rotation angle, 𝜑 = 𝑡𝑎𝑛ିଵ(𝑏/ℎ) is the slenderness angle, 𝑝 = ට
ଷ௚

ସோ
 is the frequency parameter, and R 

is the radial distance of the block (Fig. 1). 

Considering conservation of momentum before and after the impacts, the ratio of kinetic energy measuring 
the minimum energy loss with rigid contacts can be expressed as:  

𝑟 = ൬1 −
ଷ

ଶ
𝑠𝑖𝑛ଶ(𝜑)൰

ଶ

, (2) 

r being the coefficient of restitution of kinetic energy. 

 
Figure 1: a) Rigid block model of the free rocking wall with support block; b) location of contact points at interface ‘j’. 

The ode45 solver available in MATLAB® was used for numerical integration of (1). The solver is based on a 
Runge-Kutta integration scheme. To take into account the impacts and corresponding energy dissipation during 
rocking motion, an event-driven algorithm was implemented. After the time of impact corresponding to a rotation 
angle equal to zero, the equation of motion is integrated on the basis of the angular velocity right after the impact. 
This velocity is obtained as follows: 

ఠ̇మ

ఠ̇భ
= √𝑟, (3) 

being �̇�ଶ and �̇�ଵ the angular velocity just after and before the impact. 

3. Formulation of the Rocking Response in Terms of Optimization Problems 

In this section, the discretized variational formulation of the equation of motion is presented. The formulation 
relies on a discrete numerical model, which includes two rigid blocks representing the rocking wall and the 
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support block (block 1 and block 2 in Fig. 1a). Pulse excitations are applied at support block 2. The rigid blocks 
interact at two contact interfaces j: the first one between block 1 and block 2 is a frictional contact interface while 
the second one, between block 2 and the ground, is a frictionless interface. Each contact interface comprises four 
contact points k,…k+3, as shown in Fig. 1b. For each contact point, a normal force, orthogonal to the contact 
surface, and a shear force are defined. Assuming an infinite compressive strength and a no-tension behavior, the 
present formulation includes three possible failure conditions at each contact point: opening, positive and 
negative sliding, which follow the Coulomb friction law. The relationship between internal forces and 
corresponding contact displacement rates at failure follows the rule of associative behavior in sliding: once 
internal forces at a contact point attain ultimate capacity, the corresponding sliding displacement leads to 
dilatancy. Such an assumption dramatically simplifies the mathematical position of the problem so that the 
kinematic behavior of contact points at failure can be expressed in terms of a flow rule matrix, which is simply the 
transpose of the matrix governing failure conditions, times the vector of flow multipliers. Considering that, in case 
of normal displacements, contact opening only is admitted, while the possibility of penetration at contact is 
prevented, a vector of initial gaps is introduced in the formulation to ensure that normal forces at contact occur 
only if the gap between two contact points is closed. 

As such, the matrix form of the equation system governing the rocking response of the wall can be posed in 
terms of a linear complementarity problem (LCP), as follows [32]: 

൦

𝑴ഥ . 𝑨𝟎

. . −𝒀𝐓

−𝑨𝟎
𝐓 𝒀 .

൪

௡×௡

൦

𝚫𝒙

𝝀

𝒄

൪

௡×ଵ

+ ቎

.

𝒚

.

቏ = ൦

𝒇ത𝟎

.

−𝒈𝟎

൪

s. t. 𝒚 ≤ 𝟎 𝝀 ≥ 𝟎 𝒚𝐓𝝀 = 0

, (4) 

where: 

𝚫𝒙: is the vector of displacement rates at block centroids; 

𝒄: is the vector of contact forces; 

𝒈𝟎: is the vector of contact gaps; 

𝒇ത𝟎: is the vector of external scaled forces; 

𝒚: is the vector of failure conditions; 

𝝀: is the vector of non-negative flow multipliers; 

𝑨𝟎: is the equilibrium matrix; 

𝑴ഥ : is the scaled mass matrix; 

𝒀: is the flow rule matrix. 

The rows of the matrix 𝑀 ∈ 𝑅௡×௡ associated to the LCP correspond to, respectively: equilibrium conditions; 
failure conditions; the flow rule, expressing the relative displacement rates at contact interfaces as a function of 
the displacement rates at block centroids and the vector of flow multipliers.  

A time-stepping scheme was used for the integration of the equation of motion, which is based on the implicit 
Euler method, assuming that at time 𝑡 = 𝑡଴ + 𝛥𝑡 accelerations and velocities are expressed as 𝒂(𝑡) =

𝒗ି𝒗𝟎

௱௧
 and 

𝒗(𝑡) =
𝜟𝒙

௱௧
, respectively, being 𝒗𝟎 the initial velocity at time 𝑡଴. The vector 𝚫𝒙 = 𝒙 − 𝒙𝟎 collects the displacement rates 

of the two blocks centroids that is simply the difference between the position 𝒙 of each centroid at the time 𝑡 and 
their initial position 𝒙𝟎 at the beginning of the analysis. 

Based on the adopted integration method, the scaled mass matrix and the scaled vector of external forces can 
be expressed on the basis of the corresponding matrix 𝑴 and vector 𝒇 as follows: 𝑴ഥ =

ଵ

௱௧మ 𝑴 and 𝒇
𝟎

= 𝒇 + 𝑴ഥ 𝒗𝟎𝛥𝑡. 
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Problem (4) is equivalent to the two dual quadratic optimization problems: 

min
ଵ

ଶ
𝚫𝒙𝐓 𝑴ഥ 𝚫𝒙 − 𝒇ത𝟎

𝐓𝚫𝒙

s. t. 𝚫𝒖 = 𝑨𝟎
𝐓 𝚫𝒙

𝚫𝒖 = 𝒀𝝀 + 𝒈𝟎, 𝝀 ≥ 𝟎

, 
(5) 

and 

max −
ଵ

ଶ
𝒊𝐓 𝑴ഥ ି𝟏𝒊 − 𝒈𝟎

𝐓𝒄

s. t. 𝒊 + 𝑨𝟎𝒄 = 𝒇ത𝟎

𝒚 ≤ 𝟎, 𝒚 = 𝒀𝐓𝒄

, 
(6) 

where 𝒊 = 𝑴ഥ 𝚫𝒙 is the vector of the scaled inertia forces. 

The scheme is based on the solution of the force-based problem (6) at the time step 𝑡଴, with unknown inertia 
forces 𝒊 and contact forces 𝒄 and known configuration 𝒙𝟎, velocities 𝒗𝟎 and scaled forces 𝒇

𝟎
. The displacement 

rates at block centroid 𝚫𝒙 are derived from the solution of problem (5), which is directly obtained from Lagrange 
multipliers associated with the solution of the problem (6). The new position of the blocks and velocities, contact 
gaps, and external forces are determined, and a new optimization problem (6) is formulated at time increment 
𝑡଴ + ∆𝑡 on the basis of updated configuration. 

4. Numerical Comparisons 

The response obtained from the solution of the ODE (1) and the optimization problems (5), (6) was compared 
for the free-standing wall shown in Fig. 1 subjected to rectangular pulse excitation. The wall dimensions were 𝐵ଵ =

0.50 𝑚 and 𝐻ଵ = 3.50 𝑚. In the numerical model, a friction coefficient equal to 0.6 was assumed to prevent sliding 
between the rocking wall and the support block. 

Fig. 2a shows the comparison of the responses for a rectangular pulse with a magnitude 𝑎௚ = 0.20𝑔 and 
duration 0.15 sec. The ODE of motion was integrated assuming for the angular coefficient of restitution √𝑟 = 0.95. 
The comparison in terms of angular velocity time history is also shown in Fig.3a, where the discontinuities at 
impacts correspond to the kinetic energy loss. 

 
Figure 2: Comparison of rotation time histories for a rectangular pulse with magnitude ag=0.20g and: a) duration equal to 
0.15s; b) duration equal to 0.62s. 

A comparison of the pulse duration involving the overturning of the wall was also carried out. In Fig. 2b, the 
responses obtained for a pulse with the same magnitude and duration equal to 0.62 sec. are reported. 

In the adopted non-smooth contact dynamic formulation, the dissipation depends upon the algorithm and is 
implicitly related to the time-stepping scheme used for integration. In Fig. 3b, the sensitivity of the angular 

-1.5E-01

-1.1E-01

-7.0E-02

-3.0E-02

1.0E-02

5.0E-02

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ω
(r

ad
) 

Time (s)

RB ODE

-5.0E-03

-3.0E-03

-1.0E-03

1.0E-03

3.0E-03

5.0E-03

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

ω
(r

ad
) 

Time (s)

RB ODE

a) b)



Gagliardo et al.  Journal of Advances in Applied & Computational Mathematics, 8, 2021 

 

114 

coefficient of restitution to the size of time increment is shown. It can be noted that the angular coefficient of 
restitution √𝑟 (corresponding to the line indicated with ‘Analytical’ in Fig. 3b) represents an upper bound to the 
numerical coefficient of restitutions corresponding to different time-step sizes. A comparison in terms of CPU time 
was also carried out using a PC equipped with a 3.3 GHz Intel Xeon E3-1245 processor with 8 GB of RAM. The 
results show that CPU time for the optimization-based formulation is up to two orders of magnitude longer than 
that required by the ODE solver for a time step of 0.001 sec and decreases by one order of magnitude for a step 
size of 0.008 sec.  

 
Figure 3: a) Comparison of angular velocities time histories for impulse duration equal to 0.15s; b) Sensitivity analysis of the 
angular coefficient restitution with a varying time step size. 

 

Figure 4: Comparison of CPU times of proposed RB model with MATLAB® ODE solver. 

5. Conclusions  

The rocking responses of a free-standing wall subjected to rectangular pulse excitation were investigated using 
the differential equation of motion and a dynamic contact formulation expressed in terms of optimization 
problems. Different durations of the acceleration pulse were considered to compare the responses in the case of 
free rocking motion and incipient overturning. 

The comparison showed that the numerical response obtained from the mathematical programming 
formulation is in good agreement with that obtained from the numerical integration of the differential equation of 
motion. 

Although the adopted variational formulation takes into account non-smooth events associated with impacts 
in a compact, general form, the energy dissipation remains implicitly related to the algorithm used for time 
integration and, in particular, to the size of the time increment. 

The comparison between the differential equation of motion and the adopted dynamic formulation was finally 
performed in terms of computational efficiency. Solution times for the variational formulation were found to be 
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up to two orders of magnitude longer than those needed by the ODE solver for the shortest time step size 
considered. Increasing the time step size in the numerical integration scheme used for the optimization problem 
also reduces computational costs of about one order of magnitude.  
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