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ABSTRACT 
Consider the first-order linear difference equation 

𝛥𝑥(𝑛) + 𝑝(𝑛)𝑥(𝑛 − 𝑘) = 0,    𝑛 ≥ 0, (1.1) 

where  denotes the forward difference operator, i.e. 𝛥𝑥(𝑛) = 𝑥(𝑛 + 1) − 𝑥(𝑛), {𝑝(𝑛)}௡ୀ଴
∞  

is a nonnegative sequence of reals and k is a natural number. 

Sharp conditions for the oscillation of all solutions to this equation are 
presented when the well-known oscillation conditions 
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are not satisfied. In the case that the sequence 𝐴(𝑛) = ∑௡ିଵ
௜ୀ௡ି௞ 𝑝(𝑖) is slowly varying at 

infinity then under additional assumptions  
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is a sharp condition for the oscillation of all solutions to Eq. (1.1). Analogue sharp 
oscillation conditions are also presented for the following linear difference equations 
with constant delays  

𝛥𝑥(𝑛) + ∑ 𝑝௜(𝑛)𝑥(𝑛 − 𝑙ଵ) = 0௞
௜ୀଵ ,   and variable delays   𝛥𝑥(𝑛) + ∑ 𝑝௜(𝑛)𝑥(𝜏௜(𝑛)) = 0௞

௜ୀଵ , 

where 𝑝௜(𝑛): 𝑁 → 0, ∞), 𝑙௜ ∈ 𝑁 and we assume that there exists a positive integer N such 
that 0 < 𝑙ଵ < 𝑙ଶ < ⋯ < 𝑙௞ ≤ 𝑁 holds in the constant delay case, and for variable delays 
the retarded arguments 𝜏௜: 𝑁 → 𝑍 satisfy 𝑛 − 𝑁 ≤ 𝜏௜(𝑛) ≤ 𝑛 − 1 for all 1 ≤ 𝑖 ≤ 𝑘 and 𝑛 ∈

𝑁. 
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1. Introduction 

Consider the first-order linear difference equation 

𝛥𝑥(𝑛) + 𝑝(𝑛)𝑥(𝑛 − 𝑘) = 0,    𝑛 ≥ 0, (1.1) 

where 𝛥 denotes the forward difference operator, i.e. 𝛥𝑥(𝑛) = 𝑥(𝑛 + 1) − 𝑥(𝑛), {𝑝(𝑛)}௡ୀ଴
ஶ  is a nonnegative 

sequence of reals and 𝑘 is a natural number and also the following linear difference equation with several variable 
delays of the form  

𝛥𝑥(𝑛) + ෍ 𝑝௜(𝑛)𝑥൫𝜏௜(𝑛)൯ = 0,

௞

௜ୀଵ

  (1.2) 

where 𝑝௜(𝑛): 𝑁 → [0, ∞), and the retarded arguments 𝜏௜ : 𝑁 → 𝑍 satisfy 𝑛 − 𝑁 ≤ 𝜏௜(𝑛) ≤ 𝑛 − 1 for all 1 ≤ 𝑖 ≤ 𝑘 and 
𝑛 ∈ 𝑁. 

In this survey, we present the most interesting sharp oscillation conditions for all solutions to the above 
difference equations. 

By a solution of the difference equation (1.1), we mean a sequence of real numbers {𝑥(𝑛)}௡ୀି௞
∞  which satisfies 

Eq.(1.1) for all 𝑛 ≥ 0. A solution {𝑥(𝑛)}௡ୀି௞
∞  of the difference equation (1.1) is said to be oscillatory, if the terms of 

the sequence {𝑥(𝑛)}௡ୀି௞
∞  are neither eventually positive nor eventually negative. Otherwise, the solution {𝑥(𝑛)}௡ୀି௞

∞  
is said to be nonoscillatory. 

Similarly, by a solution of the difference equation (1.2), we mean a sequence of real numbers (𝑥(𝑛))௡ୀ௡బ
∞  (with 

𝑛଴ ≥ −𝑁), which satisfies equation (1.2), for all integers 𝑛 ≥ 𝑛଴ + 𝑁 and such a solution is said to be oscillatory, if 
{𝑥(𝑛)}௡ୀ௡బ

∞  is neither eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory. 

2. Oscillations in Linear Difference Equation with Constant Delay 

The oscillatory behavior of the solutions to difference equations has gained a great attention in the last three 
decades. One can find vast literature on this subject such as [1-21] and the references cited therein. For the 
general theory of difference equations, the reader is referred to the monographs [8, 22-24]. For an overview of the 
most recent results, we refer to [25], the survey paper [26], and the references therein. In 1981, Domshlak [6] 
considered the case where 𝑘 = 1. In 1989, Erbe and Zhang [7] proved that all solutions of Eq. (1.1) oscillate if  
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Condition (2) was improved by Ladas, Philos and Sficas [11] by 
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(4) 

This condition turns out to be sharp, since when 𝑝(𝑛) is constant, say 𝑝(𝑛) = 𝑝, then it gives  
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𝑝 >
𝑘௞

(𝑘 + 1)௞ାଵ
, (5) 

which is a necessary and sufficient condition [13] for the oscillation of all solutions of Eq. (1.1). Moreover, as it is 
shown in [7], if  

𝑠𝑢𝑝 𝑝 (𝑛) <
𝑘௞

(𝑘 + 1)௞ାଵ
, (6) 

then Eq. (1.1) has a nonoscillatory solution. 

The conjecture of Ladas in 1990, that Eq. (1.1) has a nonoscillatory solution if  

෍ 𝑝(𝑖) ≤ ൬
𝑘

𝑘 + 1
൰

௞ାଵ௡ିଵ

௜ୀ௡ି௞

 for all large 𝑛. 

turns out to be false as it was shown by a counter-example given in 1994 by Yu, Zhang and Wang [21]. However, in 
1999 the "corrected Ladas conjecture"  

෍ 𝑝(𝑖) ≤ ൬
𝑘

𝑘 + 1
൰

௞ାଵ௡

௜ୀ௡ି௞

 for all large 𝑛, (7) 

implies that Eq.(1.1) has a nonoscillatory solution as stated by Tang and Yu [19]. In 2017, Karpuz [9] improved the 
above result by replacing condition (7) with the weaker condition  

෍ 𝑝(𝑖) ≤ ൬
𝑘

𝑘 + 1
൰

௞௡

௜ୀ௡ି௞

 for all large 𝑛. (8) 

In the case that the above mentioned conditions (3) and (4) are not satisfied, in 2004 Stavroulakis [16] and in 
2006 Chatzarakis and Stavroulakis [4] derived the following sufficient oscillation conditions for Eq. (1.1) 

,
4

1>)(limsup
21

=







ip

n

knin  
(9) 

,1>)(limsup
1

=

k
n

knin

ip 


  
(10) 

,
)2(2

1>)(limsup
21

= 







ip

n

knin  
(11) 

where 𝛼 is as in (4) and satisfies 0 < 𝛼 ≤ ቀ
௞

௞ାଵ
ቁ
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. Also, Chen and Yu [5], derived the following oscillation condition  
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In 2001, Shen and Stavroulakis [14], established several oscillation conditions which, in the case of the 
difference equation with 𝑘 = 1  

𝛥𝑥(𝑛) + 𝑝(𝑛)𝑥(𝑛 − 1) = 0, (13) 

reduce to the sufficient oscillation condition  
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When 𝛼 = 1/4, condition (14) takes the form  

1/4>)(limsup np
n   

(15) 

which accordingly to [14] can not be improved in the sense that the lower bound 1/4 can not be replaced by a 
smaller number. Indeed, Eq. (13) has a nonoscillatory solution if 𝑠𝑢𝑝 𝑝 (𝑛) < 1/4, by condition (6). But, even in the 
critical state where 1/4,=)(lim npn   Eq. (13) can be either oscillatory or nonoscillatory. For example, if 𝑝(𝑛) =
ଵ

ସ
+

௖

௡మ then Eq. (13) will be oscillatory in case 𝑐 > 1/4 and nonoscillatory in case 𝑐 < 1/4 (the Kneser-like theorem, 
[6]).  

Recall that the difference equation (1.1) is the discrete analogue of the delay differential equation 

𝑥 ′(𝑡) + 𝑝(𝑡)𝑥(𝑡 − 𝜏) = 0,   𝑡 ≥ 𝑡଴, (16) 

where 𝑝: [𝑡଴, ∞) → 𝑅ା is a nonnegative continuous function and 𝜏 is a positive constant. In 1972, Ladas, 
Lakshmikantham and Papadakis [27] proved that all solutions of Eq. (16) oscillate if  
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while in 1982, Koplatadze and Canturija [28] established the following result. If  

,
1

>)(liminf:=
e

dssp
t

tt
  

a
 

(18) 

then all solutions of Eq. (16) oscillate. If  

,
1

<)(limsup
e

dssp
t

tt
  

=A
 

or more generally,  
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  for all large 𝑡, 

then Eq. (16) has a non-oscillatory solution. Observe that in the case that 𝑝 is a positive constant, the above 
condition (18) reduces to  

𝑝𝜏 >
1

𝑒
, (19) 

which is a necessary and sufficient condition [8] for all solutions of the delay differential equation 

𝑥 ′(𝑡) + 𝑝𝑥(𝑡 − 𝜏) = 0,   𝑝, 𝜏 > 0, 

to oscillate. Nevertheless, note that ቀ
௞

௞ାଵ
ቁ
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௘
  as 𝑘 → ∞, and therefore conditions (4) and (5) can be 

interpreted as the discrete analogue of (18) and (19), respectively. 

Very recently, Garab et al. [29] essentially improved the above condition (18) by replacing it with  
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under the additional assumptions that 𝑝 is a bounded and uniformly continuous function such that  

      is slowly varying at infinity.
 

In accordance with [30], a sequence (𝑎(𝑛))௡∈ே is called slowly varying (at infinity), if  
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holds for all 𝑚 ∈ 𝑁. Obviously, this is equivalent to  
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A thorough description of slowly varying functions can be found in the monograph [31], in which, however, a 
different but related notion of slowly varying functions is treated. For a discussion on the connection of these two 
notions see [31, Chapter 1]. 

Pituk came up with the idea to use slowly varying functions for linear delay differential equations with a single 
constant delay in 2017 [32]. This was generalized in [29, 33, 34] for several variable delays. For difference 
equations, the first result can be found in [35]. 

Theorem 1 [35, Theorem 2.1] Assume that 𝑝(𝑛)௡∈ே is nonnegative and bounded such that  
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(21) 

Then all solutions of Eq. (1.1) oscillate.  

Example 2 [35, Example 3.1] Consider the difference equation 

𝛥𝑥(𝑛) + 𝑝(𝑛)𝑥(𝑛 − 2) = 0,    𝑛 ≥ 0, (22) 

where )
2

(cos
9

1
=)( 2 nnp

  with 𝜎 ∈ (
ଵ

ଶ଻
,

ଵ

ଽ
). It is clear that ଵ

ଽ
≤ 𝑝(𝑛) <

ଶ

ଽ
 and Eq.(22) is a special case of Eq. (1.1) 

with 𝑘 = 2. 

To show that 𝑝(𝑛) is slowly varying at infinity, it suffices to show that 𝑓: [0, +∞) → 𝑅 with 

)
2

(cos
9

1
=)( 2 xxf

  is so. By [29, 32] a continuous function 𝑓: [0, +∞) → 𝑅 is slowly varying at infinity if and 

only if there exists a natural number 𝑙ଵ and functions 𝑔, ℎ: [𝑙ଵ, +∞) → 𝑅 such that 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) on [𝑙ଵ, +∞), 
where g is continuous with )(lim xgx   being a finite number, and ℎ is a continuously differentiable function 

with 0=)(lim xh'
x  . It is clear that 𝑓(𝑥) satisfies these conditions since ଵ

ଽ
 is constant and the derivative of 

)
2

(cos2 x


 vanishes at infinity. Note that 𝑝(𝑛) is slowly varying at infinity which implies that 𝐴(𝑛) is also slowly 

varying. 
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Furthermore, by the choice of 𝜎, we have  
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That is, all conditions of Theorem 1 are satisfied and therefore all solutions of Eq.(22) oscillate. 

Next, we show that this conclusion cannot be derived from any of the known results mentioned in Section 1. 
First we compare our criterion with (1), (2) and (3). Observe that,  

      

Moreover,  

𝛽 = 1/9 < 4/27 

and also, by the choice of 𝜎,  
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 3
1

2=

2/3<2/9=)(liminf= ip
n

nin






 

and therefore, the condition (4) is not satisfied. 

Further, we compare with the conditions (9)-(12). As we have seen, 𝛼 = 2/9 < (2/3)ଷ and 𝐵 = 2/9 + 2𝜎 < 4/9. 
Observe that,  

𝐵 < 4/9 < 80/81 = 1 − 𝛼ଶ/4, 

𝐵 < 4/9 < 77/81 = 1 − 𝛼ଶ, 

𝐵 < 4/9 <
71

72
= 1 −

𝛼ଶ

2(2 − 𝛼)
, 

and  

𝐵 < 4/9 <
11 + √41

18
= 1 −

1 − 𝛼 − √1 − 2𝛼 − 𝛼ଶ

2
, 

and therefore none of the conditions (9), (10), (11), and (12) is satisfied.  

3. Oscillations in Linear Difference Equation with Variable Delays 

Consider the following linear difference equations with constant delays:  

𝛥𝑥(𝑛) + ෍ 𝑝௜(𝑛)𝑥(𝑛 − 𝑙௜) = 0

௞

௜ୀଵ

 

 0>1/9=)(liminf=


np
n

 and 1/9.1<2/9<)(limsup 


np
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and variable delays:  

𝛥𝑥(𝑛) + ෍ 𝑝௜(𝑛)𝑥(𝜏௜(𝑛)) = 0,

௞

௜ୀଵ

 

where 𝑝௜(𝑛): 𝑁 → [0, ∞), 𝑙௜ ∈ 𝑁 and we assume that there exists a positive integer 𝑁 such that 0 < 𝑙ଵ < 𝑙ଶ < ⋯ < 𝑙௞ ≤

𝑁 holds in the constant delay case, and for variable delays the retarded arguments 𝜏௜ : 𝑁 → 𝑍 satisfy 𝑛 − 𝑁 ≤ 𝜏௜(𝑛) ≤

𝑛 − 1 for all 1 ≤ 𝑖 ≤ 𝑘 and 𝑛 ∈ 𝑁. Here 𝛥 denotes again the forward difference operator, i.e., 𝛥𝑥(𝑛) = 𝑥(𝑛 + 1) − 𝑥(𝑛) 
and 𝑁 denotes the set of nonnegative integers. 

Note that, equation (E) is a special case of equation (1.2) with 𝜏௜(𝑛) = 𝑛 − 𝑙௜ and equation (1.2) can also be 
written in the form (E) with 𝑘 = 𝑁 and different coefficient functions 𝑝௜ . 

Recently, Chatzarakis, Pinelas, and Stavroulakis [36] (corrected version of [37]) obtained the following result for 
equation (1.2). 

Theorem 3 [36, Theorem 2.2] Suppose that the functions 𝜏௜(⋅), 1 ≤ 𝑖 ≤ 𝑘, are nondecreasing for all 1 ≤ 𝑖 ≤ 𝑘. 
Moreover, assume that  

e
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hold for all 1 ≤ 𝑖 ≤ 𝑘. Then, all solutions of (1.2) oscillate.  

As noted in [38], the assumption 0>)(limsup
1=

npi

k

in   in (23) and of monotonicity of 𝜏௜ can be omitted. 

Clearly, Theorem 3 works also for (E), that is, for the constant delay. 

The following result was essentially obtained by Yan, Meng, and Yan in 2006 [39, Theorem 1], however, as 
Karpuz and Stavroulakis recently pointed out [25], some corrections were necessary.  

Theorem 4 [25, Theorem G] Assume that  
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where  := for 𝑛 ∈ 𝑁. Then every solution of (1.2) oscillates.  

For the case of constant delays the following sharper result was obtained in 1999 by Tang and Yu [19]. 

Theorem 5 [19, Corollary 4] Assume that  
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Then every solution of equation (E) is oscillatory.  

The concept of slowly varying is used in [38] to improve the above results and also it is assumed that  

  holds for all  

 
(26) 

The following result in the next theorem improves Theorem 3.  

Theorem 6 [38, Theorem 6] Suppose that condition (26) holds and that there exists a positive constant 𝑀 such 
that 0 ≤ 𝑝௜(𝑛) ≤ 𝑀 holds for all 1 ≤ 𝑖 ≤ 𝑘. Assume further that there exists a sequence (𝜏∗(𝑛))௡∈ே such that 𝜏௜(𝑛) ≤

𝜏∗(𝑛) ≤ 𝑛 − 1 holds for all 1 ≤ 𝑖 ≤ 𝑘 and 𝑛 ∈ 𝑁, and that the function  
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is fulfilled. Then, all solutions of (1.2) oscillate.  

Since equation (E) is a special case of equation (1.2) with 𝜏௜(𝑛) = 𝑛 − 𝑙௜, the following result as an immediate 
corollary of Theorem 6, is obtained. 

Theorem 7 [38, Theorem 7] Suppose that  

 for all  

 

and there exist a positive constant 𝑀 and a positive integer 𝑙∗ ≤ 𝑙ଵ such that 0 ≤ 𝑝௜(𝑛) ≤ 𝑀 hold for all 1 ≤ 𝑖 ≤ 𝑘 
and the function  
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is slowly varying, and moreover, the inequality  
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is fulfilled. Then all solutions of (E) oscillate.  

Analogously to Theorem 6, Theorem 4 gets sharper under some additional assumptions, as follows. 

Theorem 8 [38, Theorem 9] Suppose that condition (26) holds and there exists a positive constant 𝑀 such that 
0 ≤ 𝑝௜(𝑛) ≤ 𝑀 holds for all 1 ≤ 𝑖 ≤ 𝑘. Assume further that there exists a sequence (𝜏∗(𝑛))௡∈ே such that 𝜏௜(𝑛) ≤

𝜏∗(𝑛) ≤ 𝑛 − 1 holds for all 1 ≤ 𝑖 ≤ 𝑘 and 𝑛 ∈ 𝑁, and that the function  
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is fulfilled. Then all solutions of equation (1.2) are oscillatory.  

Similarly Theorem 5 is improved by the following result. 

Theorem 9 [38, Theorem 10] Suppose that  

 for all  

 

and there exists 𝑀 > 0 such that 0 ≤ 𝑝௜(𝑛) ≤ 𝑀 hold for all 1 ≤ 𝑖 ≤ 𝑘. Furthermore, assume that the function  
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holds. Then every solution of equation (E) is oscillatory.  

The last two Theorems improve Theorem 1 because it is a special case with 𝑘 = 1 and 𝜏∗(𝑛) = 𝜏ଵ(𝑛). 

The following Example compares Theorems 6 and 3. 

Example 10 [38, Example 3.1] Let us consider equation (1.2) with 𝑘 = 2 and 𝑁 = 3. We suppose that 𝜏௜(𝑛) ∈

{𝑛 − 2, 𝑛 − 3} for all 𝑛 ∈ 𝑁 and 𝑖 = 1,2, but let’s not make further assumptions on 𝜏ଵ and 𝜏ଶ for now. Furthermore, 
let the coefficient functions be defined by  
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for all 𝑛 ∈ 𝑁, where 𝑐ଵ, 𝑐ଶ, 𝑑ଵ and 𝜀 are positive parameters with 𝜀 < 𝑐ଵ. Then, by choosing 𝜏∗(𝑛) = 𝑛 − 2 for all 
𝑛 ∈ 𝑁, it is elementary to show that the sequence  
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is slowly varying at infinity and that  
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(consider the subsequence 𝛿(𝑛) = 4𝑛ଶ + 1). On the other hand, the coefficient functions are clearly nonnegative 
and bounded, and moreover, condition (26) also holds. Hence, the application of Theorem 6 implies that all 
solutions oscillate, whenever  

2(𝑐ଵ + 𝑐ଶ + 𝑑ଵ) >
1

𝑒
 (30) 

is fulfilled. 

On the other hand, if, for example, 𝜏ଵ(𝑛) = 𝑛 − 2 and 𝜏ଶ(𝑛) = 𝑛 − 3 for all 𝑛 ∈ 𝑁, then it is not hard to check that 
Theorem 3 can only guarantee oscillation of all solutions if  
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which is clearly more restrictive than condition (30). 

In the constant (single) delay case with 𝜏ଵ(𝑛) = 𝜏ଶ(𝑛) ≡ 𝑛 − 3, we should choose 𝜏∗(𝑛) = 𝑛 − 2 for these 
coefficient functions. This is because with the choice of 𝜏∗(𝑛) ≡ 𝑛 − 3, we would get  
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resulting in 02|=)(1)(|lim  nAnAn , meaning that 𝐴(𝑛) is not slowly varying and one could not apply 
Theorem 6 with this choice of 𝜏∗.  

Finally, an application of Theorem 9 is given. 

Example 11 [38, Example 3.2] Consider the constant delay equation (27) with 𝑙ଵ = 1 and 𝑙ଶ = 2 and coefficient 
functions  
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with positive constants 𝑐ଵ, 𝑐ଶ and 𝑑ଵ. The coefficients are evidently nonnegative and bounded, moreover, condition 
(26) is satisfied. 

Then the function  
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is slowly varying at infinity, so Theorem 9 can be applied to obtain that all solutions are oscillatory, provided  
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On the other hand, Theorem 4 can guarantee oscillation of all solutions only if the stronger condition 4𝑐ଵ +
ଶ଻

ସ
𝑐ଶ > 1 is satisfied.  

Summary In this paper, we present sharp oscillation conditions for difference equations with one and several 
delays. The conditions essentially improve the related existing ones from 𝑙𝑖𝑚𝑖𝑛𝑓 to 𝑙𝑖𝑚𝑠𝑢𝑝. The same problem can 
be considered for non-linear and also for higher order difference equations. 
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