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Abstract: In order to analyze the power control problem, the wireless quantum network nodes are modeled as players at 
a quantum game. The power control problem is one of the most significant wireless communications challenges which 

characteristics make it proper to be modeled by means of game theory techniques. The problem results in non-
cooperative game by nature, but, under quantum rules, a larger strategy space leads the players to choose a coalition 
strategy as the best option. Thus, the use of quantum game strategies makes possible the emergence of new 

equilibrium, which guarantees the best possible performance to the whole network. We show also that the whole network 
power consumption decreases when the intrinsic parallel behavior of quantum computation is capitalized. Moreover, the 
design of efficient medium access control algorithms is possible. 
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1. INTRODUCTION 

In the last decades, there has been a breakthrough 

in wireless communication networks. Many types of 

portable communication devices, such as 

smartphones, tablets, PDAs are carried by many 

people for use in the different domains of their lives. 

Thus, given the plenty of transmission protocols and 

software radio capabilities, networks are evolving to 

less structured and increasingly involve distributed 

decision making. Power control problems games are 

about the right amount of power the nodes of a network 

must use to send information through the available 

channels. When the used power increases, the 

wireless devices battery life diminishes and the 

interference between users increases. On the other 

hand, there is a minimum of transmission power that 

satisfies the quality of service thresholds. 

In other words, from a particular user point of view, 

an efficient power control algorithm must support him 

with some minimum acceptable throughput, whereas 

from the whole network point of view, the aggregate 

throughput must be maximized. Accordingly, many 

techniques have proven to be successful by various 

authors and researchers for this purpose. Among these 

techniques, because of the problem characteristics, the 

most appropriate are based on game theory models. 

The application of game theory dates back to the 

90's. Game theory is the study of strategic decision  
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making, where the decision makers are players whose 

utilities (or payoffs) depend on other players' actions [1, 

2]. Particularly, in a multiuser wireless network system 

the nodes behave like players in a game [3-9], so that 

they compete or even cooperate in order to achieve the 

wanted quality of service. 

In [10] for instance, the authors studied the 

competitive and cooperative distributed spectrum 

coordination techniques for the two users Gaussian 

interference game. The author shows that the most 

used IWF (Iterative water-filling) algorithm is not 

optimum. The IWF algorithm converges to a situation in 

which the power of one transmitter is allocated 

uniformly in every possible channel [11, 12], however a 

problem arises when more than one transmitter are 

involved. Because of the competing interests, this 

situation can lead to the prisoner's dilemma [13]. The 

prisoner's dilemma is about two persons who are 

arrested and put in separated rooms to be interrogated. 

The police talk to them and tell their options: If they 

both cooperate with each other (do not confess) they 

receive a minimum sentence, three months for 

example. If only one of them betrays (confess) this one 

is freed but the other is considered guilty of all the 

charges and given the maximum penalty, five years for 

example. On the other hand, if both betray and plead 

guilty, they receive a sentence of 1 year in jail. Thus, 

each prisoner must decide between to cooperate which 

would benefit both, but at risk of being betrayed or to 

betray in order to protect himself. As both of them 

receive the same deal, both decide to betray although 

through cooperation they could serve less prison time. 

Therefore, the problem has a Nash equilibrium, which 

is not Pareto optimum, i.e., users do not achieve the 

maximum rate. On the contrary, the quantum version of 
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the prisoner’s dilemma game does have an optimum 

solution [14]. In this framework, the quantum model 

presented here is game based model where players 

take their decisions thinking about not only but also on 

the others benefits in order that the whole network gets 

the best possible performance. In this way, quantum 

games larger space of strategies gives the players new 

chances inducing the system to new stability points. 

In this paper, we present an N players interference 

quantum model and analyze players’ performance of 

using classic or quantum strategies. Because of the 

network users must decide between the whole network 

health and their own, the prisoner’s dilemma is also 

present in this case. However, the dilemma can be 

eliminated by means of quantum entanglement and 

quantum superposition, two features only feasible 

under quantum computation. Then, it is possible to 

consider a quantum phase, interleaved in the real 

classic protocols, that manages fairly the users’ power 

spectrum. 

2. A QUANTUM GAME OF INTERFERENCE 

Power control becomes necessary when a set of 

wireless mobiles share a common network. The 

purpose is to let every user to send information without 

causing unnecessary interference to the others. That 

is, the most power they use, the harder the interference 

they can cause to the neighbors receptions. Besides, 

the more power they save, the longer is the wireless 

devices battery life. On the other hand, because there 

is a constraint in the minimum of transmission power 

necessary to satisfy the quality of service thresholds, 

the users can not reduce the transmission power too 

much even in the case of no interference. 

Earlier studies have shown that the selfish nature of 

the network users and because of the lack of 

information about other users actions, the system 

converges to an equilibrium where the best choice is to 

distribute power P in all the available channels [10, 12]. 

Clearly that is not the most favorable situation for the 

overall network, because of the unnecessary 

interference and the high battery drain. Even though a 

better condition is reached when every user chooses a 

different channel, the results are not good for 

cooperative users if there is a group of users that do 

selfishly. Hereinafter, we define the main aspects of the 

classic problem, after that, we will explain the 

necessary changes to build the quantum model and the 

advantages that it brings with. 

In this model, as in the real scenario, N independent 
network users with no information about other user 
actions are considered. They are free to choose among 
N channels, so they can use only one (cooperative 
attitude), otherwise they can distribute their power 
among all the available channels (selfish attitude). It is 
supposed that every user may transmit a total power P, 
that is, in one channel or distributed through all the 
channels. The payoffs obtained by the players are 
linked to the Signal-to-interference-and-noise-ratio 
(SINR), that is, the greater the SINR the better is the 
reception quality. The signal S is related to the power 
used by one player, the interference I is related to the 
power received from the other players. As a 
consequence, the best way to assign value to the 
reward (payoff) some player j obtains from the network 
is through the Shannon Capacity, [15], given by 

equation (1), where j

k P  is the power that transmitter j 

assigns to channel k and h
ij
(k)   is the k channel gain 

between the transmitter jth  and receiver i
th  . 

Moreover, 
  

(k)   is the thermal noise at the receiver on 

channel k. 
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The players strategies consist on choosing the 
fractions of P assigned to each channel by means of 
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P  denotes, for instance, 

the portion of power player j assigns to channel i. 
Thereby, the payoff each player receives will depend 
on the quality of the channel and the chosen action 
vector A. 

In our model, the players must decide between two 

extreme options, these are Cooperating, which implies 

to select only one channel, or Defecting, which implies 

to distribute the power among all the channels. It is 

known that this problem has an inefficient solution 

classically, since the users finds to Defect as the best 

option. However, we show that it is possible to quantize 

the model in order to improve the players utilities. 

Consequently, in what follows we describe the 

characteristics of the quantum model. 

  
S0

    

=

00…0 + i 11…1

2

          (2) 

In the first place, the system initial state 
  
S0  

depicted in (2) corresponds to the quantum 
superposition of the every user cooperating state, 

  
00…0  and the every user defecting state, 

  
11…1 . So, 
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note that “0” in some position j means that user 

  
0 j N 1   decides to cooperate and a “1” means the 

opposite situation. Note also that without the users 
intervention, the system outcome can only be one of 
this two situations with probability 1/2. Every user is 
aware about the initial state and they are able to 
transform the system final state according to their 
strategies. The users strategies must transform the 
system state in order to change the probability 
amplitudes of the corresponding states. Thus, the 
quantum strategies are represented by unitary 
operators on a Hilbert space (3) that the users apply 
locally to their qubit on the entangled state and 
transform the whole system behavior accordingly. 
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The selection of some 0 < <  and 0 < <
2

 

implies covering linear combinations of strategies 
whose application drops outcomes that are not different 
from the classic game with mixed strategies and other 

combinations of 
 
( , )  which lead to outcomes that are 

not possible in the classic game and consequently new 
equilibrium points emerge [16]. 
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In order to clarify some concepts we present the 
case of N=3 players transmitting over the same 
number of channels. Besides, for the sake of simplicity 
and without affecting the problem generality, we 

consider the normalization 
  
h

ij
(k)   hen i=j and 

  
h

ij
(k)

for any other case, being (4) the network matrix. 
Suppose A, B and C denote three players whose 
utilities are calculated using expression (1), that is, the 
classical case. For instance, the player A utilities are 
displayed in Table 1 as function of his and the other 
users actions. As the table shows, the highest utility 
results when he defects and the other players 

cooperate 
  
ABC = 7.65.  On the other hand, if the other 

players betray while A cooperates, he receives a 
significantly smaller payoff. Because of that, classically 
all players decide to betray on average and resulting 
2.42 the channel capacity for any user. In other words, 
if, for example, it is supposed the minimum Capacity 

C
j  admitted is 2, the players will prefer a clear 

communication at the expense of the battery drain. 
This clearly is the Nash Equilibrium for the network and 
the corresponding payoff results less than the one the 
players would achieve if they all cooperate. This 
situation is shown in Figure 1 where the user C payoff 

is depicted as function of others users actions. The 
upper surface corresponds to the case of user C 
deciding to Betray and the lower surface graph arises 
from the C decision to Cooperate. 

Table 1: Player A capacity for SNR=100 and h=0.23. 
0=Cooperate and 1=Defect. The highest utility 
results when A defects and the others 
cooperate. On the other hand, if the others 
betray while A cooperates, the last receive 
significantly smaller payoff. Because of the 
symmetry, the same occurs with other players 
payoffs. 
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When the problem is analyzed from the point of 

view of quantum computation, that is, when the initial 

state is entangled and the strategy space is spanned to 

add new strategies, it is possible to present new 

favorable conditions to the users. In other words, they 

can make use of some strategy which leads to a more 

favorable situation for the entire network. 

Preparing the system in the entangled state (2) 
defined above; the players choose their strategies 
according to their preferences and their previous 
experience. Meanwhile, the classic strategy 

“Cooperate” is represented by 
  
U (0,0)  while betraying 

is represented by strategy 
  
U (

2
) , and, as Figure 2 

shows, the Player C payoff depends on the 
 
( , )  

combinations. The data of C payoff depicted in the 
figure arise when the strategies of A and B are 

  
Q =U ( ,0) . As a consequence, it is observed that 

player C best strategy is also to choose 
  
U ( ,0)  and 

because of the problem symmetry, Q results the best 
strategy for every player. Moreover, this is a Pareto 
optimum due to none user is willing to change because 
the payoff would be less than 3.3291, the one 

corresponding to the strategy, 000 . 
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Figure 1: Player's C payoff as function of  and . Users A and B play both strategy 
  
Q =U ( ,0) The maximum payoff is 

clearly 
 
( ,0)  and then, the best strategy for C is to play also 

  
U ( ,0)   

 

 

Figure 2: Player C payoff as function of 
 
and  Users A and B play both strategy 

  
Q =U ( ,0) . The maximum payoff is clearly 

 
( ,0)  and then, the best strategy for C is to play also

  
U ( ,0) . 

Consequently, the quantum model offers the users 

a different way of stable cooperation, allowing better 

transmissions and less battery drain. 

3. CONCLUSIONS 

We have proposed a novel quantum game 

application. The selfish behavior of users in a wireless 

network can be naturally modeled by a game. The 

nodes of the network are the players and the payoffs 

are represented by the users transmission rate. The 

classic strategies are Cooperate with the whole 

network, which implies to direct all the power to one 

channel, or to betray, distributing the power to all the 

channels causing interference to other users and 

diminishing their SINR. The quantum game of 

interference can describe classic users behavior but 

also permits to design new power control techniques 

for improving the actual ones. Cooperating is the best 

choice because of power saving and interference 

avoiding but is not an equilibrium condition, since any 

player can do better if change the strategy to "Betray''. 

On the other hand, the use of quantum entanglement 

make possible the use of a different strategy which 

drives to a Pareto optimal equilibrium, guaranteeing the 

best possible performance for the whole network in the 

sense of better transmission rate and more power 

saving. 
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