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ABSTRACT 

The planetary gearbox is an important part of the wind turbine. There are many 

random uncertain factors in the process of design, production, installation, and use, 

and these uncertain factors greatly influence the service life and reliability of the 

planetary gearbox. Therefore, the influence of uncertain factors needs to be 

considered in the design process to reduce the risk of failure. In this paper, an 

uncertainty design optimization method based on evidence theory is proposed, which 

can consider both interval variables and random variables in the optimization process. 

Then the megawatt wind turbine planetary gearbox is taken as the research object to 

analyze its uncertainty sources. Finally, the planetary gearbox is optimized by the 

proposed method. By comparing the results, the design scheme obtained by the 

method proposed in this paper is more reliable. 
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1. Introduction 

Wind turbines include drive systems, power generation equipment, and other electromechanical components. 

Because wind turbines are generally installed in mountains, wilderness, beaches, islands, and other places, and 

the capacity of wind turbines has gradually increased, it has gradually developed to megawatt-level wind turbines. 

Therefore, the system structure is also becoming more and more complex, and the probability of failure is 

increasing [1]. In the drive system of the wind turbine, the planetary gearbox is a crucial component. The wind 

wheel must transmit the power to the generator through the planetary gearbox gear pair and get the 

corresponding speed. As a power transmission component, the planetary gearbox is usually installed in a narrow 

tower space [2]. Once failure occurs, maintenance is difficult and costly. Therefore, the wind power generation 

system has high requirements on the service life of the planetary gearbox. 

At present, scholars have done a lot of research on the design of planetary gearboxes. In the design process, Li 

et al. [3] checked the contact and bending fatigue strengths of the sun gear and planetary gear, respectively, to 

verify the calculation results. Finally, the designed gearbox is analyzed by modeling and finite element analysis 

methods. Yang et al. [4] calculated the forces acting on the pitch circles of planetary gears, as well as the forces 

and lifetimes of planetary bearings in a two-stage planetary transmission. Then, the obtained results were 

compared with a single rotor wind turbine. Chen et al. [5] developed a dynamic model of a planetary gearbox 

considering the clearances of the planetary gear, sun gear, and load-bearing as well as the crack level of the sun 

gear teeth, which laid the foundation for the reliability design of the planetary gearbox. 

The inherent reliability of planetary gearboxes is determined by the design, manufacture, and production 

process [6,7]. The reliability of use shown in its working process is affected by many factors, including the accuracy 

of parts manufacturing, machining and assembly, changes in wind load, temperature changes on material 

properties and lubrication properties, corrosive gases and other factors [8-10]. Most of these factors are difficult 

to quantify. Usually users focus on the reliability of planetary gearboxes during use. However, to improve its 

reliability during use, in addition to regular and proper maintenance, it is more important to fully consider the 

influence of uncertain factors in the design stage. Therefore, it is of great significance to study the reliability of 

planetary gearboxes under different working conditions and to improve the reliability indicators in its design [11]. 

However, by introducing reliability into the design, although it can guarantee or predict the probability that the 

designed product will complete the specified function under the specified conditions of use and within the 

specified use time, it cannot guarantee that the product has the best operating performance and the lowest cost. 

Therefore, in order to make the planetary gearbox meet not only the reliability requirements but also have the 

optimal design results, which is necessary to combine the reliability design theory with the optimization design 

technology. This is the reliability optimization design method. According to this design method, not only the 

reliability of the planetary gearbox in use can be given quantitatively, but also the optimal solution of the 

planetary gearbox in terms of function, parameter matching, structure size, and quality can be obtained. 

However, in the optimal design method, dealing with uncertain factors is a difficult problem at present. 

Schietzold et al. [12] propose a framework for considering polymorphic uncertain priors and design parameters in 

multi-objective optimization. Based on this framework, parameter-based geometric design optimization of steel 

hooks is studied. Ding [13] devised a general simulation algorithm to estimate uncertain random expected values. 

In the optimization process, Mourelatos [14] proposes an optimal design method based on evidence theory that 

only considers interval variables. 

However, the above studies only consider the impact of objective uncertainty or cognitive uncertainty. Aiming 

at the above problems, this paper proposes a method using interval and random mixed variables to describe 

design variables and parameters with subjective and objective uncertainties. Then use evidence theory to carry 

out the reliability optimization design under interval and random mixed variables so as to obtain the optimal 

design solution considering interval and random uncertainty. The core idea of this method is divided into the 

following steps: First, in the interval segment, the extreme value of the limit state function is estimated by the 
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vertex method. Then, the reliability extrema of the limit state function are estimated at the extreme point using 

the First Order Reliability Method (FORM) [15]. Finally, the optimal design is carried out using the Evidence-Based 

Design Optimization (EBDO) algorithm that only considers interval variables. 

The other parts of this paper are organized as follows. In Section 2, the basic content of evidence theory is 

introduced. In Section 3, the EBDO method that considers both interval variables and random variables are 

proposed. The mathematical model of this method is further given. In Section 4, the proposed method is applied 

to the optimal design of the planetary gearbox for megawatt wind turbines, and the optimal mathematical model 

is given. In Section 5, the optimization results of the proposed method on the research object are analyzed, and 

the proposed method is proved to be feasible. Finally, Section 6 concludes the paper. 

2. The Basic Content of Evidence Theory 

Evidence theory is also known as D-S theory. The D-S theory was proposed by the scholar Dempster in the mid-

twentieth century [16]. As a student of Dempster, Shafer further generalized, theorized, and systematized 

evidence theory. Since its birth, the D-S theory has gradually become one of the research hotspots. The research 

on the theory of evidence is mainly divided into two aspects: one is the perfection and development of its own 

theory; the other is the research on the extension and application of the theory of evidence. So that evidence 

theory can be better applied to practical engineering. 

This part will briefly introduce the basic content of evidence theory. Ref. [16-18] introduces the optimal design 

and fuzzy calculation process of evidence theory in detail. 

If a proposition is solved based on the theory of evidence, its purpose is to transform the processing of a 

proposition into solving a set. The basis for this transformation is the identification frame. Suppose 𝛩 is a finite 

non-empty orthogonal set (space), called the identification space. Every possible hypothesis is included in this 

space. 

𝛩 = {𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙1, 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙2, ⋯ , 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑚}. (1) 

where: 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 is a value range of the interval variable. 

The power set of the identification frame contains all possible propositions formed by the basic propositions in 

𝛩 through "and", "not", "or" and other logical relations, the number of which is 2𝑛, denoted by 2𝛩. 

After the identification framework is determined, the credibility is reset to the assignment based on the 

evidence. That is, researchers further interpret and analyze the evidence to ensure that the evidence can reliably 

support any proposition. This process is called Basic Probability Assignments (BPA), which is similar to the 

probability density function in probability theory. BPA function 𝑚: 2𝛩 → [0,1], 𝑚(⋅) ∈ [0,1].It satisfies:  

𝑚(𝑋) ≥ 0, ∀∈ 2𝛩 (2) 

𝑚(𝛷) = 0 (3) 

∑𝑚(𝑋)

𝑋⊆𝛩

= 1 (4) 

where: 𝑚 is the basic credibility distribution function; 𝑋 is any subset of the power set 2𝛩 corresponding to the 

recognition frame; 𝑚(𝑋) is the credibility number of the event 𝑋; the interval 𝑋 of 𝑚(𝑋) ≥ 0 is called the focal 

element. 

When the BPAs of each possibility in the set 𝛩 are known, the Belief measure (Bel) and the Plausibility measure 

(Pl) of 𝑋 can be calculated by Eq. (5). 
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{
 
 

 
 𝐵𝑒𝑙(𝑋) = ∑𝑚(𝑌)

𝑌⊆𝑋

,          𝑋 ⊆ 𝛩

𝑃𝑙(𝑋) = ∑ 𝑚(𝑌),

𝑌∩𝑋≠𝛷

         𝑋 ⊆ 𝛩, 𝑌 ⊆ 𝛩
 (5) 

where: 𝑚(𝑌) is the credibility number of the event 𝑌.𝐵𝑒𝑙(𝑋) is the sum of the BPAs of the focal elements fully 

contained by the proposition 𝑋, and 𝑃𝑙(𝑋) is the sum of the BPAs of the focal elements that intersect with the 

proposition 𝑋. 

Evidence theory is a fuzzy calculation method based on Bel and Pl, and imprecision or uncertainty can be 

represented by Bel and Pl [19]. In the Dempster-Shafer (D-S) evidence theory, the Bel of X is the minimum 

possibility of X, and the Pl of X is the maximum possibility of X, so there is the following relationship: 

{
𝑃𝑙(𝑋) = 1 − 𝐵𝑒𝑙(�̄�)

𝑃𝑙(𝑋) ≥ 𝐵𝑒𝑙(𝑋)
 (6) 

When evidence comes from different independent sources or different experts, even if the evidence obtained 

is contradictory, D-S evidence theory can also be merged. Assuming that A and B are BPAs with evidence from two 

different independent sources or experts, they can be fused as follows [20]: 

𝑚(𝑋) = 𝑚1(𝑌) ⊕𝑚2(𝑍) = {

0, 𝑌 ∩ 𝑍 = ∅
∑ 𝑚1(𝑌) × 𝑚2(𝑍)𝑌∩𝑍=𝑋

1 − ∑ 𝑚1(𝑌) × 𝑚2(𝑍)𝑌∩𝑍=∅

, 𝑌 ∩ 𝑍 ≠ ∅
 (7) 

Where: ∑ 𝑚1(𝑌) × 𝑚2(𝑍)𝑌∩𝑍=∅  addresses the degree of conflict in evidence from disparate sources of 

information. The larger the value, the more severe the conflict between the information. 

3. EBDO Considering Both Interval Variables and Random Variables 

At present, the optimal design method based on evidence theory only considers interval variables. It discretely 

divides random variables that conform to specific probability distributions according to their probability density 

functions but do not reasonably and effectively apply known information to the discretization of random 

variables, making it possible to optimize the results further. This paper improves the optimal design method 

based on evidence theory [16,17]. Both interval and random variables are considered in the optimization process. 

In the reliability analysis, the extreme point of the limit state function is analyzed first, and then the FORM is used 

to analyze the reliability of the limit state function in the reliability analysis [15]. When carrying out the optimal 

design, the improved EBDO is applied to carry out the optimal design. 

3.1. Estimation of Extremum Reliability of Limit State Function with Interval Random Mixed Variables 

The reliability can be understood as the probability that the limit state function 𝑔(𝑋) ≥ 0 is caused by the 

uncertainty factor after the optimization design average point is determined. Therefore, when the limit state 

function𝑔(𝑋) ≥ 0 the farther the mean point of the optimized design is from the constraint boundary, the higher 

the calculated reliability; conversely, when the limit state function𝑔(𝑋) ≤ 0, the farther the mean point of the 

optimized design is from the constraint boundary, the lower the calculated reliability is also. From the above 

analysis, when the limit state function includes interval variables and random variables, and the mean value, the 

variance of the random variable, and the upper and lower boundaries of the interval variable are known, the 

reliability limit value of the limit state function in a certain interval can be calculated by Eq. (8). 

𝑅 = [𝑃(𝑚𝑖𝑛( 𝑔(𝑐𝑗), 𝑔(𝐸𝑘)) ≥ 0), 𝑃(𝑚𝑎𝑥( 𝑔(𝑐𝑗), 𝑔(𝐸𝑘)) ≥ 0)] 𝑗 = 1,2,⋯𝑁, 𝑘 = 1,2,⋯ ,𝑚 (8) 

where: 𝐸𝑘 represents the kth extreme point except the extreme boundary point; m represents the number of 

extreme points other than the extreme boundary point. FORM is used to calculate the reliability. 
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3.2. The Calculation of Bel and Pl in Reliability Analysis Considering Interval Variables and Random 

Variables 

In this paper, the Bel and Pl in reliability analysis considering interval variables and random variables are 

calculated by using the transformation function [21]. 

𝑃 = 𝑃𝑟{𝐺(𝑌, 𝑋) ≥ 0} (9) 

where: Y is the interval variable vector; X is the random variable vector; 𝐺(⋅)is the limit state function; 

𝑃𝑟{⋅}represents the probability value when𝑔(⋅) ≥ 0.  

Assuming that 𝑦𝑠𝑒𝑡1 and 𝑦𝑠𝑒𝑡2 (𝑦𝑠𝑒𝑡1 ∈ 𝑌, 𝑦𝑠𝑒𝑡2 ∈ 𝑌) are two independent interval variables, and their BPAs are the 

values after fusion of D-S evidence theory. Define the vector 𝑐𝑖𝑗 = [𝑦𝑠𝑒𝑡1𝑖 , 𝑦𝑠𝑒𝑡2𝑗]. 

𝐶 = 𝑦𝑠𝑒𝑡1 × 𝑦𝑠𝑒𝑡2 = {𝑐𝑖𝑗 = [𝑦𝑠𝑒𝑡1𝑖 , 𝑦𝑠𝑒𝑡2𝑗], 𝑦𝑠𝑒𝑡1𝑖 ∈ 𝑦𝑠𝑒𝑡1, 𝑦𝑠𝑒𝑡2𝑖 ∈ 𝑦𝑠𝑒𝑡2, } (10) 

where: C represents the combined interval, and 𝑁1, 𝑁2 (𝑖 ∈ 𝑁1, 𝑗 ∈ 𝑁2) is the interval variable number of 𝑦𝑠𝑒𝑡1 and 

𝑦𝑠𝑒𝑡2, respectively. Because all variables are independent of each other, the BPAs of C can be calculated by Eq. (11). 

𝑚𝑐(ℎ𝑖𝑗) = 𝑚(𝑦𝑠𝑒𝑡1𝑖)𝑚(𝑦𝑠𝑒𝑡2𝑗),      ∑𝑚𝑐(ℎ𝑖𝑗)

𝑖,𝑗

= 1 (11) 

Define an interval function F: 

𝐹 = {𝑔𝑖𝑗 : 𝑔𝑖𝑗 = 𝑃𝑟𝑖𝑗{𝐺(𝑌, 𝑋) ≥ 0} , 𝑖 ∈ 𝑁
1, 𝑗 ∈ 𝑁2} (12) 

where: 𝑃𝑟𝑖𝑗{⋅} represents the probability value of 𝑦1 ∈ 𝑦𝑠𝑒𝑡1𝑖 , 𝑦2 ∈ 𝑦𝑠𝑒𝑡2𝑖 .  

Because Y is an interval variable vector and X is a random variable vector, 𝑔𝑖𝑗 is an interval value, and the 

following equation can calculate its maximum and minimum values: 

[𝑔𝑖𝑗_𝑚𝑎𝑥𝑖𝑗_𝑚𝑖𝑛 = [𝑃𝑟𝑖𝑗_𝑤𝑜𝑟𝑠𝑡 −𝑃𝑟0, 𝑃𝑟𝑖𝑗_𝑏𝑒𝑠𝑡 −𝑃𝑟0,]] (13) 

Where: 𝑃𝑟𝑖𝑗_𝑤𝑜𝑟𝑠𝑡 is the minimum probability value of 𝑦 ∈ 𝑐𝑖𝑗; 𝑃𝑟𝑖𝑗_𝑏𝑒𝑠𝑡 is the maximum probability value of 𝑦 ∈

𝑐𝑖𝑗 ; 𝑃𝑟𝑖𝑗_𝑤𝑜𝑟𝑠𝑡 and .𝑃𝑟𝑖𝑗_𝑏𝑒𝑠𝑡 can be calculated by Eq. (9). 

The calculation relationship between Bel and Pl is shown in Fig. 1: 

_ minijg

_ maxijg

0g 

0g 

0g =

_ maxijg

_ minijg

_ maxijg
0g 

0g 

0g =_ minijg

0g 

0g 

0g =  

Figure 1: The calculation relationship between Bel and Pl. 

When 𝑦 ∈ 𝑐 = [𝑦𝑠𝑒𝑡1𝑖 , 𝑦𝑠𝑒𝑡2𝑗] is 𝑦1 ∈ [𝑦𝑠𝑒𝑡1𝑖_𝑙 , 𝑦𝑠𝑒𝑡1𝑖_𝑢], 𝑦2 ∈ [𝑦𝑠𝑒𝑡2𝑖_𝑙 , 𝑦𝑠𝑒𝑡2𝑖_𝑢], if 𝑔𝑖𝑗_𝑚𝑖𝑛, 𝑔𝑖𝑗_𝑚𝑎𝑥, then 𝑚𝑐(ℎ𝑖𝑗) ∉ 𝐵𝑒𝑙(𝐹), 

𝑚𝑐(ℎ𝑖𝑗) ∉ 𝑃𝑙(𝐹); if 𝑔𝑖𝑗_𝑚𝑖𝑛 , 𝑔𝑖𝑗_𝑚𝑎𝑥 , then 𝑚𝑐(ℎ𝑖𝑗) ∉ 𝐵𝑒𝑙(𝐹), 𝑚𝑐(ℎ𝑖𝑗) ∈ 𝑃𝑙(𝐹); if 𝑔𝑖𝑗_𝑚𝑖𝑛 , 𝑔𝑖𝑗_𝑚𝑎𝑥 , then 𝑚𝑐(ℎ𝑖𝑗) ∈ 𝐵𝑒𝑙(𝐹), 

𝑚𝑐(ℎ𝑖𝑗) ∈ 𝑃𝑙(𝐹). From the above analysis, there are the following relationships: 
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𝐵𝑒𝑙(𝐹) ≤ 𝑃 ≤ 𝑃𝑙(𝐹) (14) 

where: 𝑃 = 𝑃𝑟( 𝐺 ≥ 0) is the true probability value of F. 

3.3. The Mathematical Model of EBDO Considering Interval Variable and Random Variable Simultaneously 

Because of 𝐵𝑒𝑙(𝑔 ≥ 0) ≤ 𝑃( 𝑔 ≥ 0) ≤ 𝑃𝑙(𝑔 ≥ 0), the following relation can be obtained from Eq. (14). 

{
if 𝐵𝑒𝑙(𝑔 ≥ 0) ≥ 𝑅, then 𝑃( 𝑔 ≥ 0) ≥ 𝑅
if 𝑃𝑙(𝑔 ≤ 0) ≤ 𝑃𝑓 , 𝑡ℎ𝑒𝑛 𝑃( 𝑔 ≤ 0) ≥ 𝑃𝑓

 (15) 

where: R is the probability value when feasible and 𝑃𝑓 = 1 − 𝑅 is the probability value when it fails. 

The EBDO model considering both interval and random variables can be expressed as follows: 

𝑚𝑖𝑛
d,X,Y

      𝑓(d,X𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) 

s.t.       𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔𝑖(d,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≥ 0} − 𝑃𝑟0𝑖 > 0) ≥ 𝑅𝑖 , 𝑖 = 1,2,⋯ , 𝑛 

           𝑑𝐿 ≤ 𝑑 ≤ 𝑑𝑈, 𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈, 𝑌𝐿 ≤ 𝑌 ≤ 𝑌𝑈 

(16) 

Where: d is the deterministic design variable vector, 𝑋𝑁 is the random design variable vector, 𝑌𝐼 is the interval 

design variable vector, 𝑃𝑁 is the random design parameter vector, 𝑃𝐼 is the interval design parameter vector, 𝑓(⋅)is 

the objective function, 𝑔(⋅)is the limit state function, n is the number of constraint functions. 

The algorithm flow of EBDO considering interval and random variables is shown in Fig. 2: 

 

Figure 2: Flow chart of EBDO algorithm considering interval and random variables. 
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4. EBDO Optimization Mathematical Model of Planetary Gearbox for 

Megawatt Wind Turbine  

4.1. Overview of 1.5 MW Wind Turbine Planetary Gearbox Structure 

The real structure diagram of the planetary gearbox is shown in Fig. 3. Because the rated input speed of the 

planetary gearbox does not exceed 20 𝑟/𝑚𝑖𝑛 and the output speed is above 1790 𝑟/𝑚𝑖𝑛 [22], the 1.5MW wind 

turbine planetary gearbox is connected with a 2-stage parallel shaft and a 1-stage planetary transmission 

structure, as shown in Fig. 4. 

Input shaft

Planet carrier

Internal gear

Sun gear

Output shaft

Planet gear

 

Figure 3: Real structure diagram of planetary gearbox. 

1 2

3H

4 5

6 7

Low 

speed

Medium 

speed

High 

speed
 

Figure 4: Schematic diagram of 1.5MW wind turbine planetary gearbox structure [23]. 

In Fig. 4, 1 represents the sun gear in the planetary gear train; 2 represents the planetary gear in the planetary 

gear train; 3 represents the fixed ring gear in the planetary gear train; H represents the planet carrier in the 

planetary gear train. Both the intermediate stage and the high-speed stage are driven by helical gears, 4 and 5 

represent the intermediate stage gears, and 6 and 7 represent the high-speed stage gears. Compared with the 

spur gear, the helical gear increases the total contact area of the gear pair, which can increase the bearing 

capacity of the speed increase box, improve the stability of the output shaft end of the speed increaser, and 

increase the stability of rotation. Therefore, the gears in the planetary gearbox use helical gears. 
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4.2. Uncertainty Source Analysis in Optimization Design of Planetary Gearbox for Wind Turbine 

Wind turbines are commonly installed in mountains, wilderness, beaches, and islands [24]. They are often 

affected by irregularly variable loads and strong gusts of wind. These environmental factors are subject to great 

uncertainty [25]. The planetary gearbox is a key component of the wind turbine drive system. The wind wheel 

must transmit the power to the generator through the planetary gearbox so that it can get the corresponding 

speed. As a part of power transmission, planetary gearboxes have great uncertainty in the dynamic and static 

loads during operation [26]. 

There are many objective uncertainties in the machining process of planetary gearboxes, such as random 

errors in machining dimensions and random non-uniformity of material properties. There is also an installation 

error in the installation of the planetary gearbox. If these uncertainties are not considered in the design of the 

planetary gearbox, there will be unpredictable consequences for the reliability of the wind power system 

Due to the lack of design methods, design means, and knowledge, the final design of the planetary gearbox is 

likely to be quite different from the real needs. This is also the uncertainty in the design process. 

Most of the above-mentioned uncertainty factors are difficult to describe with specific probability distributions, 

and EBDO considering interval variables and random variables can deal with the uncertainties in the optimization 

design process at the same time. Therefore, the optimal design of the planetary gearbox will be carried out using 

EBDO considering multi-interval variables and random variables. 

4.3. The Embodiment of Uncertainty in the Optimization Design Process of Wind Turbine Planetary 

Gearbox 

In the initial stage of optimization design of planetary gearbox for the wind turbine, the actual uncertainties are 

mainly reflected in the interval variables and random variables in the design process. This paper discusses how to 

optimize the design of the planetary gearbox of the megawatt wind turbine. All the gears used in the gearbox are 

helical, so the optimization design of the nine helical gear parameters in the gearbox is the design focus of this 

paper. 

The independent parameters selected and determined in the design process are called design variables [27], 

and the design variables include continuous design variables and discrete design variables. In this paper, the 

design variables are the number of helical gear teeth Z, the normal modulus 𝑚𝑛, the helix angle 𝛽, and the tooth 

width coefficient 𝜙𝑑. In the optimization design of this paper, the normal displacement coefficient A of the helical 

gear is not regarded as a design variable. The data in the helical gear of the wind turbine planetary gearbox will be 

determined according to the final optimized result, the strength requirements of the helical gear, and the original 

design scheme.  

In the process of optimal design, in addition to the parameters used as design variables, the parameters whose 

value fluctuates are called uncertain design parameters. In this design, the uncertain design parameters include 

environment-related parameters, manufacturing process-related parameters, and material-related parameters. 

There is a certain deviation between the theoretical and actual values of these parameters. Some of these 

deviations can be expressed by specific probability distributions. Some can only be expressed in a certain 

probability interval. 

Therefore, there are 10 parameters involved in this design (𝐾𝐴, 𝐾𝑉 , 𝐾Hβ, 𝐾Fβ, 𝐾𝐻𝛼 , 𝐾𝐹𝛼 , 𝐾HP, 𝐾FP, 𝑌FS, 𝜎HP, 𝜎FP, 𝑃, 𝑛). 𝐾𝐴 

and 𝐾𝑉 are the service factor and dynamic load factor, respectively; 𝐾Hβ and 𝐾Fβ are the tooth load distribution 

coefficients; 𝐾𝐻𝛼 and 𝐾𝐹𝛼 are the load distribution coefficients between teeth; 𝐾HP and 𝐾FP are the transmission 

load non-uniformity coefficients of NGW type planetary gears; 𝑌FS is compound tooth shape coefficients; 𝜎HP and 

𝜎FP are the allowable stress of the tooth surface contact fatigue and the allowable stress of the tooth root bending 

fatigue of the helical gear, respectively; 𝑃 and 𝑛 are the input power and speed, respectively. 
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The parameter selection and value selection in the optimization design process in this paper mainly refer to 

Ref. [28-30]. 

4.4. Optimization Mathematical Model of EBDO for Planetary Gearbox of Wind Turbine Considering 

Interval Variables and Random Variables 

4.4.1. Selection of Design Variables 

Considering the convenience of optimization calculation, this paper regards the number of teeth as a 

continuous variable. Then round off the result. However, rounding results tend to invalidate the constraints of the 

limit state function, which is sometimes very dangerous when designing. Here, in order to solve the failure 

problem that may be caused by rounding, this paper adopts the following solutions. First, when calculating the 

maximum and minimum reliability values of the corresponding limit state function, calculate the limit reliability 

value of the change of the number of teeth within the interval of Eq. (17). Then the calculated limit value is used to 

calculate the corresponding limit state function confidence and likelihood. 

𝑧 ∈ [𝑧 − 𝑚𝑜𝑑( 𝑧, 1), 𝑧 − 𝑚𝑜𝑑( 𝑧, 1) + 1] (17) 

where: 𝑧 is the number of teeth; 𝑚𝑜𝑑( 𝑧, 1) is the remainder of 𝑧. 

The comprehensive analysis shows that in the case of the total speed-up ratio 𝑖 =
1

88.8
, only the characteristics 

of the helical gears 1, 4, and 6 greatly influence the design of the 1.5MW wind turbine planetary gearbox. These 

characteristics are the number of teeth 𝑧 and normal modulus 𝑚𝑛, helix angle 𝛽, and tooth face width 

coefficient𝜙𝑑. A pair of mutually meshing helical gears have the same normal modulus 𝑚𝑛, helix angle 𝛽, and 

tooth face width coefficient𝜙𝑑. Therefore, there are 14 design variables in this design.  

𝑋 = [𝑧1, 𝑧4, 𝑧6, 𝑚n123, 𝑚n45, 𝑚n67, 𝛽123, 𝛽45, 𝛽67, 𝜙d123, 𝜙d45, 𝜙d67, 𝑖45, 𝑖67]
𝑇 

    = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14]
𝑇 

(18) 

where: 𝑧1 is the number of teeth of sun gear 1; 𝑧4 is the number of teeth of helical gear 4; 𝑧6 is the number of teeth 

of helical gear 6. 𝑚n123, 𝛽123 and 𝜙d123 are the normal modulus, helix angle, and tooth face width coefficient of the 

low-speed helical gear, respectively. 𝑚n45, 𝛽45, 𝜙d45 and 𝑖45 are the normal modulus, helix angle, tooth face width 

coefficient, and transmission ratio of the intermediate stage helical gear, respectively. 𝑚n67, 𝛽67, 𝜙d67 and 𝑖67 are 

the normal modulus, helix angle, tooth face width coefficient, and transmission ratio of the intermediate helical 

gear, respectively. 

𝑧1, 𝑧4, 𝑧6, 𝑚n123, 𝑚n45, and 𝑚n67 are treated as continuous variables when the corresponding optimization 

program is written. 𝑖45 and 𝑖67 are two deterministic design variables. 𝛽123, 𝛽45, 𝛽67, 𝜙d123, 𝜙d45, and 𝜙d67 are random 

variables treated as fluctuations that conform to a normal distribution. 

{
 
 

 
 
𝛽123 ∼ 𝑁(𝛽123, 0.01)

𝛽45 ∼ 𝑁(𝛽45, 0.01)

𝛽67 ∼ 𝑁(𝛽67, 0.01)
𝜙d123 ∼ 𝑁(𝜙d123 , 0.01)

𝜙d45 ∼ 𝑁(𝜙d45, 0.01)

𝜙d67 ∼ 𝑁(𝜙d67, 0.01)

 (19) 

4.4.2. The Establishment of the Objective Function 

Since the planetary gearbox is usually installed in a small space on the top of the tower, when optimizing the 

design, the volume of the planetary gearbox is as small as possible. At the same time, reducing the volume of the 

planetary gearbox is beneficial to reduce the mass of the planetary gearbox and thus reduce the production cost. 

Therefore, this paper takes the volume of the planetary gearbox as the evaluation function. The goal of 

optimization is to minimize the volume of the planetary gearbox. 
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The size of the helical gear and the gear shaft is the original basis for determining the size of the planetary 

gearbox assembly. Therefore, the objective function is established with the volume of the helical gear, regardless 

of the volume of the planetary gearbox housing and bearing. So far, the volume 𝑉 of the planetary gearbox can be 

expressed as a function of the design variables above: 

𝑉 = 𝑓(𝑧1, 𝑧4, 𝑧6, 𝑚n123, 𝑚n45, 𝑚n67, 𝛽123, 𝛽45, 𝛽67, 𝜙d123, 𝜙d45, 𝜙d67, 𝑖45, 𝑖67) 

   =
𝜋

4
(
𝑚n123𝑧1
𝑐𝑜𝑠 𝛽123

)
3

⋅ (
𝑖45 ⋅ 𝑖67
𝑖

− 1)
2

⋅ 𝜙d123 +
𝜋

4
(
𝑚n45𝑧4
𝑐𝑜𝑠 𝛽45

)
3

⋅ (1 + 𝑖45
2 ) ⋅ 𝑖45 ⋅ 𝜙d45 

      +
𝜋

4
(
𝑚n67𝑧6
𝑐𝑜𝑠 𝛽67

)
3

⋅ (1 + 𝑖67
2 ) ⋅ 𝑖67 ⋅ 𝜙d67 

(20) 

where: the meanings of 𝑧1, 𝑧4, 𝑧6, 𝑚n123, 𝑚n45, 𝑚n67, 𝛽123, 𝛽45, 𝛽67, 𝜙d123, 𝜙d45, 𝜙d67, 𝑖45 and 𝑖67 are explained in 4.4.1. 

Since the design variables in this paper include interval variables and random variables, and the design 

parameters include interval parameters and random parameters, the objective function is expressed as: 

𝑓 = 𝑓(X,X𝑁 ,Y𝐼 ,P𝑁 ,P𝐼)
𝜋

4
(
𝑥4𝑥1
𝑐𝑜𝑠 𝑥7

)
3

⋅ (
𝑥13𝑥14
𝑖

− 1)
2

⋅ 𝑥10 +
𝜋

4
(
𝑥5𝑥2
𝑐𝑜𝑠 𝑥8

)
3

⋅ (1 + 𝑥13
2 ) ⋅ 𝑥13 ⋅ 𝑥11 

+
𝜋

4
(
𝑥6𝑥3
𝑐𝑜𝑠 𝑥9

)
3

⋅ (1 + 𝑥14
2 ) ⋅ 𝑥14 ⋅ 𝑥12 

(21) 

Where: X is a deterministic design variable, in this design X=[𝑖45, 𝑖67] = [𝑥13, 𝑥14]; 𝑋
𝑁 is a random design variable, 

in this design 𝑋𝑁 = [𝛽123, 𝛽45, 𝛽67, 𝜙d123, 𝜙d45, 𝜙d67] = [𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12]; 𝑌
𝐼 is an interval design variable, in this 

design 𝑌𝐼 = [𝑧1, 𝑧4, 𝑧6, 𝑚n123, 𝑚n45, 𝑚n67] = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]; 𝑃𝑁 is a random design parameter, 𝑃𝑁 =

[𝐾𝐴, 𝐾𝑉 , 𝐾Hβ, 𝐾Fβ, 𝐾𝐻𝛼 , 𝐾𝐹𝛼 , 𝐾HP, 𝐾FP, 𝑌FS, 𝜎HP, 𝜎FP]; 𝑃
𝐼 is an interval design parameter, in this design 𝑃𝐼 = [𝑃, 𝑛]. 

4.4.3. Establishment of Constraints 

According to the principle that the equivalent number of teeth of the small helical gears meshing with each 

other is not less than 17, it can be concluded that the constraint conditions that the number of teeth of the helical 

gear in the optimal design must meet are: 

{

𝑐1(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − Pr_worst{𝑔1(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐2(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − Pr_worst{𝑔2(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐3(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − Pr_worst{𝑔3(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

 (22) 

𝑔1(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 17 −

𝑧1
𝑐𝑜𝑠3 𝛽123

 (23) 

𝑔2(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 17 −

𝑧4𝑖45
𝑐𝑜𝑠3 𝛽45

 (24) 

𝑔3(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 17 −

𝑧6𝑖67
𝑐𝑜𝑠3 𝛽67

 (25) 

According to the principle that the normal modulus of the helical gear should not be less than 2mm when it is 

in power transmission, it can be concluded that the constraint conditions that the normal modulus of the helical 

gear must satisfy in the optimal design are: 

{

𝑐4(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 2 − 𝑚n123 ≤ 0

𝑐5(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 2 − 𝑚n45 ≤ 0

𝑐6(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 2 − 𝑚n67 ≤ 0

 (26) 

According to engineering experience, this paper takes the helix angle of the helical gear 8∘ ≤ 𝛽 ≤ 15∘. 

Therefore, the constraints of the helix angle in this paper are: 
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{
  
 

  
 
𝑐7(X,X

𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔4(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐8(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔5(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐9(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔6(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐10(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔7(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐11(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔8(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐12(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔9(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

 (27) 

𝑔4(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 8∘ − 𝛽123 (28) 

𝑔5(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 8∘ − 𝛽45 (29) 

𝑔6(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 8∘ − 𝛽67 (30) 

𝑔7(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝛽123 − 15

∘ (31) 

𝑔8(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝛽45 − 15

∘ (32) 

𝑔9(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝛽67 − 15

∘ (33) 

In this paper, the low-speed transmission adopts NGW planetary helical gear rotation. Considering its use 

environment, take its transmission ratio range as 1/9~1/2.7. Under the condition that the speed increase ratio 𝑖 =

1/88.8 of the planetary gearbox in this paper is constant, the transmission ratio of the planetary transmission 

stage is 𝑖/(𝑖45𝑖67). Therefore, the constraints of the transmission ratio in this paper are: 

{
 
 

 
 
𝑐13(X,X

𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 1.01𝑖45 − 𝑖67 ≤ 0

𝑐14(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 𝑖67 − 1.05𝑖45 ≤ 0

𝑐15(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) =

1

9−

𝑖

(𝑖45⋅𝑖67)
≤ 0

𝑐16(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) =

𝑖

(𝑖45⋅𝑖67)−
1

2.7

≤ 0

 (34) 

Considering the use environment and design requirements, the tooth width coefficient 𝜙𝑑 of the planetary 

gear transmission stage is 0.5 ≤ 𝜙𝑑 ≤ 0.7. Take the tooth width coefficient 𝜙𝑑 of the intermediate and high-speed 

transmissions as 0.7 ≤ 𝜙𝑑 ≤ 1.2. Therefore, the constraints of the tooth width coefficient in the design of this paper 

are: 

{
  
 

  
 
𝑐17(X,X

𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔10(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐18(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔11(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐19(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔12(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐20(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔13(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐21(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔14(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐22(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃𝑟{𝑔15(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

 (35) 

𝑔10(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 0.5 − 𝜙d123 (36) 

𝑔11(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜙d123 − 0.7 (37) 

𝑔12(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 0.7 − 𝜙d45 (38) 

𝑔13(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜙d45 − 1.2 (39) 

𝑔14(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 0.7 − 𝜙d67 (40) 

𝑔15(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜙d67 − 1.2 (41) 

This paper adopts helical gear transmission. The coincidence degree 𝜀𝑟 of the helical gears meshing with each 

other is the sum of the end face coincidence degree 𝜀𝛼 and the longitudinal coincidence degree 𝜀𝛽. Considering 
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the environment and requirements of the planetary gearbox, the end face coincidence degree 𝜀𝛼 is 𝜀𝛼 ≥ 1.3, and 

the longitudinal coincidence degree 𝜀𝛽 is 𝜀𝛽 ≥ 1. Therefore, the coincidence constraints in this paper are: 

{
  
 

  
 
𝑐23(X,X

𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃r_worst{𝑔16(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐24(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃r_worst{𝑔17(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐25(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃r_worst{𝑔18(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐26(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃r_worst{𝑔19(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐27(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃r_worst{𝑔20(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

𝑐28(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝑃r_worst{𝑔21(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} ≤ 0

 (42) 

𝑔16(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 1.3 −

1

2𝜋
[𝑧1(𝑡𝑎𝑛 𝛼at1 − 𝑡𝑎𝑛 2 0

∘) + 𝑧2(𝑡𝑎𝑛 𝛼at2 − 𝑡𝑎𝑛 2 0
∘)] (43) 

𝑧2 =
𝑧1
2
⋅ (
𝑖45 ⋅ 𝑖67
𝑖

− 2) (44) 

𝑔17(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 1.3 −

1

2𝜋
[𝑧4(𝑡𝑎𝑛 𝛼at4 − 𝑡𝑎𝑛 2 0

∘) + 𝑧5(𝑡𝑎𝑛 𝛼at5 − 𝑡𝑎𝑛 2 0
∘)] (45) 

𝑧5 = 𝑧1 ⋅ 𝑖45 (46) 

𝑔18(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 1.3 −

1

2𝜋
[𝑧6(𝑡𝑎𝑛 𝛼at6 − 𝑡𝑎𝑛 2 0

∘) + 𝑧7(𝑡𝑎𝑛 𝛼at7 − 𝑡𝑎𝑛 2 0
∘)] (47) 

𝑧7 = 𝑧6 ⋅ 𝑖67 (48) 

where: 𝛼ati(𝑖 = 1~7) is the pressure angle of the tip circle of the intermeshing helical gears; 𝑖 is the transmission 

ratio of the low-speed gear; 𝑔16, 𝑔17 and 𝑔18 are the limit states of the end face coincidence of the three pairs of 

intermeshing helical gears. 

𝑔19(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 1 −

𝑏1 𝑠𝑖𝑛 𝛽123
𝜋𝑚n123

 (49) 

𝑏1 =
𝑚n123𝑧1
𝑐𝑜𝑠 𝛽123

⋅ 𝜙d123 (50) 

𝑔20(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 1 −

𝑏45 𝑠𝑖𝑛 𝛽45
𝜋𝑚n45

 (51) 

𝑏45 =
𝑚n45𝑧4 ⋅ 𝑖45
𝑐𝑜𝑠 𝛽45

⋅ 𝜙d45 (52) 

𝑔21(X,X
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 1 −

𝑏67 𝑠𝑖𝑛 𝛽67
𝜋𝑚n67

 (53) 

𝑏67 =
𝑚n67𝑧6 ⋅ 𝑖67
𝑐𝑜𝑠 𝛽67

⋅ 𝜙d67 (54) 

where: 𝑔19, 𝑔20 and 𝑔21 are the limit states of longitudinal coincidence of three pairs of intermeshing helical gears. 

Considering the transmission ratio, concentricity, assembly, and adjacency conditions comprehensively, the 

constraints of planetary gear transmission can be obtained: 

𝑐29(X,X
𝑁 ,Y𝐼 ,P𝑁,P𝐼) = 2 ⋅ 1 − 𝑧1_lower_doundary ⋅ [𝑠𝑖𝑛

𝜋

3
−
1

2
(
𝑖45 ⋅ 𝑖67
𝑖

− 2) ⋅ (1 − 𝑠𝑖𝑛
𝜋

3
)] ≤ 0 (55) 

where: 𝑧1_lower_doundary is the lower bound of the one-interval continuous design variable. 
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Considering the influence of parameters such as the circumferential force of the helical gear and the load of 

the planetary gear train, the constraint conditions for the contact fatigue strength of the helical gear tooth surface 

can be obtained as follows: 

{
 
 

 
 𝑐30(X,X

𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔22(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐31(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔23(𝑋

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐32(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔24(𝑋

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐33(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔25(𝑋

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

 (56) 

𝑔22(𝑋
𝑁,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎𝐻2 − 𝜎HP2 (57) 

𝑔23(𝑋
𝑁,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎𝐻3 − 𝜎HP3 (58) 

𝑔24(𝑋
𝑁,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎𝐻4 − 𝜎HP4 (59) 

𝑔25(𝑋
𝑁,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎𝐻6 − 𝜎HP6 (60) 

Where: 𝜎𝐻2 and 𝜎HP2 are the contact fatigue limit stress and allowable stress of the tooth surface of the 

planetary gear 2, respectively; 𝜎H3 and 𝜎HP3 are the contact fatigue limit stress and allowable stress of the tooth 

surface of the internal gear 3, respectively; 𝜎Hi and 𝜎HPi are the contact fatigue limit stress and allowable stress of 

the helical gear i, respectively (i=4, 6). 

Considering the influence of the parameters such as the circumferential force of the helical gear and the load 

of the planetary gear train, the constraint condition of the bending fatigue strength of the root of the helical gear 

is: 

{
 
 
 

 
 
 
𝑐34(X,X

𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔26(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐35(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔27(𝑋

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐36(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔28(𝑋

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐37(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔29(𝑋

𝑁,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐38(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔30(𝑋

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐39(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔31(𝑋

𝑁,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

𝑐40(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) = 0.99 − 𝐵𝑒𝑙(𝑃𝑟𝑤𝑜𝑟𝑠𝑡{𝑔32(𝑋

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) ≤ 0} − 0.99 > 0) ≤ 0

 (61) 

𝑔26(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎F1 − 𝜎FP1 (62) 

𝑔27(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎F2 − 𝜎FP2 (63) 

𝑔28(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎F3 − 𝜎FP3 (64) 

𝑔29(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎F4 − 𝜎FP4 (65) 

𝑔30(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎F5 − 𝜎FP5 (66) 

𝑔31(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎F6 − 𝜎FP6 (67) 

𝑔32(𝑋
𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) = 𝜎F7 − 𝜎FP7 (68) 

where: 𝜎F1and 𝜎FP1 are the bending fatigue limit stress and allowable stress of the tooth root of the sun gear 1, 

respectively; 𝜎F2 and 𝜎FP2 are the bending fatigue limit stress and allowable stress of the tooth root of the planetary 

gear 2; 𝜎F3 and 𝜎FP3 are the bending fatigue limit stress and allowable stress of the tooth root of the internal gear 3, 

respectively; 𝜎Fi and 𝜎FPi are the bending fatigue limit stress and allowable stress of the tooth root of the helical 

gear i respectively (i=4~7); 
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4.5. A Mathematical Model for EBDO Optimization Design of a Planetary Gearbox for 1.5MW Wind Turbine 

Based on the above analysis and literature [28,30], there are 14 design variables and 40 constraints in this 

design, of which 32 are probabilistic constraints. The specific and complete mathematical model is: 

( )

( )

( )
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(69) 

where: the constraints with the same representation form are combined and described together. For example, 

𝑐1∼3(X,X
𝑁 ,Y𝐼 ,P𝑁 ,P𝐼) represents 1, 2, 3 of the constraint condition, and 𝑔1∼3(X,X

𝑁 ,Y𝐼 , 𝑃𝑁 , 𝑃𝐼) represents 1, 2, 3 of the 

limit state function. 

5. Optimization of EBDO and analysis of results 

The mathematical model built in the fourth part is solved by MATLAB. The obtained results are shown in Tables 

1-3.  

Table 1: Volume optimization results 

 Optimization Results Rounded results Initial data 

V(mm3) 7.9407 × 108 6.7439 × 108 8.0146 × 108 

 

Analyzed by volume: For the convenience of calculation, it is assumed that the number of teeth and the 

module are continuous design variables, and the limit conditions are constraints. Rounding to a small direction or 

to a large direction during rounding has no effect on the Bel and Pl of the corresponding limit state function. To 
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minimize the design objective, the number of teeth and the module are rounded toward the small boundary 

during rounding. In this way, the rounded data can satisfy the constraints and reduce the design goals. 

Only from the volume analysis of the design target: the volume of the optimized planetary gearbox is 

7.9407 × 108mm3; the calculated volume after all data is rounded is 6.7439 × 108mm3. This is 15.85% less than the 

original volume of planetary gearbox 8.0146 × 108mm3. 

Table 2: Comparison of gear tooth surface contact fatigue strength and tooth root bending fatigue strength reliability 

before and after rounding. 

  Before Rounding [Bel-Pl] After Rounding [Bel-Pl] 

Contact fatigue strength 

reliability of tooth surface 

Meshing of wheel 1 and 2 [0.9998-0.9999] [0.9998-0.9999] 

Meshing of wheel 2 and 3 [1.0000-1.0000] [1.0000-1.0000] 

Meshing of wheel 4 and 6 [0.9910-0.9977] [0.9910-0.9977] 

Meshing of wheel 6 and 7 [0.9998-0.9999] [0.9998-0.9999] 

Reliability of tooth root bending 

fatigue strength 

Sun gear 1 [0.9999-1.0000] [0.9999-1.0000] 

Planetary gear 2 [0.9913-0.9949] [0.9913-0.9949] 

Ring gear 3 [0.9999-1.0000] [0.9999-1.0000] 

Helical gear 4 [0.9959-0.9999] [0.9959-0.9999] 

Helical gear 5 [0.9986-0.9999] [0.9986-0.9999] 

Helical gear 6 [1.0000-1.0000] [1.0000-1.0000] 

Helical gear 7 [0.9999-1.0000] [0.9999-1.0000] 

 

Analysis from the degree of confidence: the reliability of the contact fatigue strength of the large gears in each 

meshing gear pair in the planetary gearbox and the reliability of the bending fatigue strength of the tooth roots of 

each helical gear is between the degree of confidence and the degree of likelihood, namely: 

𝐵𝑒𝑙(𝑔𝑖) ≤ 𝑃𝑟( 𝑔𝑖) ≤ 𝑃𝑙(𝑔𝑖),      𝑖 = 22 ∼ 32 (70) 

The Bel and Pl of gear contact fatigue strength and tooth root bending fatigue strength did not change before 

and after the optimization results. This is also the result of considering the number of gear teeth and the modulus 

as a single interval link variable in the design. The reliability of the contact fatigue strength of each meshing gear 

pair in the planetary gearbox and the reliability of the tooth root bending fatigue strength of each helical gear are 

above 0.99. This all meets the design requirements. 

Table 3: Coincidence comparison of meshing gear pairs. 

Meshing Gear Pair 
End Face Coincidence Axial Coincidence 

Original Value Design Value Original Value Design Value 

Wheel 1- Wheel 2 1.3459 1.7261 1.2782 1.5103 

Wheel 2- Wheel 3 1.5942 1.7983 1.2749 1.5057 

Wheel 4- Wheel 5 1.4549 1.6982 1.2441 1.6913 

Wheel 6- Wheel 7 1.5340 1.6969 1.4411 1.7799 

 

Analysis from the coincidence degree of meshing gear pairs: This design improves the end face coincidence 

and axial coincidence of each meshing gear pair. This increases the transmission stability of the wind turbine 

speed increaser and improves the bearing capacity of the helical gear. 
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The optimized volume results of the proposed method and Sequence Optimization and Reliability Assess 

(SORA), which only considers random uncertainty, are shown in Table 4: 

Table 4: The proposed method and SORA optimization results. 

 Volume before Optimization (mm3) Optimized Volume (mm3) Volume Reduction Rate 

The proposed method 8.0146 × 108 6.7439 × 108 15.85% 

SORA 8.0146 × 108 6.8041 × 108 15.10% 

 

Table 4 shows that the optimization effect of the proposed method is better than SORA. Moreover, the 

proposed method considers the influence of subjective uncertainty, which makes the optimization results of the 

proposed method safer. 

Based on the above analysis: It is feasible and effective to adopt the EBDO optimization design considering 

interval variables and random variables for the planetary gearbox of the megawatt wind turbine. 

6. Conclusion 

In this paper, the EBDO, which only considers interval variables, is improved. Furthermore, both interval 

variables and random variables are considered in the optimization design process. Then, taking the optimal 

design of the planetary gearbox for a megawatt wind turbine as the research object, the uncertainty factors in the 

optimal design of the wind turbine planetary gearbox are analyzed. On this basis, the proposed method is used to 

optimize the design of the planetary gearbox. The final comparative analysis shows the result of planetary 

gearbox optimization, and the optimization design scheme of this paper is feasible. 
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