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ABSTRACT 

Accurate semantic segmentation of each coronary artery using invasive coronary 

angiography (ICA) is important for stenosis assessment and coronary artery 

disease (CAD) diagnosis. In this paper, we propose a multi-step semantic 

segmentation algorithm based on analyzing arterial segments extracted from ICAs. 

The proposed algorithm firstly extracts the entire arterial binary mask (binary 

vascular tree) using a deep learning-based method. Then we extract the centerline 

of the binary vascular tree and separate it into different arterial segments. Finally, 

by extracting the underlying arterial topology, position, and pixel features, we 

construct a powerful coronary artery segment classifier based on a support vector 

machine. Each arterial segment is classified into the left coronary artery (LCA), left 

anterior descending (LAD), and other types of arterial segments. The proposed 

method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 

70.33% for the multi-class artery classification and a mean intersection over union 

of 0.6868 for semantic segmentation of arteries. The experimental results show 

the effectiveness of the proposed algorithm, which provides impressive 

performance for analyzing the individual arteries in ICAs. 
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1. Introduction 

Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the United States and costs 

about 350 billion dollars annually [1]. Invasive coronary angiography (ICA) remains the gold standard for 

diagnosing CAD [2]. ICA involves the injection of contrast media into the epicardial arteries with the acquisition of 

continuous fluoroscopy. Detection of CAD is performed by visually comparing diseased arterial segments to 

normal arterial segments and is essential for the diagnosis and treatment.  

Semantic segmentation of coronary vessels is extremely important for clinical decisions regarding mechanical 

revascularization. For these clinical decisions, automatic identification of correct anatomical branches provides 

meaningful information for automatic diagnosis report generation and region of interest visualization [3]. 

Meanwhile, successfully detecting the percent stenosis of a coronary artery improves diagnostic efficiency and 

confidence and influences management [4]. However, due to the overlap of arteries on ICA and the inter-subject 

variation of coronary artery segments, identifying the arterial branch is challenging. According to prior knowledge 

[5], the left main coronary artery (LMA) is the artery that arises from the aorta above the left cusp of the aortic 

valve and perfuses the anterior, septal, and lateral walls of the left ventricle. The LMA branches into the left 

anterior descending artery (LAD), which courses between the left and right ventricles towards the apex along the 

anterior interventricular sulcus, and the left circumflex artery (LCX) which courses laterally along the 

atrioventricular groove. Typically, practitioners analyze the entire vascular tree according to the position and 

morphology of LMA, LAD, and LCX. 

 

Figure 1: Illustration of semantic segmentation of arteries in (a) Left Anterior Oblique (LAO) view and (b) Right Anterior Oblique 

(RAO) view. For each view, the raw image and semantic maps are juxtaposed vertically. Arteries with different colors in the 

semantic maps represent different types of arteries. 

Recently, deep learning techniques, especially variants based on convolutional neural networks (CNN), have 

been employed in coronary artery segmentation in ICAs. Nasr-Esfahani et al. [6] implemented a CNN which 

contained two convolutional layers to predict the patched arterial binary mask. The same group also used a CNN 

to classify the central pixel within the cropped patches into arterial pixel or background [7]. The AngioNet 

employed the DeepLabV3+ network as the backend for coronary artery segmentation and achieved a Dice score 

of 0.864 [8]. Our recent published network [9], feature pyramid U-Net++, was developed based on U-Net++ and 

integrated the feature pyramids to capture feature maps from different scales; the proposed network achieved a 

Dice score of 0.8899 on our dataset with 314 annotated coronary arteries. 

However, due to the morphological similarity of different arteries, it is challenging for pixel-intensity-based 

models to discern each arterial segment and generate semantic segmentation. The inter-class difference of pixel 



Zhao et al.  Journal of Advances in Applied & Computational Mathematics, 9, 2022 

 

78 

features between the arterial segments is difficult to be distinguished. Thus, the common deep learning models 

for nature image semantic segmentation tasks cannot achieve satisfying performance on artery semantic 

segmentation [10]. Xian et al. proposed a robust method for main coronary artery segmentation using four fully 

convolutional networks [11]. The designed model only identified the main coronary arteries on ICAs; however, the 

model cannot assess the arterial anatomy. Yang et al. trained a set of CNNs to achieve semantic segmentation 

[12]. Each CNN was a binary segmentation model which labeled only one type of the coronary artery segment, 

such as LCX and LAD. The designed method did not fully utilize the topological information from the vascular tree, 

and the most frequent errors were caused by mask separation and the overlap of the catheters. The coronary 

artery semantic segmentation integrating both topological and pixel-level features is still under study. 

The topology is an important factor in arterial identification, which inspires us to convert arteries and their 

connections into graphs. The topological features, such as the node degrees, can be combined with the pixel-

derived features in the semantic segmentation. The problem of semantic segmentation here will be converted 

into a problem that classifies the type of an unlabeled arterial segment. Figure 2 illustrates our overall workflow. In 

this paper, we propose a new machine learning-based approach to extract individual coronary arteries from ICAs 

by incorporating global position, topology, and pixel information. The focus of this work is on the classification of 

the major and branch arterial segments into LMA, LAD, LCX, diagonal branch (D1), obtuse marginal branch (OM1), 

and ramus intermedius branch (RI). We first extract the entire vascular tree from the ICAs using our previously 

designed feature pyramid U-Net++ (FP-U-Net++) [9]. After that, we generate the centerline of the whole vascular 

tree and find the key points to generate the vessel graph. Finally, we extract positional and topological features 

from vessel segments and perform semantic segmentation. 

 

Figure 2: Workflow of coronary artery semantic segmentation. FP-U-Net++ is a deep learning-based neural network for 

coronary artery segmentation, published by Zhao et al. in [9]. 

2. Methods 

2.1. Enrolled Subjects 

This retrospective study enrolled 113 patients who received ICA from February 26, 2019, to July 18, 2019. The 

ethics committee approved of The First Affiliated Hospital of Nanjing Medical University. ICA was performed using 

an interventional angiography system (AXIOM-Artis, Siemens, Munich) and was acquired at 15 frames/sec at the 

Jiangsu Province People’s Hospital, China. The image sizes of ICA videos ranged from 512×512 to 864×864, and the 

pixel spacing ranged from 0.2 mm to 0.39 mm.  
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The dataset consists of 225 left ventricle ICAs with 135 LAO images and 90 RAO images. For each patient, at 

most three standard views were selected, and then only one frame was selected from the view video for semantic 

segmentation. The vessel contours were manually drawn by well-trained operators, confirmed by an experienced 

interventional cardiologist, and then provided to this study as the ground truth. For each angiogram, we 

annotated LMA, LAD, LCX, D1, OM1, and RI arteries. 

2.2. Artery Tree Segmentation 

In general, current deep-learning-based models for medical image segmentation are variants of the encoder-

decoder-based architecture, such as U-Net [13]. Many recent networks employed the classification network with 

the pre-trained weights from ImageNet [14] as the backbone of the encoder. In U-Net++, the skip connections are 

modified by using nested and dense connections [15]. In our latest paper [9], the multi-scale technique is 

improved by feature pyramids, which are built upon image pyramids and form a fundamental solution for utilizing 

features from different scales. To leverage the pyramid features of the hierarchy decoder in U-Net++, we resize the 

feature maps extracted from different layers and integrate them to generate the final feature map. By using 

pyramid features, the multi-scale problems are significantly resolved. The input of the network is the raw ICA, and 

the output is the binary mask of the entire vascular tree. To train the FP-U-Net++ network, we adopt a combined 

loss function with Dice loss, dilated loss, and L2 normalization, as shown in Eq. 1. 

𝐿𝑙𝑜𝑠𝑠 = (1 −
2|�̂� ∩ 𝑦|

|�̂�| + |𝑦|
) + (1 −

2|𝑑(�̂�) ∩ 𝑑(𝑦)|

𝑑(|�̂�|) + 𝑑(|𝑦|)
) + ||𝑊||2 (1) 

where 𝑦 is the ground truth for one pixel of the ICA and �̂� is the model prediction. Our artery tree segmentation 

model achieved an average Dice score of 0.8899 [9]. Results from this binary segmentation model are used to 

generate the vascular centerline for coronary artery segment separation and semantic labeling.  

2.3. Artery Graph Generation 

The artery graph generation process includes centerline extraction and segment separation. Centerline 

extraction aims at removing the redundant pixels in the binary mask while preserving the topology and 

connectivity of the vascular tree. In our implementation, the centerline of the vascular tree is generated by using 

erosion and dilatation operations [16]. The morphological erosion algorithm with a kernel of 5×5 kernel is 

employed to remove the redundant pixels in the binary mask. The morphological dilation algorithm with a kernel 

of 3×3 is employed to preserve the connectivity of the vascular tree by expanding the eroded binary arterial tree. 

The extracted centerline is thus a representation of the vascular tree, which contains three types of nodes [17]: 

the degree-one nodes are the end of arteries, and the degree-two nodes are connecting points; the nodes whose 

degree is greater or equal to 3 are bifurcation points.  

Each pixel in a centerline is iterated, and then the arterial nodes are extracted by finding the bifurcation and 

the endpoints. To find the links between the nodes, each pair of points are added to the graph if they are 

connected adjacently. After that, we remove the degree-two points and corresponding edges from the centerline 

to generate the undirect graph. 

Each arterial segment is represented by a link between two nodes in the generated graph. Semantic 

segmentation will label the arteries by determining the type of each graph edge and assigning the arterial type to 

the arterial segment based on the pixel-level features between any of the two adjacent nodes [18] and the 

topology information. 

In clinical practice, if the maximum diameter of the arterial segment is smaller than 1.8 mm, the cardiologist 

removes this artery segment due to low-level clinical significance for the following analysis [9]. In addition, any 

short arterial segments with less than 20 pixels in the centerline are also removed. The diameters of the arterial 

segments are calculated using the distance transform algorithm proposed by Maurer et al. [19].  

 



Zhao et al.  Journal of Advances in Applied & Computational Mathematics, 9, 2022 

 

80 

2.4. Artery Feature Extraction and Segment Label Assignment 

The basic idea of arterial semantic segmentation is to classify the segments into different classes of arteries. 

After that, we assign the arteries with different categorical labels to achieve semantic segmentation. As 

demonstrated in section 2.3, each artery segment is represented by a link between two nodes. We use the 

features extracted from this segment and its corresponding edge when we classify a specific segment. For feature 

extraction from the edge, topology information will be used: the degree of the nodes connected by this edge will 

be used as the feature. We also extract the position and pixel features from the segment (see Table 1). Using the 

extracted features of each arterial segment, a machine learning classifier is employed to perform artery segment 

classification, and a grid search will be used to find the best classifier (see section 3). The semantic segmentation 

results are generated by classifying the arterial segments into different classes, and each segment is classified. 

Table 1: List of features measured for each artery segment. 

Type Index Feature Description 

Pixel feature 

1 Number of the pixels in the artery segment 

2 Length of the centerline in pixels 

3-6 Standard deviation, mean, the minimum and maximum radius of the artery segment 

7-8 Mean and standard deviation of the intensities within the artery segment 

9-10 Mean and standard deviation of the intensities within the centerline of the artery segment 

Position feature 

11-14 Weighted and absolute centers of the segment positions related to the center of the vascular tree 

15-22 Weighted and absolute positions of the two key points related to the vascular tree center 

23-30 Weighted and absolute positions of the two key points related to the artery segment center 

Topology feature 31-32 Degree of the two key points 

Projection view 33 1 represents the left anterior oblique view, and 0 is the right anterior oblique view 

 

Each artery segment is classified into one of six types, including LMA, LAD, LCX, D1, OM1, and RI. At the training 

stage, the dataset was split into 70% subjects as a training set and the rest 30% as a test set. As a result, 158 and 

67 images were grouped into the training set and test set, respectively. We employ a support vector machine 

(SVM) with kernel functions, random forest, and multiple layer perceptron (MLP) as the classifiers to perform the 

artery segment classification. All classifiers were implemented by Weka 3.8 [20]. A grid search is performed to find 

the optimal parameters. The settings of the grid search are shown in Table 2. 

Table 2: Settings of the grid search for artery. 

Model Parameter 1 Parameter 2 

SVM Kernel: RBF kernel, polynomial kernel, linear kernel Regularization parameter: 0.01, 0.1, 1.0, 10, 100 

Random Forest Maximum depth: 5, 10, 15, 20 # Decision tree: [5, 10, 20, 50] 

MLP Learning rate: 0.1, 0.01, 0.001 
Layer settings: 

[20], [20,10], [20,20,10], [30,30,20,10], [30,20,20], [30,20,20,10] 

 

The overall workflow of the designed artery graph generation and semantic labeling algorithm is shown in 

Algorithm 1. 

2.5. Evaluation Metrics 

Evaluation of artery segment classification: Artery segment classification is a multi-class classification task. 

The input is the extracted features from the artery segment, and the output is the probability distribution of the 
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Algorithm 1. Artery graph generation and semantic labeling. 

Input: 

I: ICA image; s: pixel size of the ICA 

Output: 

Semantic labels for artery pixels. 

1. Extract ICA binary image using the trained FP-U-Net++ deep learning model; 

2. Extract vascular centerline using morphological erosion and dilation algorithms; 

3. Find the bifurcation points and end points to separate the vascular centerline into artery segments; 

4. Calculate the diameters for each arterial segment; 

5. Remove the artery segments with the maximum dimeter smaller than 1.8 mm; 

6. Extract position, pixel and topological features listed in Table 1 for each arterial segment; 

7. Classify arterial segment using the trained machine learning classifier for semantic labeling; 

8. Assign the semantic label, which is the predicted class, to each pixel in this arterial segment. 

 

artery class among six types. The class with the maximum probability is regarded as the classification result. We 

evaluated the performance using average accuracy (ACC), sensitivity (SN), and specificity (SP). The SN measures 

the proportion of the true positive samples that are correctly predicted, while the SP indicates the proportion of 

the true negative samples that are correctly predicted. An ACC, SN, or SP of 1 implies a perfect prediction. The 

definitions of average ACC, SN and SP are shown in Eq. 2 to 4. 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐴𝐶𝐶 =
1

𝑛
∑

𝑇𝑃𝑐 + 𝑇𝑁𝑐
𝑇𝑃𝑐 + 𝑇𝑁𝑐 + 𝐹𝑁𝑐 + 𝐹𝑃𝑐

𝐶

𝑐=1

 (2) 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑁 =
1

𝑛
∑

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑁𝑐

𝐶

𝑐=1

 (3) 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑃 =
1

𝑛
∑

𝑇𝑁𝑐
𝑇𝑁𝑐 + 𝐹𝑃𝑐

𝐶

𝑐=1

 (4) 

where 𝐶 is the number of classes in the dataset; 𝑇𝑃𝑐  is the number of the true positive arterial segments classified 

into arterial type 𝑐. TN, FN, and FP represent true negative, false negative, and false positive. In our experimental 

setting, 𝐶 equals 6, which indicates there are 6 types of arterial segments. 

Evaluation of artery semantic segmentation: Semantic segmentation is to assign labels for each pixel in the 

image. We evaluated the semantic segmentation performance using ACC and mean Intersection over Union 

(mIoU). IoU measures the proportion of the intersection between the segmented pixels and the pixels in the 

ground truth over the number of pixels in either the segmented pixels or the ground truth. The definition of mIoU 

is shown in Eq. 5. 

𝑚𝐼𝑜𝑈 =∑
|𝑦�̂� ∩ 𝑦𝑐|

|𝑦�̂�| + |𝑦𝑐|

𝐶

𝑐=1

 
(5) 

 

where 𝐶 is the number of arterial classes, 𝑦�̂� represents the predicted arterial mask for class 𝑐, and 𝑦𝑐 indicates the 

ground truth of the coronary artery. 

3. Results 

3.1. Results of Artery Graph Generation 

We first applied our binary artery segmentation model [9] to our dataset to generate the coronary artery 

binary mask. Then we extracted the centerlines and generated a graph for each ICA. The edge linking algorithm 

was applied to obtain the topology structure and separate the vascular tree into different arterial segments [21]. 
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In Fig. 3 (c), the bifurcation points and endpoints are annotated by red stars and green plus. The coronary artery 

segments were obtained by splitting the vascular tree according to the detected key points. Cardiologists only 

focus on the main arterial branches in clinical practice, and the branches with limited lengths are ignored. In our 

implementation, if the length of the centerline is less than 20 pixels, then it was removed. As a result, in the 

training set and the test set, 1609 and 729 segments were extracted, respectively.  

3.2. Results of Artery Semantic Segmentation 

The features extracted from the artery segments were scaled using z-score normalization. We performed the 

grid search shown in Table 2. The arterial segments were used for model training, and the performance was 

reported according to the prediction on the test set. The random forest achieved its best performance with 20 

decision trees for ensemble, and the depth for each tree was 5; for MLP, the model achieved the best performance 

with a learning rate of 0.1 and a layer with 20 hidden units, which indicated that there was only one layer with 20 

neurons; for the SVM, the model achieved the best performance with a regulation parameter of 10.0 and an RBF 

kernel function. The performance of the best classifiers is shown in Table 3. We also evaluated the results using 

image semantic segmentation metrics. The performance is reported in Table 4. 

Table 3: Grid search results for coronary artery segment classification. The highest evaluation metrics are marked in 

bold. 

Model ACC SN SP 

RF 0.6498 0.6077 0.5929 

MLP 0.6475 0.5982 0.5789 

SVM 0.7033 0.6623 0.6437 

 

Table 4: Evaluation for coronary artery semantic segmentation. The highest evaluation metrics are marked in bold. 

Metrics Model LMA LAD LCX D1 OM1 RI Mean 

ACC 

RF 0.9015 0.8004 0.6211 0.5160 0.5912 0.8059 0.6137 

MLP 0.8855 0.7865 0.6751 0.5281 0.5213 0.8093 0.6235 

SVM 0.8771 0.8398 0.7461 0.6328 0.5168 0.8235 0.7076 

IoU 

RF 0.8585 0.6039 0.5345 0.3384 0.4187 0.7910 0.6373 

MLP 0.8362 0.6370 0.5372 0.3861 0.3876 0.7198 0.6438 

SVM 0.8569 0.6796 0.6014 0.4832 0.4037 0.8235 0.6868 

 

According to Table 3, our approach achieved an average accuracy of 0.7033 for coronary artery segment 

classification. The SVM classifier outperformed other classifiers significantly in ACC, SN, and SP. According to Table 

4, the proposed approach achieved an accuracy of 0.7076 for pixel classification and 0.6868 for artery semantic 

segmentation. In Fig. 3, we visualized the results generated for LAO and RAO views at each step. 

4. Discussion 

4.1. Performance Analysis for Artery Semantic Segmentation 

In this paper, a new machine learning-based algorithm was applied to perform coronary artery segment 

classification. The SVM achieved an ACC of 0.7033, an SN of 0.6623 and an SP of 0.6437 among 729 arterial 

segments in the test set. The handcraft features only contained the low-level image feature and low-level position 

features, which limited the model performance. In addition, the number of training samples is not enough, further 

studies should increase training samples. 
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Figure 3: Experimental results on LAO (top) and RAO (bottom) subsets of (a) original ICAs; (b) artery binary segmentation 

masks; (c) generated coronary centerline and detected key points, where red points indicate bifurcation points and green 

points are endpoints; (d) generated artery graph for topological feature extraction; (e) semantic segmentation predictions; and 

(f) semantic segmentation ground truth. LMA, left marginal artery; LAD, left anterior descending; LCX, left circumflex artery; D1, 

diagonal branch one; OM1, obtuse marginal branch one; RI, ramus intermedius branch. 

For semantic segmentation, the proposed approach achieved a mIoU of 0.6868 and an average pixel 

classification accuracy of 0.7076. According to the grid search and the performance reported in Table 4, the SVM 

with an RBF kernel function significantly outperformed the random forest and MLP in ACC and mIoU.  

For the proposed approach, errors come from two parts: (1) the coronary artery segments removed due to the 

limited length, and (2) the mapping method between the centerline and the coronary segment. For the first 

reason, in our implementation, if the length of the centerline is smaller than a 20-pixel length, then it was 

removed. However, the removed artery segments were incorrectly measured when evaluating the semantic 

segmentation performance, which degraded the model performance. For the second reason, the function for 

mapping the coronary centerline and segment cannot guarantee a perfect match. In our implementation, we first 

interpolated the centerline by applying one-dimensional constant interpolation within the coordinate sequence of 

the centerline pixels. Then a perpendicular line was calculated for each interpolated coordinate. If the 

perpendicular line containing the pixels belonged to the artery in the binary mask, then the pixel was mapped to 

the centerline. By iterating all the interpolated coordinates in the artery centerline, the arterial pixels were 

partitioned to the arterial segment. However, the pixels near the bifurcation key points cannot be correctly 

mapped to the centerline caused by the overlap of the generated perpendicular lines and two-dimensional 

projection views. These errors may be resolved from different frames and views by operators. 

4.2. Clinical Overview and Application 

ICA best assesses anatomic delineation of coronary arteries for clinical decisions due to its high spatial 

resolution and its real-time image acquisition. In clinical practice, an automated system for decision support of 

CAD diagnosis and treatment would require automated anatomical labeling of the coronary artery tree extracted 

from ICA. This automated process can be achieved with higher efficiency and reproducibility by performing 

semantic segmentation. 
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5. Conclusion 

We propose a machine learning-based approach to classify individual coronary arteries in ICAs by 

incorporating global position, topology information, and pixel-level intensity. Our previously developed binary 

segmentation network was employed to generate the arterial binary mask to precisely extract the entire vascular 

tree. By generating the centerline of the vascular tree, we identified the key points and converted the centerlines 

into an artery graph. An edge in the graph represents each artery segment. Finally, we extracted 33 handcraft 

features of the artery segment, employed an SVM classifier to classify the artery segments, and further generated 

the semantic segmentation results. The proposed approach achieved an accuracy of 70.33% for the multi-class 

artery segment classification and a mean intersection over union of 0.6868 for artery semantic segmentation. It 

shows promise for clinical use to improve efficiency and reproducibility in a cath lab. 
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