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ABSTRACT 

The lateral free vibration of micro-rods initially subjected to axial loads based 

on a nonlocal continuum theory is considered. The effects of nonlocal long-

range interaction fields on the natural frequencies and vibration modes are 

examined. A simply supported micro-rod is taken as an example; the linear 

vibration responses are observed by two different methods, including the 

separation of variables and multiple scales analysis. The relations between 

the vibration mode and dimensionless coordinate and the relations between 

natural frequencies and nonlocal parameters are analyzed and discussed in 

detail. The numerical comparison shows that the theoretical results by two 

different approaches have a good agreement, which validates the present 

micro-rod model that can be used as a component of the micro-

electromechanical system. 
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1. Introduction 

Recently, dynamic behaviors, especially the vibration and control of micro-structures, have become a hot topic 

because of the application prospects of micro-electromechanical systems (MEMS) and other related micro-robot 

components. Motivated by this, we consider the linear vibration of a simply supported micro-rod using a non-

classical continuum theory. In the previous literature, either only the vibration of the classical macro-rod was 

considered, or the dynamic characteristics of the micro-rod were studied based on the classical continuum theory. 

For the small-size solids mechanics, the surface effect and size effect play essential roles in mechanical 

characteristics. He et al. [1, 2] presented much research on the surface effect in the past years. On the other hand, 

the nonlocal effect is one of the most critical common side effects, which assumes that the stress at a point is a 

function of strains at all points in the domain. Such the theory contains information about the forces between atoms 

or molecules, and the internal length scale is introduced into the constitutive relations as an inherent material 

parameter. On the contrary, most classical mechanics theories based on elastic constitutive relation regard the 

stress at a point as a function of strain at only that point. The nonlocal continuum theory and its embryonic form 

were initiated by Eringen, Edelen, and Kroner [3-5] in the 1960s-1970s. The so-called nonlocal continuum refers to 

a particular non-classical continuum. As we know, classical mechanical theories are based on the continuity 

hypothesis. However, micro/nanoscale materials and structures are usually considered discontinuous. The atomic 

simulation plays an important role in this respect, and some meaningful results of discontinuous objects can be 

obtained via the atomic simulation at a small scale. After that, the concept of a non-classical continuum is proposed 

by combining the classical continuum with atomic simulation. Among the non-classical continuum theories, the 

most common is the nonlocal continuum, which considers the influence of the long-range interaction between 

atoms or molecules. In a certain neighborhood, the stress and strain relationship at one point is related to the stress 

and strain of all the other points, which of course, does not belong to discontinuity but also does not belong to the 

classical continuum. This is called the nonlocal continuum. In other words, the global performance of the research 

object is different from the local performance, so the local can no longer represent the whole. 

Currently, the nonlocal continuum theory has been applied in micro-mechanics more and more widely [6-15]. 

For example, recently, Awrejcewicz et al. [15] investigated the vibration of rectangular micro/nanoplates using the 

nonlocal theory. The geometric non-linearity was considered, and a multiple-scale method was applied to 

demonstrate the small-scale effects of the micro/nanoplates. An impressive example occurs in fracture mechanics. 

When the classical continuum theory is used to analyze the stress field at the crack tip, the result shows that it is 

singular but unreasonable and difficult to explain physically. While using the nonlocal continuum theory, the result 

shows that the stress field at the crack tip is non-singular, or no stress singularity is observed at the crack tip, which 

is a reasonable result. 

This paper establishes the problem model and then describes using a non-dimensional fourth-order partial 

differential equation based on the nonlocal continuum theory. Two different methods, namely separation of 

variables and multiple scales analysis, are applied to the governing equation. Of course, many other numerical 

methods [16-23] can deal with nonlinear partial differential equations and other more complex models. For the 

linear vibration model of micro-rods in this study, the above two methods are enough to solve and the results with 

sufficient accuracy can be obtained. It is found that the initial tension and nonlocal parameter play significant roles 

in the vibration behavior of such a simply supported micro-rod. Results by two methods are compared and 

discussed in detail.  

2. Mechanics Modeling 

Consider a simply supported micro-rod with initial axial tension 𝑃 at both ends. The dynamical equilibrium for 

an element of the micro-rod is illustrated in Figure 1. It is noticed that only the Euler-Bernoulli beam model is 

adopted here. This is because the present micro-rod model is a slender rod. The Euler-Bernoulli beam model is 

sufficient for the current problem. Of course, the Timoshenko beam model is more accurate than the Euler-Bernoulli 
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beam model because it takes into account the moment of inertia and shear effects of the structure. The Timoshenko 

beam model and other high-order shear beam models are generally more effective in predicting the mechanical 

behaviors of short or thick beams. For a slender micro-rod considered in the present study, the Euler-Bernoulli 

beam model works and other beam models are not required. 

 
Figure 1: Mechanical analysis for a micro-rod element.  

The figure above 𝑀 denotes the bending moment, 𝑁 internal axial force, 𝑄 shear force, 𝑥 axial coordinate, and z 

transverse coordinate. Only the small deformation is considered for linear vibration of a supported micro-rod. The 

equilibrium equation of the element concerning the transverse direction can be obtained based on the D’ Alembert 

principle as 

𝜕2𝑀

𝜕𝑥2
− 𝑃

𝜕2𝑤

𝜕𝑥2
+ 𝜌

𝜕2𝑤

𝜕𝑡2
= 0 

(1) 

where 𝑤 is the lateral deformation. 

According to the nonlocal continuum theory, the following relation between bending moment and lateral 

deformation is governed by [24] 

𝑀 − (𝑒0𝑎)
2
𝜕2𝑀

𝜕𝑥2
= −𝐸𝐼

𝜕2𝑤

𝜕𝑥2
 

(2) 

where 𝐸𝐼 is the flexural stiffness. From Eqs. (1) and (2), the following partial differential equation that governs the 

vibration motion for a simply supported micro-rod subjected to an initial axial tension 𝑃 can be derived as 

𝑃
𝜕2𝑤

𝜕𝑥2
− 𝜌

𝜕2𝑤

𝜕𝑡2
− (𝑒0𝑎)

2 (𝑃
𝜕4𝑤

𝜕𝑥4
− 𝜌

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
) = −𝐸𝐼

𝜕4𝑤

𝜕𝑥4
 

(3) 

The parameters 𝑒0𝑎 associated with the nonlocal continuum theory can be contained using a known theoretical 

method [25]. 

Introduce the following non-dimensional parameters and variables 

�̄� =
𝑥

𝐿
, �̄� =

𝑤

𝐿
, �̄� = 𝑡√

𝐸𝐼

𝜌𝐿4
, 𝜏 =

𝑒0𝑎

𝐿
, �̄� =

𝑃𝐿2

𝐸𝐼
 

(4) 

where 𝜏 is a nanoscale nonlocal parameter that denotes the nonlocal effects and �̄� the dimensionless initial tension. 

Then Eq. (3) becomes 

�̄�
𝜕2�̄�

𝜕�̄�2
−
𝜕2�̄�

𝜕�̄�2
+ 𝜏2

𝜕4�̄�

𝜕�̄�2𝜕�̄�2
− (�̄�𝜏2 − 1)

𝜕4�̄�

𝜕�̄�4
= 0 

(5) 

3. The Separation of Variables 

For linear free vibration of a simply supported micro-rod, the method of separation of variables can be applied 

directly. So the solution of Eq. (5) can be assumed as 



Xie et al.  Journal of Advances in Applied & Computational Mathematics, 9, 2022 

 

160 

�̄�(�̄�, �̄�) = ∑𝜙𝑖

𝑛

𝑖=1

(�̄�)𝑞𝑖(�̄�) 
(6) 

where 𝜙𝑖 is the dimensionless vibration mode, while 𝑞𝑖 is the temporal function. Substitution of Eq. (6) into the 

equation of motion (5) and separation of the two variables in the resulting equation, one obtains the two following 

ordinary differential equations as 

𝑑2𝑞

𝑑�̄�2
+𝜔𝑛

2𝑞 = 0 
(7a) 

(�̄�𝜏2 − 1)
𝑑4𝜙

𝑑�̄�4
+ (𝜔𝑛

2𝜏2 − �̄�)
𝑑2𝜙

𝑑�̄�2
−𝜔𝑛

2𝜙 = 0 
(7b) 

where 𝜔𝑛 is the dimensionless natural frequency. Note that only the linear free vibration is considered in this paper. 

Hence it is the free vibration natural frequency herein. When a structure vibrates freely, its displacement changes 

with time according to the sine or cosine function. The vibration frequency is independent of initial conditions but 

only related to the intrinsic characteristics of the structure (such as mass, shape, material, etc.), which is called the 

natural frequency. 

The ordinary differential equation (7b) belongs to the fourth-order differential equation in form. Let 𝜙 = 𝑒𝑟�̄�
 
and 

substitute it into Eq. (7b); one can obtain 

(�̄�𝜏2 − 1)𝑟4𝑒𝑟�̄� + (𝜔𝑛
2𝜏2 − �̄�)𝑟2𝑒𝑟�̄� − 𝜔𝑛

2𝑒𝑟�̄� = 0 (8) 

According to the ordinary differential equation theory, the characteristic equation of Eq. (7b) is 

(�̄�𝜏2 − 1)𝑟4 + (𝜔𝑛
2𝜏2 − �̄�)𝑟2 − 𝜔𝑛

2 = 0 (9) 

Assuming 𝑟2 = 𝑚, the characteristic equation turns into 

(�̄�𝜏2 − 1)𝑚2 + (𝜔𝑛
2𝜏2 − �̄�)𝑚 − 𝜔𝑛

2 = 0 (10) 

The solution of Eq. (10) can be determined as 

𝑚1 =
�̄� − 𝜔𝑛

2𝜏2 + √(�̄� + 𝜔𝑛
2𝜏2)2 − 4𝜔𝑛

2

2(�̄�𝜏2 − 1)
 

(11a) 

𝑚2 =
�̄� − 𝜔𝑛

2𝜏2 − √(�̄� + 𝜔𝑛
2𝜏2)2 − 4𝜔𝑛

2

2(�̄�𝜏2 − 1)
 

(11b) 

where (�̄� + 𝜔𝑛
2𝜏2)2 − 4𝜔𝑛

2 > 0 holds because the vibration of micro-structures generally belongs to high-frequency 

vibration. For example, the natural vibration frequency of carbon nanotubes can reach the order of THz. It is not 

difficult to prove that 𝑚1 > 0. For 𝑚2, whether �̄�𝜏2 > 1 or �̄�𝜏2 < 1, 𝑚2 < 0 is always valid, but it requires . 

Therefore, it implies that the initial axial tension cannot be arbitrary, and a certain relationship must be satisfied 

between the tension and the nonlocal parameter. That is, the intrinsic physical parameters put forward 

requirements for the external parameters of the micro-rod.  

Consequently, the characteristic equation (9) has two different real roots and two imaginary conjugate roots. 

Accordingly, the general solution of the fourth-order ordinary differential equation (7b) can be expressed as 

𝜙(�̄�) = 𝐶1 𝑠𝑖𝑛(𝛼�̄�) + 𝐶2 𝑐𝑜𝑠(𝛼�̄�) + 𝐶3 𝑠𝑖𝑛ℎ(𝛽�̄�) + 𝐶4 𝑐𝑜𝑠ℎ(𝛽�̄�) (12) 

where 

2 1P 
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𝛼 = √
−�̄� + 𝜔𝑛

2𝜏2 +√(�̄� + 𝜔𝑛
2𝜏2)2 − 4𝜔𝑛

2

2(�̄�𝜏2 − 1)
 

(13a) 

𝛽 = √
�̄� − 𝜔𝑛

2𝜏2 + √(�̄� + 𝜔𝑛
2𝜏2)2 − 4𝜔𝑛

2

2(�̄�𝜏2 − 1)
 

(13b) 

The boundary conditions of the simply supported micro-rod require 

𝜙(0) = 0 ;  𝜙(1) = 0 ;  
𝑑2𝜙

𝜕�̄�2
(0) = 0 ;  

𝑑2𝜙

𝜕�̄�2
(1) = 0 

(14) 

Substituting Eq. (12) into (14) and making the coefficient matrix determinant of the resulting algebra equation 

vanishing to have non-trivial solutions, we can obtain the 𝑛 -order natural frequency as 

𝜔𝑛 = √
(�̄�𝜏2 − 1)𝑛4𝜋4 + �̄�𝑛2𝜋2

1 + 𝑛2𝜋2𝜏2
 

(15) 

and the vibration mode function as 

𝜙(�̄�) = 𝐶1 𝑠𝑖𝑛(𝑛𝜋�̄�) (16) 

The relationship between the first three order vibration modes and dimensionless coordinate �̄�, the first three 

order natural frequencies, and nanoscale nonlocal parameter 𝜏 are shown in Figures 2 and 3, respectively. It can be 

seen from Figure 2 that the vibration mode changes with the dimensionless coordinate in the way of a similar sine 

law but not a complete sine function. This is because the vibration mode of the micro-rod is different from that of a 

macro-rod based on the classical vibration mechanics theory. Under the influence of the nonlocal parameter, the 

vibration mode changes compared with the simple harmonic vibration of the classical rod. It is also observed that 

both the vibration modes and natural frequencies are influenced by the nonlocal parameter, where the 

dimensionless initial tension is assumed, as �̄� = 35 in Figure 3. Besides, the natural frequency increases with the  

increase of nonlocal parameters. However, the influence of the nonlocal parameter on the first-order natural 

frequency (fundamental frequencies) is less evident than that of the second and third-order, which indicates that  

 

 

Figure 2: Relations between vibration mode and dimensionless coordinate. 
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Figure 3: Effects of nonlocal parameters on natural frequencies. 

the effect of the nonlocal parameter should be considered more in the higher-order vibration modes of micro-

structures. Effects of the dimensionless initial tension on the fundamental frequencies are illustrated in Figure 4. 

Natural frequencies increase with stronger nonlocal effects or larger initial tension in Figure 4. 

 

Figure 4: Effects of dimensionless initial tension on natural frequencies. 

From the above Eqs. (6), (7a), (15), and (16) can be deduced as the result. 

�̄�(�̄�, �̄�) = ∑𝑠𝑖𝑛(𝑛𝜋�̄�)

∞

𝑛=1

𝑒
𝑖√
(�̄�𝜏2−1)𝑛4𝜋4+�̄�𝑛2𝜋2

1+𝑛2𝜋2𝜏2
�̄�
 

(17) 

where we suppose 𝐶1 = 1. Figure 5 shows the evolvement of the first-term approximation of lateral displacement 

and non-dimensional axial coordinate and time coordinate. It is demonstrated that the lateral displacement varies 



Lateral Free Vibration of Micro-Rods Using a Nonlocal Continuum Approach Xie et al. 

 

163 

remarkably with changing the dimensionless time and dimensionless coordinate. The changing track is close to the 

trigonometric function but not entirely in the form of sine or cosine curves due to the inherent nonlocal parameter 

in a micro-rod. 

 

Figure 5: The evolvement of the lateral displacement. 

4. The Method of Multiple Scales 

In this section, the method of multiple scales will be applied to Eq. (5) directly to determine the natural 

frequencies, which have been shown that affected by nonlocal nanoscale nonlocal parameters and initial tension. 

Suppose 𝜀 = 𝜏2 it is a small dimensionless variable and then Eq. (5) becomes 

�̄�
𝜕2�̄�

𝜕�̄�2
−
𝜕2�̄�

𝜕�̄�2
+ 𝜀

𝜕4�̄�

𝜕�̄�2𝜕�̄�2
− (�̄�𝜀 − 1)

𝜕4�̄�

𝜕�̄�4
= 0 

(18) 

A second-order approximation is sought in the following form 

�̄�(�̄�, �̄�, 𝜀) = �̄�0(�̄�, 𝑇0, 𝑇1, 𝑇2) + 𝜀�̄�1(�̄�, 𝑇0, 𝑇1, 𝑇2) + 𝜀
2�̄�2(�̄�, 𝑇0, 𝑇1, 𝑇2) + ⋯ (19) 

where 𝑇0 = �̄� is a fast scale characterizing motion while 𝑇1 = 𝜀�̄� and 𝑇2 = 𝜀
2�̄� are slow scales characterizing the 

modulation of the amplitudes and phases. Hence,  

{
 
 

 
 
𝜕

𝜕�̄�
=

𝜕

𝜕𝑇0
+ 𝜀

𝜕

𝜕𝑇1
+ 𝜀2

𝜕

𝜕𝑇2
+⋯

𝜕2

𝜕�̄�2
=
𝜕2

𝜕𝑇0
2 + 2𝜀

𝜕2

𝜕𝑇0𝜕𝑇1
+ 𝜀2 (2

𝜕2

𝜕𝑇0𝜕𝑇2
+
𝜕2

𝜕𝑇1
2) +⋯

 

(20) 

Substituting Eqs. (19) and (20) into (18) and then equating the coefficients of like powers of 𝜀 yield 

�̄�
𝜕2�̄�0
𝜕�̄�2

−
𝜕2�̄�0

𝜕𝑇0
2 +

𝜕4�̄�0
𝜕�̄�4

= 0 
(21a) 

�̄�
𝜕2�̄�1
𝜕�̄�2

−
𝜕2�̄�1

𝜕𝑇0
2 +

𝜕4�̄�1
𝜕�̄�4

= 2
𝜕2�̄�0
𝜕𝑇0𝜕𝑇1

+ �̄�
𝜕4�̄�0
𝜕�̄�4

−
𝜕4�̄�0

𝜕𝑇0
2𝜕�̄�2

 
(21b) 

�̄�
𝜕2�̄�2
𝜕�̄�2

−
𝜕2�̄�2

𝜕𝑇0
2 +

𝜕4�̄�2
𝜕�̄�4

= 2
𝜕2�̄�0
𝜕𝑇0𝜕𝑇2

+ 2
𝜕2�̄�1
𝜕𝑇0𝜕𝑇1

+
𝜕2�̄�0

𝜕𝑇1
2 −

𝜕4�̄�1

𝜕𝑇0
2𝜕�̄�2

+ �̄�
𝜕4𝑤1
𝜕𝑥4

− 2
𝜕4�̄�0

𝜕𝑇0𝜕𝑇1𝜕�̄�
2
 

(21c) 
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Firstly, the solution of the above Eq. (21a) can be written as 

�̄�0(�̄�, 𝑇0, 𝑇1, 𝑇2) = 𝐴(𝑇1)𝐵(𝑇2) 𝑠𝑖𝑛 (𝑛√�̄�𝜀 − 1𝜋�̄�) 𝑒
𝑖√[�̄�𝑛2𝜋2−(�̄�𝜀−1)𝑛4𝜋4](�̄�𝜀−1)𝑇0 + 𝑐𝑐 (22) 

where 𝑐𝑐 stands for the complex conjugate of its left terms. Substituting Eq. (22) into (21b) yields 

�̄�
𝜕2�̄�1
𝜕�̄�2

−
𝜕2�̄�1

𝜕𝑇0
2 +

𝜕4�̄�1
𝜕�̄�4

= [2𝑖√[�̄�𝑛2𝜋2 − (�̄�𝜀 − 1)𝑛4𝜋4](�̄�𝜀 − 1)
𝑑𝐴

𝑑𝑇1
 

+𝐴𝑛6𝜋6(�̄�𝜀 − 1)3]𝐵 𝑠𝑖𝑛 (𝑛√�̄�𝜀 − 1𝜋�̄�) 𝑒𝑖√[�̄�𝑛
2𝜋2−(�̄�𝜀−1)𝑛4𝜋4](�̄�𝜀−1)𝑇0 

(23) 

Eq. (23) has a bounded solution only if the solvability condition holds. The solvability condition demands that the 

right side of Eq. (23) be orthogonal to every solution of the homogeneous problems. That is 

⟨[2𝑖√[�̄�𝑛2𝜋2 − (�̄�𝜀 − 1)𝑛4𝜋4](�̄�𝜀 − 1)
𝑑𝐴

𝑑𝑇1
 

+𝐴𝑛6𝜋6(�̄�𝜀 − 1)3]𝐵 𝑠𝑖𝑛 (𝑛√�̄�𝜀 − 1𝜋�̄�) ,  𝑠𝑖𝑛 (𝑛√�̄�𝜀 − 1𝜋�̄�)⟩ = 0 

(24) 

where the inner product is defined by 

⟨𝑔,  ℎ⟩ = ∫ 𝑔ℎ𝑑𝑥
1

0

 
(25) 

which leads to 

2𝑖√[�̄�𝑛2𝜋2 − (�̄�𝜀 − 1)𝑛4𝜋4](�̄�𝜀 − 1)
𝑑𝐴

𝑑𝑇1
+ 𝐴𝑛6𝜋6(�̄�𝜀 − 1)3 = 0 

(26) 

𝐴 = 𝐶2𝑒

𝑖𝑛6𝜋6(�̄�𝜀−1)3

2√[�̄�𝑛2𝜋2−(�̄�𝜀−1)𝑛4𝜋4](�̄�𝜀−1)

𝑇1

 

(27) 

where 𝐶2 is a constant and a particular solution of Eq. (23) that has annihilated the terms generating the secular 

terms may be 

�̄�1 = 0 (28) 

Substituting Eqs. (22), (27) and (28) into (21c) gives 

�̄�
𝜕2�̄�2
𝜕�̄�2

−
𝜕2�̄�2

𝜕𝑇0
2 +

𝜕4�̄�2
𝜕�̄�4

= [2𝑖√[�̄�𝑛2𝜋2 − (�̄�𝜀 − 1)𝑛4𝜋4](�̄�𝜀 − 1)
𝑑𝐵

𝑑𝑇2
− 𝑛8𝜋8(�̄�𝜀 − 1)4𝐵 

−
𝑛10𝜋10(�̄�𝜀 − 1)5

4[�̄� − (�̄�𝜀 − 1)𝑛2𝜋2]
𝐵] × 𝐴 𝑠𝑖𝑛 (𝑛√�̄�𝜀 − 1𝜋�̄�) 𝑒𝑖√[�̄�𝑛

2𝜋2−(�̄�𝜀−1)𝑛4𝜋4](�̄�𝜀−1)𝑇0 

(29) 

Eliminate the secular terms leads to 

𝐵 = 𝐶3𝑒

−𝑖
4�̄�𝑛8𝜋8(�̄�𝜀−1)4−3𝑛10𝜋10(�̄�𝜀−1)5

8[�̄�−(�̄�𝜀−1)𝑛2𝜋2]√[�̄�𝑛2𝜋2−(�̄�𝜀−1)𝑛4𝜋4](�̄�𝜀−1)

𝑇2

 

(30) 

where 𝐶3 is a constant and also a particular solution of Eq. (29) without the secular terms may be 

�̄�2 = 0 (31) 
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Now, we obtain the second-order approximation by the method of multiple scales as 

�̄�(�̄�, �̄�, 𝜀) = 𝑠𝑖𝑛 (𝑛√�̄�𝜀 − 1𝜋�̄�) 

× 𝑒

𝑖
𝑛5𝜋5(�̄�𝜀−1)3[4�̄�𝜀−4𝜀(�̄�𝜀−1)𝑛2𝜋2−4𝜀2�̄�(�̄�𝜀−1)𝑛2𝜋2+3𝜀2𝑛4𝜋4(�̄�𝜀−1)2+8]+8𝑛𝜋�̄�(�̄�𝜀−1)[�̄�−2𝑛2𝜋2(�̄�𝜀−1)]

8[�̄�−(�̄�𝜀−1)𝑛2𝜋2]√[�̄�−(�̄�𝜀−1)𝑛2𝜋2](�̄�𝜀−1)

�̄�

 

(32) 

where we suppose 𝐶2 = 𝐶3 = 1 as that in Eq. (17). The following Figures 6 and 7 can be found results approach each 

other for Figures 2 and 6, and Figures 4 and 7, respectively. For example, a larger non-dimensional tension results 

in a higher natural frequency from Figure 7. This is because a larger axial tension corresponds to higher bending 

stiffness, and higher structural stiffness enhances the natural frequency of micro-rods. Thus, the model used in this 

paper is proven valid and reasonable. It should be noted that the separation of variables and multiple scales analysis 

own errors. The structure-preserving method has attracted increasing research interest in recent years [26-30]. 

Maybe we can use such a method to solve more complex theoretical models in the future. 

 

Figure 6: Relations between the first three vibration modes and dimensionless coordinate. 

 

Figure 7: Effects of non-dimensional tension on natural frequencies. 
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5. Conclusion 

As a standard model of microtubules in biological cells and MEMS, the micro-rod model has received more and 

more research attention in recent years. The present study is devoted to establishing the dynamic model of micro-

rods and then solving the theoretical model to obtain some mechanical results at a micro-scale that are different 

from those at a macro-scale. To this end, the nonlocal theory is used, and the long-range interaction between atoms 

described by the nonlocal parameter is considered. For the partial differential equation that governs the linear 

vibration of a simply supported micro-rod, two different methods, including the separation of variables and multiple 

scales analysis, are applied to determine its vibration characteristics, mainly the natural frequency and vibration 

mode. We have concluded that the lateral vibration is greatly influenced by the initial axial tension and the nonlocal 

parameter with a nanoscale, both of which cause the natural frequencies to increase. 

Consequently, considering the initial axial tension and the nonlocal effect of the micro-rod increases the 

equivalent structural stiffness. In designing key components of MEMS, one can increase the initial tensile stress or 

use materials with higher nonlocal parameters to improve the bending stiffness of the related structures, and both 

aspects are effective. Results by two different methods are similar, which indicates the correctness of the 

mathematical modeling built in this paper. The research has a guiding significance for the dynamic design and 

optimization of related intelligent structures at the micro/nanoscale. 
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