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ABSTRACT  

The development of fast convergent and computationally efficient 

algorithms for monitoring waveform distortions and harmonic emissions will 

be an important problem in future electrical networks due to the high 

penetration level of renewable energy systems, smart loads, new types of 

power electronics, and many others. Estimating the signal quantities in the 

moving window is the most accurate way of monitoring these distortions. 

Such estimation is usually associated with significant computational loads, 

which can be reduced by utilizing the recursion and information matrix 

properties. Rank two update representation of the information matrix allows 

the derivation of a new computationally efficient recursive form of the 

inverse of this matrix and recursive parameter update law. Newton-Schulz 

and Richardson correction algorithms are introduced in this paper to prevent 

error propagation and for accuracy maintenance. Extensive comparative 

analysis is performed on real data for proposed recursive algorithms and the 

Richardson algorithm with an optimally chosen preconditioner. Recursive 

algorithms show the best results in estimation with ill-conditioned 

information matrices. 
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1. Introduction & Overview of the Paper 

The penetration level of grid-connected renewable energy systems, smart loads, and new types of power 

electronics will increase, and the electric power distribution system will transform based on digital technologies. 

Power electronics, the key technology for converting electrical power from renewable energy sources to grids, will 

introduce significant harmonic emissions. These harmonics, together with other distortions, will reduce future 

electricity networks' reliability, lifetime, and efficiency. Therefore, accurate estimation of the grid events in the 

presence of significant harmonic emissions, which involves the development of efficient solvers for large-scale 

algebraic systems (which could be implemented on parallel computational units), is required [1].  

Least squares estimation of the frequency contents of the electrical signals in the moving windows is the most 

accurate way of monitoring network waveform distortions. However, such estimation is usually associated with 

heavy computational load [2], especially in the case of significant harmonic emissions. The efficiency of this 

estimation can be improved via the presentation of the information matrix as a recursive rank two updates which 

takes into account new data which come into the window and the data which leave the window only. The large-scale 

system of algebraic equations should be solved in each step. The rank two update presentation allows the derivation 

of the computationally efficient recursive form for the matrix inversion and parameter estimation. The information 

matrix, which is the sum of rank one matrices (outer products of harmonic regressor) over the moving window, has 

valuable properties which facilitate parameter calculation. The information matrix is strictly diagonally dominant 

and positive definite for a sufficiently large window size for systems with harmonic regressors [3]. Moreover, the 

eigenvalues of this matrix remain the same in all the steps for a fixed window size, which is a new property 

established in this paper, see Section 2, which allows computationally efficient implementation of the 

preconditioner based on estimated eigenvalues, see Section 6.1.  

The main contribution of this paper is a new recursive form for the inversion of the information matrix with rank 

two updates in the moving window and recursive parameter calculation algorithms for the least squares problem, 

see Section 3. Similar to error propagation in the recursive calculations based on rank one update, [4] the error 

accumulation is one of the main drawbacks of this approach; see Section 4. Error accumulation problems can be 

solved using Newton-Schulz, [5] and Richardson correction algorithms [6, 7]. These corrections allow recursive 

parameter estimation with the desired accuracy in the moving window, which makes the overall approach more 

efficient than existing ones.  

Matrix inversion (whose accuracy directly impacts the error propagation) is required at the initial step of the 

recursive calculations. Small window sizes result in ill-conditioned information matrices and deterioration of the 

inversion accuracy using existing methods. Therefore, a new method of inversion of the ill-conditioned matrix via a 

well-conditioned matrix and low-rank update is proposed in this paper; see Section 3. Moreover, the proposed 

algorithms are compared in this paper with the nonrecursive Richardson algorithm (nonrecursive concerning the 

parameter vector), which is based on different estimation principles, see Section 6. The Richardson algorithm 

provides fast and accurate estimation of the parameter vector, can be implemented using matrix-vector 

multiplications only, and can be easily parallelized. A new method for the determination of the preconditioner for 

the Richardson algorithm is proposed in this paper. The method is based on truncated Neumann series (similar to 

the methods described in [8] and [9]) and two scalar preconditioners, see Table 1. The method allows the 

determination of the optimal number of the matrix products and matrix-vector multiplications for ill-conditioned 

information matrices with the best scalar preconditioner. A comprehensive comparative analysis of the proposed 

recursive algorithms with Richardson algorithms (with the most efficient preconditioner) is performed for different 

window sizes on real data, which is the second main contribution of this paper, see Section 7. The paper ends with 

brief conclusions in Section 8, where future research directions are also outlined. 

2. Least Squares Estimation in Moving Window 

The least squares estimation of the frequency contents of oscillating signal in the window of the size 𝑤 which is 

moving in time can be presented in the following form:  
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𝐴𝑘𝜃𝑘 = 𝑏𝑘 , 𝑏𝑘 = ∑ 𝜙𝑗  𝑦𝑗 = 𝑏𝑘−1 + 𝑑𝑘

𝑗=𝑘

𝑗=𝑘−(𝑤−1)

 (1) 

𝑏𝑘−1 = ∑ 𝜙𝑗  𝑦𝑗

𝑗=𝑘−1

𝑗=𝑘−𝑤

, 𝑑𝑘 = 𝜙𝑘  𝑦𝑘 − 𝜙𝑘−𝑤  𝑦𝑘−𝑤 (2) 

𝐴𝑘 = ∑ 𝜙𝑗  𝜙𝑗
𝑇 = 𝐴𝑘−1 + 𝑅𝑘

𝑗=𝑘

𝑗=𝑘−(𝑤−1)

 (3) 

𝐴𝑘−1 = ∑ 𝜙𝑗 𝜙𝑗
𝑇

𝑗=𝑘−1

𝑗=𝑘−𝑤

, 𝑅𝑘 = 𝜙𝑘 𝜙𝑘
𝑇 − 𝜙𝑘−𝑤  𝜙𝑘−𝑤

𝑇  (4) 

𝜙𝑘
𝑇 = [𝑐𝑜𝑠(𝑞0𝑘) 𝑠𝑖𝑛(𝑞0𝑘) . . . 𝑐𝑜𝑠(𝑞ℎ𝑘) 𝑠𝑖𝑛(𝑞ℎ𝑘)] (5) 

where the oscillating signal 𝑦𝑘 is approximated using the model �̂�𝑘 = 𝜙𝑘
𝑇𝜃𝑘 with the harmonic regressor (5), where 

𝑞0, . . . 𝑞ℎ are the frequencies. The parameter vector 𝜃𝑘 should be calculated in each step with desired accuracy as the 

solution of the algebraic equation (1), which is associated with the minimization of the following error 

∑𝑗=𝑘
𝑗=𝑘−(𝑤−1) (𝑦𝑗 − �̂�𝑗)2, where 𝑦𝑘 = 𝜙𝑘

𝑇𝜃∗ and 𝜃∗ is the vector of unknown parameters.  

The information matrix 𝐴𝑘 is defined in (3) as the sum of rank one matrices, and as the rank two updates, 𝑅𝑘 of 

the matrix 𝐴𝑘−1, 𝑘 ≥ 𝑤 + 1, Rank two update is associated with the movement of the window, where the new data 

k , 𝑦𝑘  enter the window and the data 𝜙𝑘−𝑤, 𝑦𝑘−𝑤 leave the window in step 𝑘.  

Notice that the matrix 𝐴𝑘 is SPD (Symmetric and Positive Definite) matrix, and the positive eigenvalues of this 

matrix remain the same in all the steps 𝑘 ≥ 𝑤 + 1 for a given window size 𝑤. Evolution of the largest eigenvalue 𝜆𝑘, 

for example, such that 𝐴𝑘𝑣𝑘 = 𝜆𝑘𝑣𝑘 can be presented as follows:  

 𝜆𝑘 = 𝑣𝑘
𝑇𝐴𝑘𝑣𝑘 = 𝑣𝑘

𝑇𝐴𝑘−1𝑣𝑘 + 𝑣𝑘
𝑇𝑅𝑘𝑣𝑘 

 = 𝜆𝑘−1 + 2𝑣𝑘−1
𝑇 𝐴𝑘−1𝛿𝑘 + 𝛿𝑘

𝑇𝐴𝑘−1𝛿𝑘 + 𝑣𝑘
𝑇𝑅𝑘𝑣𝑘 = 𝜆𝑘−1 

where kkk vv +−1=  and 𝛿𝑘 is the increment of the eigenvector due to the rank two update. The evolution of other 

eigenvalues can be shown using the same arguments.  

Another way of evaluating of the eigenvalues of the matrix 𝐴𝑘 is a representation of the characteristic polynomial 

coefficients in terms of traces [10, 11]. For example, the characteristic polynomial of 2 × 2 information matrix for a 

single frequency 0q  is 𝜆2 − 𝜆𝑇𝑟𝐴𝑘 + 𝑑𝑒𝑡 𝐴𝑘, where 𝑑𝑒𝑡( 𝐴𝑘) =
1

2
[(𝑇𝑟𝐴𝑘)2 − 𝑇𝑟𝐴𝑘

2], where 𝑑𝑒𝑡 𝐴𝑘 is the determinant and 

𝑇𝑟𝐴𝑘 is the trace. Straightforward calculations (using the trigonometric identities presented in [3]) show that 𝑇𝑟𝐴𝑘 =

𝑤 and  

𝑇𝑟𝐴𝑘
2 =

1

2
{ 𝑤2 +

𝑠𝑖𝑛2(𝑤𝑞0)

𝑠𝑖𝑛2(𝑞0)
 [𝑐𝑜𝑠2((2𝑘 + 1 − 𝑤)𝑞0) +𝑠𝑖𝑛2((2𝑘 + 1 − 𝑤)𝑞0)] } 

This implies that the dependence on the step number 𝑘 is canceled in the traces (due to the trigonometric 

identities) and the traces, the coefficients, and the eigenvalues (trace and determinant are sum and product of 

eigenvalues) depend on the window size 𝑤 only and remain the same in all the steps. Notice that the determinant 

equals zero, 𝑑𝑒𝑡 𝐴𝑘 = 0 𝑓𝑜𝑟 𝑤 = 1 and the eigenvalues are positive for 𝑤 ≥ 2. Eigenvalues of the information matrices 

for larger frequencies can be evaluated using similar arguments. 
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3. Recursive Calculation of the Inverse of the Information Matrix and the 

Parameters 

The parameter vector in (1) can be calculated using the inverse of the information matrix 𝜃𝑘 = 𝐴𝑘
−1𝑏𝑘. Denoting 

𝛤𝑘 = 𝐴𝑘
−1 the recursive update of 𝛤𝑘 via 𝛤𝑘−1 is derived by application of the matrix inversion lemma1 to the identity 

(3):  

𝛤𝑘 = 𝛤𝑘−1 − 𝑈𝑘  𝑆−1 𝑈𝑘
𝑇 (6) 

where 𝑄𝑘 = [𝜙𝑘  𝜙𝑘−𝑤],𝑈𝑘 = 𝛤𝑘−1 𝑄𝑘,𝑆 = 𝐷 + 𝑄𝑘
𝑇  𝛤𝑘−1 𝑄𝑘 , and 𝐷 = [

1 0
0 −1

]. The 2 × 2 matrix 𝑆 remains the same in all 

the steps of the window of a given size 𝑤 (and should be calculated only once), which can be shown using arguments 

similar to Section 2. Two forms of the parameter update 𝜃𝑘 can be presented as follows:  

𝜃𝑘 = [𝐼 − 𝑈𝑘 𝑆−1 𝑄𝑘
𝑇][𝜃𝑘−1 + 𝛤𝑘−1𝑑𝑘] (7) 

𝜃𝑘 = 𝛤𝑘𝑏𝑘 (8) 

where 𝐼 is the identity matrix, and the form (7) is derived from (8) and (6). The algorithms are initialized as follows
1= − ww A  and 𝐴𝑤 𝜃𝑤 = 𝑏𝑤. The parameter update (8) does not depend on the previous step's parameters and only 

requires matrix-vector multiplication. The inverse matrix and the parameter update law (6) and (7) can be calculated 

in two parallel loops. Both forms are quadratic complexity algorithms and faster than direct parameter calculation 

methods.  

Inversion of Ill-Conditioned Matrix via Well-Conditioned Matrix and Low-Rank Update. The accuracy of the recursive 

estimation algorithms depends on the inversion accuracy of the initial information matrix. The initial information 

matrix can be extremely ill-conditioned for relatively small window sizes, and the inverse may need to be more 

accurate. The inverse of the ill-conditioned matrix 𝐴1 = ∑𝑤1
𝑗=1 𝜙𝑗𝜙𝑗

𝑇 can be calculated via the inverse of the matrix 

with a lower condition number, 
T

jj

w

j
A  0

1=0 = , 𝑤0 > 𝑤1as follows:  

𝐴1
−1 = 𝐴0

−1 + 𝐴0
−1 𝑄 [𝐼 − 𝑄𝑇  𝐴0

−1 𝑄]−1 𝑄𝑇  𝐴0
−1 (9) 

where the matrix 𝐼 − 𝑄𝑇 𝐴0
−1 𝑄 with a lower rank and condition number (which can also be relatively high) is inverted 

only, 𝑄 = [𝜙𝑤1+1 . . . 𝜙𝑤0
]. 

Notice that inversion with low-rank update can also be divided into several steps and implemented as a recursive 

procedure (where the matrices of the reduced conditioned numbers are inverted only in each step), which results 

in the algorithm similar to stepwise splitting [12] and stepwise partitioning, [1]. Recursive procedures usually involve 

error accumulation and may require corrections [1]. 

4. Drawbacks of the Recursive Estimation 

4.1. Changeable Window Size 

Difficulties associated with power and load balancing in electrical networks create challenges in estimating the 

fast-varying frequency contents of the signals with large fixed window sizes. Inaccuracies in estimation require a 

window size reduction to capture rapidly changing trends. Reduction of the size of the window results in an ill-

 

1  (𝑋 + 𝑌𝑊𝑍)−1 = 𝑋−1 − 𝑋−1𝑌 [𝑊−1 + 𝑍 𝑋−1 𝑌]−1 𝑍𝑋−1, where 𝑋 = 𝐴𝑘−1, 𝑌 = 𝑄𝑘 , 𝑍 = 𝑄𝑘
𝑇 , and 𝑊 = 𝐷 
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conditioned information matrix, higher computational loads, and delays in estimation. Detection of rapidly and 

slowly varying trends requires frequently changing window sizes for the best performance in different situations. 

The algorithms described in Section 3 should be re-initialized when the moving window changes its size. Initialization 

includes computationally expensive matrix inversion 𝛤𝑤 = 𝐴𝑤
−1 and the parameter vector calculation, which satisfies 

𝐴𝑤 𝜃𝑤 = 𝑏𝑤. Notice that the window size adjustment can also be associated with low-rank update, see Section 3, 

which also requires matrix inversions.  

 

Figure 1: Parameter estimation error ‖𝐴𝑘𝜃𝑘 − 𝑏𝑘‖ plotted in the second plot for the recursive algorithm (6) and (7) increases with 

step number due to error accumulation. The measured signal is plotted with the dashed black line, and the recursive 

approximation in the moving window of the size 𝑤 = 254 is plotted with the solid red line in the first plot.  

 

Figure 2: The number of iterations (for estimation of the largest eigenpair 𝐴𝑥 = 𝜆𝑥) as a function of the size of ill-conditioned 

information matrices required to reach the following accuracy of estimation error:‖�̂�𝑘‖ 𝐴 �̂�𝑘‖−𝐴 �̂�𝑘‖ < 0.01  
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Figure 3: The elapsed time of parameter calculation with the desired accuracy ‖𝐴𝑘𝜗𝑖 − 𝑏𝑘‖ ≤ 𝜀2 = 0.05 is measured for five 

algorithms with different preconditioners. The first and the second plots show the histograms of elapsed time for scalar 

preconditioners (13) and (14), respectively, where the histogram for (14) is plotted with the red color. The histogram plotted with 

the green color in the second plot is associated with the first-order preconditioner, 𝑝 = 1 presented in Table 1. The third and 

fourth plots are also associated with the preconditioners presented in Table 1, where the preconditioner of the third order shows 

the best performance.  

The Newton-Schulz method is preferable for calculating the approximate inverse using a few iterations only in 

the initial step due to corrections applied in the subsequent steps. Notice that the approximate inverse (the inverse 

with low accuracy) is required only for parameter estimation in the presence of corrections. Direct methods based 

on Cholesky decomposition, for example, do not allow to choose inversion accuracy and may be less efficient in the 

initial step, but may require fewer corrections in the subsequent steps.  

4.2. Error Accumulation 

The algorithm described above can be seen as the ideal explicit recursive solution of the system (1) - (5) in all the 

steps 𝑘. Unfortunately, such a solution could be more robust concerning error accumulation in finite digit 

calculations. The accumulation strength depends on the size of the moving window and the level of precision. The 

performance deterioration due to error accumulation is significant for ill-conditioned information matrices. 

Fortunately, it is not significant for relatively large window sizes but may be pronounced for big data applications.  

The effect of error accumulation for the recursive algorithm (6) and (7) is illustrated in Fig. (1), where the 

parameter estimation error ‖𝐴𝑘𝜃𝑘 − 𝑏𝑘‖ is plotted in the second plot and increases with the step number. Error 

accumulation has a direct impact on the approximation performance shown in the first plot of Fig. (1), where the 

measured signal (the one-phase voltage waveform measured at the wall outlet) is plotted with the dashed black line 

and recursive approximation (with 120 harmonics) in the moving window of small size, 𝑤 = 254 is plotted with the 

solid red line. The measurement data was provided by the IEEE Working Group on Power Quality Data Analytics [13]. 

The corrections for the elimination of error accumulation are presented in the following Section 5.  
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5. Estimation with Desired Accuracy and Recursive Preconditioning 

Newton-Schulz matrix inversion and Richardson algorithms can be applied for corrections [7]. The inversion 

error 𝐹𝑖 = 𝐼 − 𝐺𝑖𝐴𝑘 and the parameter estimation error 𝐸𝑖 = 𝐴𝑘𝜗𝑖 − 𝑏𝑘drive the following corrections:  

Update  𝐺𝑖 = ∑

𝑛

𝑗=0

𝐹𝑖
𝑗
𝐺𝑖−1  while  ‖𝐹𝑖‖ > 𝜀1, 𝐺0 = 𝛤𝑘 (10) 

Update  𝜗𝑖 = 𝜗𝑖−1 − 𝐺𝑖𝐸𝑖−1  while  ‖𝐸𝑖‖ > 𝜀2, 𝜗0 = 𝜃𝑘  (11) 

Furthermore, activated in cases where errors exceed pre-specified bounds, 𝜀1,2 > 0. Low order (for example 𝑛 =

2) should be selected for the Newton-Schulz matrix inversion algorithm. The matrix  𝛤𝑘  (for which the spectral radius 

𝜌(𝐼 − 𝛤𝑘𝐴𝑘) << 1 is much less than one) and 𝜃𝑘 play the role of efficiently calculated preconditioner and a priori 

parameter estimate, respectively. Newton-Schulz matrix inversion and Richardson algorithms are ideally suited for 

these corrections providing (after a few iterations only, i=1,2,..., see Section 7) two improved estimates (𝐺𝑖 for k  and 

𝜗𝑖 for 𝜃𝑘) for the next step of the recursion. 

6. Nonrecursive Richardson Algorithm 

The Nonrecursive Richardson algorithm described, for example, in [6] and [14], which requires matrix-vector 

multiplications, can be used directly for the calculation of the parameters 𝜃𝑘 in (1)  

𝜃𝑖 = 𝜃0 − ∑ 𝐹0
𝑗

𝑖∗

𝑗=0

  𝐺0  (𝐴𝑘𝜃0 − 𝑏𝑘), 𝐹0 = 𝐼 − 𝐺0𝐴𝑘 (12) 

via power series expansion until the accuracy requirement is fulfilled. The performance of the algorithm (12) 

depends on the initial values 0  and 𝐺0. Examination of the terms in (7) shows that the matrix 𝐼 − 𝑈𝑘  𝑆−1 𝑄𝑘
𝑇 is 

relatively close to the identity matrix, and the contribution of the term 𝛤𝑘−1𝑑𝑘 is relatively small. Therefore the initial 

value can be taken as 10 = −k  or 𝜃0 = 𝐺0𝑏𝑘 where 𝐺0 is sufficiently close to 𝐴𝑘
−1.  

6.1. Preconditioning Based on the Properties of the Window  

The matrix 𝐺0 in (12) can be chosen as 𝐺0 = 𝛼𝐼 where the scalar preconditioner (13)  

𝛼 =
2

‖𝐴𝑘‖∞

 (13) 

𝛼 =
2

�̂�𝑚𝑖𝑛(𝐴𝑘) + �̂�𝑚𝑎𝑥(𝐴𝑘)
 (14) 

guarantees that the spectral radius 𝜌 of the SPD matrix 𝐴𝑘 is less than one, 𝜌(𝐼 − 𝛼𝐴𝑘) < 1 where || ⋅ ||∞ is the 

maximum row sum matrix norm [7, 15]. 

The spectral radius of the matrix (𝐼 − 𝛼𝐴𝑘) gets its minimal value (1 − �̂�𝑚𝑖𝑛(𝐴𝑘)𝛼) for the SPD matrix 𝐴𝑘 for the 

preconditioner (14), where �̂�𝑚𝑖𝑛(𝐴𝑘) and �̂�𝑚𝑎𝑥(𝐴𝑘) are the estimates of minimal and maximal eigenvalues of  𝐴𝑘, 

respectively. In other words, the preconditioner (14) maps the interval containing all eigenvalues of 𝐴𝑘 onto 

symmetric interval around the origin [15]. 

The following power (Von Mises) iteration algorithm [16], which requires only matrix-vector multiplications �̂�𝑘 =
𝐴 𝑥𝑘−1

||𝐴 𝑥𝑘−1||
, can be applied to estimate the largest eigenpair 𝐴 𝑥 = 𝜆𝑚𝑎𝑥(𝐴) 𝑥.  
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Notice that the minimal eigenvalue of 𝐴 can be estimated via the maximal eigenvalue of (𝛽𝐼 − 𝐴) where 𝛽 =

�̂�𝑚𝑎𝑥(𝐴) + 𝜀, and 𝜀 is a sufficiently small positive number. The maximal eigenvalue (𝛽𝐼 − 𝐴), in turn, can be estimated 

using the same algorithm.  

 

Figure 4: The Figure shows approximation performance (in the moving window of the size 𝑤 = 254 with the desired parameter 

estimation accuracy 𝜀2 = 0.05) of the recursive algorithm (6), (8) plotted with a red line, and the algorithm (12) plotted with the 

green dotted line. The measured signal is plotted with the dashed black line.  

 

Figure 5: The Figure shows the number of corrections to achieve the desired parameter estimation accuracy ‖𝐴𝑘𝜗𝑖 − 𝑏𝑘‖ ≤ 𝜀2 =

0.05 in the first plot and the error norms ‖𝐴𝑘𝜗𝑖 − 𝑏𝑘‖ (in the second plot) for the algorithms (7), (8), and the algorithm (12), which 

are plotted with red, blue and green colors respectively in both plots for the window size 𝑤 = 310.  
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Figure 6: The elapsed time of parameter calculation with the desired accuracy ||𝐴𝑘𝜗𝑖 − 𝑏𝑘|| ≤ 𝜀2 = 0.05 is measured for three 

algorithms for different sizes of moving windows. Fig. (6a) corresponds to window size 𝑤 = 310 and Fig. (6b) corresponds to 𝑤 =

254. The histograms for algorithm (8) are plotted with blue color, and histograms for algorithm (7) and algorithm (12) are plotted 

with red and green colors, respectively.  

Even though estimating the eigenvalues in the moving window should be performed only once (since the 

eigenvalues remain the same for a fixed window size, see Section 2), the number of iterations can be sufficiently 

large for a large size of the ill-conditioned information matrices. The number of iterations as a function of the size 

of the ill-conditioned information matrices that is required to reach the following accuracy of estimation error: 

‖�̂�𝑘‖ 𝐴 �̂�𝑘‖−𝐴 �̂�𝑘‖ < 0.01 is plotted in Fig. (2). The Fig. (2) shows that the number of iterations increases with the size 

of the matrix and can be sufficiently large (which corresponds to a large number of matrix-vector multiplications) 

for large scale systems. Notice that the power iteration algorithm can be easily parallelized, which essentially 

improves the efficiency of this preconditioner.  

6.2. Neumann Series-Based Preconditioners and Comparison 

Initial error in (12) can be reduced via the application of the power series expansion with scalar preconditioners 

(13) and (14); see Table 1. 

Table 1: Preconditioners based on truncated Neumann series. 

Order 

p 

𝐺0 = [∑ 𝐹0
𝑗𝑝

𝑗=0 ]𝛼, 𝐹0 = 𝐼 − 𝛼𝐴𝑘, 𝐼 − 𝐺0𝐴𝑘 = 𝐹0
𝑝+1

  

𝛼 =
2

||𝐴𝑘||∞
  or 𝛼 =

2

�̂�𝑚𝑖𝑛(𝐴𝑘)+�̂�𝑚𝑎𝑥(𝐴𝑘)
, 𝜌(𝐹0) < 1 

1  𝐺0 = 2𝛼 − 𝛼2𝐴𝑘 

2 𝐺0 = 3𝛼 − 3𝛼2𝐴𝑘 + 𝛼3𝐴𝑘
2  

3 𝐺0 = 4𝛼 − 6𝛼2𝐴𝑘 + 4𝛼3𝐴𝑘
2 − 𝛼4𝐴𝑘

3 

… … 

 

The one-phase voltage waveform measured at the wall outlet (approximately 120V RMS) [13] compares different 

preconditioners. The sampling measurement rate is 256 points per cycle. The signal was approximated with the 

system with harmonic regressor (5), which contains 120 harmonics with the fundamental frequency of 𝑞0 = 60 Hz. 

Short window size 𝑤 = 254 was selected in order to find the best preconditioner for ill-conditioned information 

matrices. A comparison of the performance of different preconditioners is presented in Fig. (3), where histograms 
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of the elapsed time of parameter calculation with the desired accuracy ‖𝐴𝑘𝜗𝑖 − 𝑏𝑘‖ ≤ 𝜀2 = 0.05 are measured for five 

algorithms with different preconditioners. The first and the second plots show the histograms of elapsed time for 

scalar preconditioners (13) and (14), respectively. The preconditioner (14) shows no significant improvements 

concerning (13). Besides, estimating the minimal and maximal eigenvalues requires significant computational 

efforts; see Fig. (2) every time the window size changes. Therefore, the preconditioner (14) (without parallelization) 

is not recommended for this application. The first-order preconditioner in Table 1, 𝑝 = 1 whose histogram is plotted 

in the second plot with the green color, shows a significant reduction of the computational time compared to scalar 

preconditioners.  

The third and fourth plots in Fig. (3) are associated with the preconditioners presented in Table 1, calculated with 

a scalar preconditioner (13). The third-order preconditioner shows the best performance, and further increase of 

the order of the power series in Table 1 does not show any improvements but shows deterioration of the 

performance. 

7. Comparison of Recursive and Nonrecursive Estimation on Real Data 

The same one-phase voltage waveform measured at the wall outlet is used for comparisons; see Section 6.2. 

Three algorithms are compared: 1) the parameter estimation algorithm (7); 2) the parameter estimation algorithm 

(8) (both with the recursive estimate of the inverse (6)) ; 3) the nonrecursive Richardson algorithm (12) with the best 

preconditioner chosen in Section 6.2.  

Estimation is performed with the desired accuracy of inversion of the information matrix 𝜀1 = 0.1 and the 

parameter estimation accuracy 𝜀2 = 0.05 (for the third algorithm, the parameter accuracy is relevant only). The 

simulations were performed in Matlab. Approximation performance, see Fig. (4); the number of corrections, see Fig. 

(5) and the elapsed time, see Fig. (6) of the parameter calculation are evaluated for three algorithms for different 

sizes of the moving window, (𝑤 = 310 and 𝑤 = 254) which has an impact on the condition number (the condition 

number increases with the reduction of the window size).  

Fig. (4) shows outstanding approximation performance with120 harmonics for all the algorithms, and the second 

plot in Fig. (5) shows the fulfillment of the accuracy requirements, 𝜀2 = 0.05. The number of corrections for the 

achievement of the desired accuracy and error norms which are plotted in Fig. (5), shows that algorithm (7) is more 

accurate than an algorithm (8) and requires a smaller number of corrections. However, calculation of the parameter 

vector 𝜃𝑘 via 𝜃𝑘−1 (7) is more expensive than one or two steps of corrections which makes algorithm (8) faster than 

(7) in estimation with the desired accuracy, see Fig. (6a). Richardson algorithm (12) requires few iterations only for 

𝑤 = 310 with estimation accuracy close to 𝜀2 = 0.05, see the second plot in Fig. (5). It is more efficient than the 

algorithm (7), see Fig. (6a). For smaller window sizes the number of steps of the Richardson algorithm (12) increases, 

see Fig. (6b) and the algorithms (7) and (8) have better performance.  

Notice that the family of Richardson algorithms provides faster parameter calculations for lower levels of 

accuracy (in approximate computing), does not require matrix inversion if window size changes and can be easily 

implemented on parallel computational units. New recursive forms (7) and (8) and Richardson algorithms have 

different application areas. The algorithms (7) and (8) with corrections can be recommended for highly ill-

conditioned cases where the window size does not change often. Richardson algorithms can be easily parallelized 

and applied for frequently varying window sizes with lower accuracy requirements. 

8. Conclusion 

This paper proposes new computationally efficient recursive forms with corrections for parameter estimation in 

moving windows. The algorithms utilize the computational efficiency of the recursive forms based on the matrix 

inversion lemma and the advantages of Newton-Schulz and Richardson corrections, which allow the elimination of 

the error accumulation and monitoring of the grid events with the desired accuracy. Extensive simulations on real 
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data showed that new algorithms are incredibly efficient for monitoring rapidly changing trends in short windows 

and ill-conditioned information matrices.  

Moving windows for systems with harmonic regressors have exciting properties that should be further studied 

and utilized for designing and implementing computationally efficient and accurate monitoring algorithms in future 

electrical networks. 
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