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ABSTRACT 

This paper aims to express the solution of an inverse Sturm-Liouville problem 

with constant delay using a conformable derivative operator under mixed 

boundary conditions. For the problem, we stated and proved the specification of 

the spectrum. The asymptotics of the eigenvalues of the problem was obtained 

and the solutions were extended to the Regge-type boundary value problem. As 

such, a new result, as an extension of the classical Sturm-Liouville problem to the 

fractional phenomenon, has been achieved. The uniqueness theorem for the 

solution of the inverse problem is proved in different cases within the interval 

(0, 𝜋). The results in the classical case of this problem can be obtained at 𝛼 = 1. 
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1. Introduction 

As differential equations are used to model real-life problems in sciences, technology, social sciences, etc, the 

Sturm-Liouville equation, which is a special case of a second-order differential equation, plays a vital role in the 

literature both in classical and fractional cases. The fractional derivative approach is such a vital tool in which certain 

phenomenon, that can not be or is very difficult to analyze in the classical case, can easily be analyzed and 

expressed. There are many fractional derivative approaches such as Riemann-Liouville, Caputo, M-derivative, 

Grunwald-Letnikov, Weyl, etc, but each has its shortcomings [1-3]. Looking into those shortcomings associated with 

the most popular fractional differentiation approaches, Khalil, et al. [4] established a new fractional derivatives 

approach which turned out to be easy in evaluations and satisfied most of the properties of differentiation and 

named it Conformable Fractional Derivative. This new approach was criticized, affirmed, and further developed and 

is in use by many authors [5-9]. As this article involves an inverse problem in the Sturm-Liouville Problem (SLP) in 

fractional case, there are many studies on the fractional SLP that are being progressed as can be seen in [10-19]. 

There is an inverse problem in a parameter identification problem of partial differential equations, which involves 

finding the unknown parameter (usually 𝑝(𝑥)) from some observed data from the situation under consideration in 

the system. Under this, many authors designed many inversion strategies that appropriately describe and solve 

many different inverse problems, details on these can be obtained from [20-25], but the inverse problem in SLP, 

deals with the concept of finding the potential 𝑞(𝑥) and the constants in the conditions in the differential SLP by 

using the spectral parameters. Ambarzumyan theorem gives the first results of inverse SLP [26], it says that if the 

spectrum of SLP under Neumann boundary conditions is {𝑛2}, 𝑛 ≥ 0, then the potential function will be zero, 

(𝑞(𝑥) = 0). The authors in [27, 28] gave some results, in various cases, on this theory. The inverse SLP has been 

under discussion for a long time by many researchers and so many results have been obtained by many authors as 

in [29-38].  

Inverse SLP under fractional derivative operator is now one of the current research fields, researchers are 

crescively expanding their studies in the area and many results in different problems were obtained as detailed in 

[39-42]. There are differential equations with delay in various mathematical problems and applications which 

produces vital changes in the quality of the studies on the corresponding inverse problems of spectral analysis. The 

methods of transformation operator, spectral mappings, etc, are the standard methods of solving an inverse SLP 

without delay (differential operators), but these methods do not work for operators with delay, as such some 

researchers constructed new approaches for the latter general spectral theory. The authors in [43] consider the 

Sturm-Liouville differential equation with a large constant delay, that is 𝑎 ∈ [
𝜋

2
, 𝜋), and generated an effective 

algorithm for solving the problem, also the authors in [44] studied the nonlinear inverse problem and obtained the 

Properties of their spectral characteristics. Most of the studies in inverse SLP focus on the situation with zero initial 

function with the assumption that the potential 𝑞(𝑥) vanishes on the corresponding subinterval but the authors in 

[45] waived that assumption in favor of a continuously matching initial function, which leads to appearing an 

additional term with frozen argument in the equation, they solved the problem and proved its spectral properties, 

more on these problem can be found in [46-50]. 

The authors of [36] gave an interesting result of inverse SLP with a constant delay under a non-self-adjoint 

operator with a mixed boundary condition, expressing the spectral properties of the eigenvalues obtained and also, 

proving the uniqueness theorem. Studies and results on fractional inverse SLP are scarce, as such we intended in 

this paper to express the case in [36] in a fractional case under a conformable derivative operator. We obtained the 

result of the inverse SLP with a constant delay under a mixed boundary condition using the conformable derivative 

approach, expressed the corresponding spectral properties, and proved the uniqueness theorem. The 

corresponding classical results can be retrieved at 𝛼 = 1. 

2. Some Basic Definitions 

Definition 2.1. Consider the function ℎ: [0,∞) → ℝ, then the 𝛼𝑡ℎ order derivative of ℎ is given  
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(2.1) 

for all 𝑥 > 0, 𝛼 ∈ (0,1], that is,if ℎ is differentiable, then 𝐷𝑥
𝛼ℎ(𝑥) = 𝑥1−𝛼ℎ′(𝑥).  

The conformable fractional derivative is also defined for 𝛼 ∈ (𝑛 − 1, 𝑛) for 𝑛 ∈ 𝑁 as,  

Definition 2.2. Let ℎ be an 𝑛 -differentiable function at 𝑥, where 𝑥 > 0 and 𝛼 ∈ (𝑛 − 1, 𝑛), then the conformable 

fractional derivative ℎ of order 𝛼 is defined as,  
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(2.2) 

Where ⌈𝛼⌉ is the smallest integer greater than or equal to 𝛼. 

It can be calculated by 𝐷𝑥
𝛼ℎ(𝑥) = 𝑥⌈𝛼⌉−𝛼ℎ⌈𝛼⌉(𝑥)  

Definition 2.3. The integral of a function ℎ of order 𝛼 is given by 

𝐼𝛼ℎ(𝑥) = ∫
𝑥

0
ℎ(𝑡)𝑑𝛼𝑡 = ∫

𝑥

0
𝑡𝛼−1ℎ(𝑡)𝑑𝑡 (2.3) 

for all 𝑥 > 0.  

Lemma 2.1. If the function ℎ: [𝑎,∞) → ℝ is differentiable, then, we have for 𝑥 > 𝑎 (𝑎 is any real number)  

𝐷𝑥
𝛼𝐼𝛼ℎ(𝑥) = ℎ(𝑥). 

Lemma 2.2. Let the function ℎ: (𝑎, 𝑏) → ℝ be differentiable, then, for 𝑥 > 𝑎,(𝑎 and 𝑏 are any real numbers) 

𝐷𝑥
𝛼𝐼𝛼ℎ(𝑥) = ℎ(𝑥) − ℎ(𝑎). 

Theorem 2.4. Let 𝑔, ℎ be two differentiable functions, then  

∫
𝑏

𝑎
𝑔(𝑥)𝐷𝑥

𝛼(ℎ(𝑥))(𝑥)𝑑𝛼𝑥 = 𝑔ℎ|𝑎
𝑏 − ∫

𝑏

𝑎
ℎ(𝑥)𝐷𝑥

𝛼(𝑔(𝑥))𝑑𝛼𝑥. (2.4) 

3. The Main Work 

We consider the fractional Sturm-Liouville problem below with conformable derivative operator 

−𝐷𝑥
𝛼𝐷𝑥

𝛼𝑦 + 𝑞(𝑥)𝑦(𝑥 − 𝑎) = 𝜇𝑦(𝑥),  𝑓𝑜𝑟  𝑥 ∈ (0, 𝜋) (3.1) 

under the condition  

𝑦(0) = 𝑦(𝑗)(𝜋) = 0,   𝑓𝑜𝑟 𝑗 = 0,1, (3.2) 

for 𝑎 ∈ (0, 𝜋), and 𝑞(𝑥) ∈ 𝐿(𝑎, 𝜋). Taking 𝜇 as the spectral parameter and the potential function(complex-valued) 

𝑞(𝑥) = 0 for 𝑥 ∈ [0, 𝑎]. 

By defining an operator  

𝐿𝛼𝑦(𝑥) = −𝐷𝑥
𝛼𝐷𝑥

𝛼𝑦 + 𝑞(𝑥)𝑦(𝑥 − 𝑎) 

then (3.1) can be expressed as  

𝐷𝑥
𝛼ℎ(𝑥) 
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𝐿𝛼𝑦(𝑥) = 𝜇𝑦(𝑥),   𝑥 ∈ (0, 𝜋) (3.3) 

The main work here is to recover the function 𝑞(𝑥) from the spectra of 𝐿𝛼𝑗(𝑞),  𝑗 = 0,1., to state and prove some 

properties of the spectra, and also to prove the uniqueness of the results. We assumed that {𝜇𝑛𝑗}𝑛≥1,𝑗=0,1 indicates 

the eigenvalues of (3.3).  

3.1. Existence of the Solution 

Consider 𝑁 ∈ 𝑁 such that 𝑎 ∈ [
𝜋

𝑁+1
,
𝜋

𝑁
] and 𝑄(𝑥, 𝜇) be a solution of (3.3) under the conditions that  

𝑄(0, 𝜇) = 0, 𝐷𝑥
𝛼𝑄(0, 𝜇) = 1. 

We can then expressed 𝑄(𝑥, 𝜇) as 

𝑄(𝑥, 𝜇) =
1

√𝜇
𝑠𝑖𝑛 (√

𝜇

𝛼
𝑥𝛼) +

1

√𝜇
∫
𝑥

0
𝑠𝑖𝑛 (√

𝜇

𝛼
(𝑥𝛼 − 𝑡𝛼)) 𝑞(𝑡)𝑄(𝑡 − 𝑎, 𝜇)𝑑𝛼𝑡 (3.4) 

clearly, 𝑄(𝑗)(𝑥, 𝜇), for any 𝑥 in the interval (0, 𝜋) and 𝑗 = 0,1, are entire in 𝜇 of order 
1

2
. 

By the method of successive approximations, the solution of (3.4) is  

𝑄(𝑥, 𝜇) = 𝑄0(𝑥, 𝜇) + 𝑄1(𝑥, 𝜇) + ⋯+ 𝑄𝑁(𝑥, 𝜇) (3.5) 

for which,  

𝑄0(𝑥, 𝜇) =
1

√𝜇
𝑠𝑖𝑛 (√

𝜇

𝛼
𝑥𝛼)    𝑓𝑜𝑟  𝑥 ≥ 0 (3.6) 

𝑄𝑘(𝑥, 𝜇) =
1

√𝜇
∫
𝑥

𝑘𝑎
𝑠𝑖𝑛 (√

𝜇

𝛼
(𝑥𝛼 − 𝑡𝛼)) 𝑞(𝑡)𝑄𝑘−1(𝑡 − 𝑎, 𝜇)𝑑𝛼𝑡 (3.7) 

for 𝑥 ≥ 𝑘𝑎, and 𝑄𝑘(𝑥, 𝜇) = 0 for 𝑥 ≤ 𝑘𝑎. 

Now, for 𝑘 ≥ 1, and from (3.7) and by Definition 2.1 we have,  

𝐷𝑥
𝛼𝑄𝑘(𝑥, 𝜇) = ∫

𝑥

𝑘𝑎
𝑐𝑜𝑠 (√

𝜇

𝛼
(𝑥𝛼 − 𝑡𝛼)) 𝑞(𝑡)𝑄𝑘−1(𝑡 − 𝑎, 𝜇)𝑑𝛼𝑡   𝑓𝑜𝑟 𝑥 ≥ 𝑘𝑎. (3.8) 

From (3.7) we obtained  

𝑄1(𝑥, 𝜇) =
1

√𝜇
∫
𝑥

𝑎
𝑠𝑖𝑛 (√

𝜇

𝛼
(𝑥𝛼 − 𝑡𝛼)) 𝑞(𝑡)𝑄0(𝑡 − 𝑎, 𝜇)𝑑𝛼𝑡

=
1

𝜇
∫
𝑥

𝑎
𝑠𝑖𝑛 (√

𝜇

𝛼
(𝑥𝛼 − 𝑡𝛼)) . 𝑠𝑖𝑛 (√

𝜇

𝛼
(𝑡𝛼 − 𝑎𝛼)) 𝑞(𝑡)𝑑𝛼𝑡

 (3.9) 

so that  

𝑄1(𝑥, 𝜇) = −
1

2𝜇
𝑐𝑜𝑠 (√

𝜇

𝛼
(𝑥𝛼 − 𝑎𝛼)) ∫

𝑥

𝑎
𝑞(𝑡)𝑑𝛼𝑡

+
1

2𝜇
∫
𝑥

𝑎
𝑐𝑜𝑠 (√

𝜇

𝛼
(2𝑡𝛼 − 𝑥𝛼 − 𝑎𝛼)) 𝑞(𝑡)𝑑𝛼𝑡

 (3.10) 

then, we have from (3.10) that  

𝐷𝑥
𝛼(𝑄1(𝑥, 𝜇)) =

1

2√𝜇
𝑠𝑖𝑛 (√

𝜇

𝛼
(𝑥𝛼 − 𝑎𝛼)) ∫

𝑥

𝑎
𝑞(𝑡)𝑑𝛼𝑡

+
1

2√𝜇
∫
𝑥

𝑎
𝑠𝑖𝑛 (√

𝜇

𝛼
(2𝑡𝛼 − 𝑥𝛼 − 𝑎𝛼)) 𝑞(𝑡)𝑑𝛼𝑡.

 (3.11) 

Now, from (3.8) -(3.10), it can be shown that  
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𝑄𝑘
(𝑗)
(𝑥, 𝜇) = 𝑂 ((√𝜇)

𝑗−𝑘−1𝑒
(
1

𝛼
|𝐼𝑚√𝜇|(𝑥

𝛼−(𝑘𝑎)𝛼))) (3.12) 

3.2. The Asymptotic Formulae 

Let us denote the characteristics function of 𝐿𝑗(𝑞) by 𝑊𝑗(𝜇), 𝑗 = 0,1, and 𝑊𝑗(𝜇) = 𝑄(𝑗)(𝜋, 𝜇). Since 𝑄(𝑗)(𝜋, 𝜇) are 

entire in 𝜇 of order 
1

2
 so also the 𝑊𝑗(𝜇). 

We drived the asymptotical formulae for the SLP 𝐿𝑗(𝑞) for |√𝜇| → ∞ from (3.7), (3.11) and (3.12) as follows,  

𝑊0(𝜇) = 𝑄(𝜋, 𝜇) = 𝑄0(𝜋, 𝜇) + 𝑄1(𝜋, 𝜇) + ⋯+ 𝑄𝑁(𝜋, 𝜇)

=
1

√𝜇
𝑠𝑖𝑛 (√

𝜇

𝛼
𝜋𝛼) −

1

2𝜇
𝑐𝑜𝑠 (√

𝜇

𝛼
(𝜋𝛼 − 𝑎𝛼)) ∫

𝜋

𝑎
𝑞(𝑡)𝑑𝛼𝑡

+𝑜 (𝜇−1𝑒
(
1

𝛼
|𝐼𝑚√𝜇|(𝜋

𝛼−𝑎𝛼)))

 (3.13) 

so that we have  

𝑊1(𝜇) = 𝑐𝑜𝑠 (√
𝜇

𝛼
𝜋𝛼) +

1

2√𝜇
𝑠𝑖𝑛 (√

𝜇

𝛼
(𝜋𝛼 − 𝑎𝛼)) ∫

𝜋

𝑎
𝑞(𝑡)𝑑𝛼𝑡

+𝑜 (𝜇−
1

2𝑒
(
1

𝛼
|𝐼𝑚√𝜇|(𝜋

𝛼−𝑎𝛼)))
 (3.14) 

The asymptotical formulae for the eigenvalues of the 𝐿𝑗(𝑞) for 𝜇𝑛𝑗 = 𝜌𝑛𝑗
2  as 𝑛 → ∞ were also obtained using (3.13) 

and (3.14) and the method described in [37] as 

𝜌𝑛0 =
𝛼𝑛

𝜋𝛼−1
+

1

2𝑛𝜋
𝑐𝑜𝑠 (

𝑛

𝜋𝛼−1
𝑎𝛼) ∫

𝜋

𝑎
𝑞(𝑡)𝑑𝛼𝑡 + 𝑂 (

1

𝑛
) (3.15) 

and  

𝜌𝑛1 =
𝛼(𝑛−

1

2
)

𝜋𝛼−1
+

1

2(𝑛−
1

2
)𝜋
𝑐𝑜𝑠 (

𝑛

𝜋𝛼−1
𝑎𝛼) ∫

𝜋

𝑎
𝑞(𝑡)𝑑𝛼𝑡 + 𝑂 (

1

𝑛
) (3.16) 

3.3. The Specification of the Spectrum 

The Specification of the Spectrum is one of the spectral properties, as for the spectrum corresponding to a 

problem for a Sturm-Liouville operator for the interval (0,∞), it means the complement of the set of points in a 

neighborhood of which the spectral function 𝑊𝑗(𝜇) is constant, as such, to affirm applying the conformable 

derivative operator, we obtained and proved the specification of the spectrum for the characteristics function as it 

follows. 

Lemma 3.1. The specification of the spectrum {𝜇𝑛𝑗}𝑛≥1, 𝑗 = 0,1 uniquely determines the characteristics function 

𝑊𝑗(𝜇) by the formulas  

𝑊0(𝜇) =
𝜋3𝛼−2

𝛼3
∏∞
𝑛=1 (

𝜇𝑛0−𝜇

𝑛2
) (3.17) 

and  

𝑊1(𝜇) =
𝜋2𝛼−2

𝛼2
∏∞
𝑛=1

(𝜇𝑛1−𝜇)

(𝑛−
1

2
)
2  (3.18) 

Proof. Being 𝑊𝑗(𝜇) entire in 𝜇 of order 
1

2
, then by Hadamard’s factorization theorem [51], it can be uniquely 

determined up to a multiplicative constant by its zeros, that is  

 𝑊0(𝜇) = 𝐶∏∞
𝑛=1 (1 −

𝜇

𝜇𝑛0
) 

Now, since  
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 𝑠𝑖𝑛 𝑧 = 𝑧∏∞
𝑛=1 (1 −

𝑧2

(𝑘𝜋)2
) 

it implies that 

 �̃�0(𝜇) =
𝑠𝑖𝑛(√

𝜇

𝛼
𝜋𝛼)

√𝜇
=

𝜋𝛼

𝛼
∏∞
𝑛=1 (1 −

𝜇𝜋2𝛼−2

𝛼2𝑛2
) =

𝜋𝛼

𝛼
∏∞
𝑛=1 (1 −

𝜇

(
𝛼2

𝜋2𝛼−2
)𝑛2

) 

Then,  

 
𝑊0(𝜇)

�̃�0(𝜇)
= 𝐶

𝛼3

𝜋3𝛼−2
∏∞
𝑛=1

𝑛2

𝜇𝑛0
∏∞

𝑛=1 (1 +
𝜇𝑛0−(

𝛼2

𝜋2𝛼−2
)𝑛2

(
𝛼2

𝜋2𝛼−2
)𝑛2−𝜇

) 

Now, 

1=
)(

~
)(

lim
0

0






W

W
−→

 
and

 
1=1lim

2

22

2

2

22

2

0

1=





















−
















−

+

−

−


−→ 

















n

nn

n  

then,  

 𝐶 =
𝜋3𝛼−2

𝛼3
∏∞

𝑛=1
𝜇𝑛0

𝑛2
 

and eventually, we reached  

 𝑊0(𝜇) = 𝐶 ∏∞
𝑛=1 (1 −

𝜇

𝜇𝑛0
) =

𝜋3𝛼−2

𝛼3
∏∞
𝑛=1 (

𝜇0−𝜇

𝑛2
). 

This completes the proof of the first case, that is for 𝑗 = 0. The proof for the second case, 𝑗 = 1, similarly follows.  

3.4. Regge-type Boundary Value Problem 

The problem considered in this work, (3.3), can also be extended to Regge-type boundary value problem 𝐿(𝑞), 

that is,  

𝑦(0) = 0,  𝐷𝑥
𝛼𝑦(𝜋) + 𝑖𝜌𝑦(𝜋) = 0. 

In such a case, the characteristic function will be of the form;  

𝑆(𝜇) = 𝑊1(𝜇) + 𝑖𝜌𝑊0(𝜇) (3.19) 

which is, also, entire in 𝜇. Now from (3.5) we have  

𝑆(𝜇) = 𝑆0(𝜇) + 𝑆1(𝜇) + ⋯+ 𝑆𝑁(𝜇) (3.20) 

where 𝑆𝑘(𝜇) = 𝐷𝑥
𝛼𝑄𝑘(𝜇) + 𝑖√𝜇𝑄𝑘(𝜇) which implies that  

𝑆0(𝜇) = 𝑐𝑜𝑠 (
√𝜇

𝛼
𝜋𝛼) + 𝑖 𝑠𝑖𝑛 (

√𝜇

𝛼
𝜋𝛼) = 𝑒𝑖

(√
𝜇

𝛼
𝜋𝛼)

 

From (3.7) and (3.8) we obtained  

𝑆𝑘(𝜇) = ∫
𝜋

𝑘𝑎
𝑒𝑖

(√
𝜇

𝛼
(𝜋𝛼−𝑡𝛼))𝑞(𝑡)𝑄𝑘−1(𝑡 − 𝑎, 𝜇)𝑑𝛼𝑡,    𝑘 ≥ 1 (3.21) 

It follows from (3.10) and (3.11) that  
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𝑆1(𝜇) =
1

2𝑖√𝜇
(𝑒

(
𝑖√𝜇

𝛼
(𝜋𝛼−𝑎𝛼))

∫
𝜋

𝑎
𝑞(𝑡)𝑑𝛼𝑡 − 𝑒

(
𝑖√𝜇

𝛼
(𝜋𝛼+𝑎𝛼))

∫
𝜋

𝑎
𝑞(𝑡)𝑒

(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡) (3.22) 

by virtue of (3.12) and (3.21) we obtain  

𝑆𝑘(𝜇) = 𝑂 ((√𝜇)
−𝑘 ∫

𝜋

𝑘𝑎
𝑞(𝑡)𝑒

(
𝑖√𝜇

𝛼
(2𝑡𝛼−𝜋𝛼−(𝑘𝑎)𝛼))𝑑𝛼𝑡), (3.23) 

for 𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞.   𝑘 ≥ 1.  

4. Uniqueness Theorem 

In this part of the study, we want to give and prove the uniqueness theorems, which show that the potential 

functions of the two different problems are the same if the spectrums are coincident under different conditions. It 

should be noted that we have expressed our problem under a different set of boundary conditions; the mixed and 

the Regge-type, and we will use them to prove the uniqueness. These theorems were given for the classical 

derivative problems, however, we aim to extend this derivative to the entire real interval [0,1] and bring the results 

to the literature. We must state that in the case where 𝛼 = 1, the results coincided with the results given in [36]. 

To prove the uniqueness theorem, let {�̃�𝑛𝑗}𝑛≥1,𝑗 = 0,1, be the eigenvalues of the problems �̃�𝑗 = 𝐿𝑗(�̃�) with the 

potential �̃�(𝑥) = 0, then �̃�𝑛0 = (
𝛼𝑛

𝜋𝛼−1
)2 and �̃�𝑛1 = (

𝛼(𝑛−
1

2
)

𝜋𝛼−1
)2, for 𝑛 ≥ 1. 

Consider �̃�(𝜇) as the characteristic function of �̃� = 𝐿(�̃�). It implies from (3.19) that �̃�(𝜇) = 𝑒
𝑖√𝜇

𝛼
𝜋𝛼.  

Theorem 4.1. If 𝜇𝑛𝑗 = �̃�𝑛𝑗, ∀  𝑛 ≥ 1,  𝑓𝑜𝑟 𝑗 = 0,1, then the potential 𝑞(𝑥) = 0 almost everywhere on (𝑎, 𝜋).  

Proof. From lemma 3.1 and the special infinite series, we have 

𝑊0(𝜇) =
𝑠𝑖𝑛(√

𝜇

𝛼
𝜋𝛼)

√𝜇
 and 𝑊1(𝜇) = 𝑐𝑜𝑠 (√

𝜇

𝛼
𝜋𝛼) 

as such, 𝑆(𝜇) = 𝑒
𝑖√𝜇

𝛼
𝜋𝛼. From (3.20), we can deduce that  

𝑆1(𝜇) = −𝑆+(𝜇) (4.1) 

where, 𝑆+(𝜇) = ∑𝑁
𝑘=2 𝑆𝑘(𝜇), 𝑘 ≥ 2 with 𝑆+(𝜇) = 0, 𝑘 = 1. 

Taking 𝜇𝑛𝑗 = �̃�𝑛𝑗, (3.15) and (3.16) implies that ∫
𝜋

𝑎
𝑞(𝑡)𝑑𝛼𝑡 = 0, then (3.22) yields  

𝑆1(𝜇) = −
1

2𝑖√𝜇
𝑒
(
𝑖√𝜇

𝛼
(𝜋𝛼+𝑎𝛼))

∫
𝜋

𝑎
𝑞(𝑡)𝑒

(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 (4.2) 

Let 𝑁 = 1, i.e. 𝑎 ∈ [
𝜋

2
, 𝜋], then 𝑆+(𝜇) = 0 which implies from(4.1) that 𝑆1(𝜇) = 0 as such, (4.2) gives,  

 ∫
𝜋

𝑎
𝑞(𝑡)𝑒

(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 0 

and the only possibility is 𝑞(𝑥) = 0 almost everywhere on (𝑎, 𝜋). This completes the proof for 𝑁 = 1 and below is for 

𝑁 ≥ 2.  

Lemma 4.1. If the potential 𝑞(𝑥) = 0 almost everywhere on (2𝑎, 𝜋), then 𝑞(𝑥) = 0 almost everywhere on (𝑎, 𝜋).  

Proof. Let 𝑞(𝑥) = 0 almost everywhere on (2𝑎, 𝜋), from (3.21) 𝑆𝑘(𝜇) = 0 for 𝑘 ≥ 2 and hence 𝑆+(𝜇) = 0, then from 

(4.1) we have 𝑆1(𝜇) = 0 and consequently 𝑞(𝑥) = 0 almost everywhere on (𝑎, 𝜋). This completes the proof of lemma 

4.1.  
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To make it more clear, let's consider the 𝑁 in two ways; odd and even. Firstly, we will assume that 𝑁 = 2𝑀 + 1, 

i.e. 𝑁 is odd, in the following.  

Lemma 4.2. Let 𝑑 = 0,1,3, … 2𝑀 − 1. If the potential 𝑞(𝑥) = 0 almost everywhere on (𝜋 −
𝑑𝑎

2
, 𝜋), then 𝑞(𝑥) = 0 

almost everywhere on (𝜋 −
(𝑑+1)𝑎

2
, 𝜋).  

Proof. From the fact that (𝜋 −
𝑑𝑎

2
, 𝜋) > 2𝑎, it follows (3.23) that 

 𝑆2(𝜇) = 𝑂 (
1

𝜇
∫
𝜋−

𝑑𝑎

2
2𝑎

𝑞(𝑡)𝑒
(
𝑖√𝜇

𝛼
(2𝑡𝛼−𝜋𝛼−(2𝑎)𝛼))𝑑𝛼𝑡) ,  𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞ 

clearly, 2𝑡 − 𝜋 − 2𝑎 ∈ (2𝑎 − 𝜋, 𝜋 − (𝑑 + 2)𝑎), for 𝜋 − (𝑑 + 2)𝑎) ≥ 𝜋 − 𝑁𝑎 which yields,  

𝑆2(𝜇) = 𝑂 (
1

𝜇
𝑒
(
−𝑖√𝜇

𝛼
(𝜋𝛼−((𝑑+2)𝑎)𝛼))𝑑𝛼𝑡) ,  𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞. (4.3) 

𝑆𝑘(𝜇) in the equation (4.3), increase less rapidly than the right-hand side when 𝑘 ≥ 2, that is,  

𝑆+(𝜇) = 𝑂 (
1

𝜇
𝑒
(
−𝑖√𝜇

𝛼
(𝜋𝛼−((𝑑+2)𝑎)𝛼))𝑑𝛼𝑡) ,  𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞ (4.4) 

it follows from (4.1), (4.2) and (4.4) that  

 𝑒
(
𝑖√𝜇

𝛼
(𝜋𝛼+𝑎𝛼))

∫
𝜋−

𝑑𝑎

2
𝑎

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (

1

√𝜇
𝑒
(
−𝑖√𝜇

𝛼
(𝜋𝛼−((𝑑+2)𝑎)𝛼)),  

 𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞, 

which can be expressed as  

𝑒
(
𝑖√𝜇

𝛼
(2𝜋𝛼+(1−(𝑑+2)𝛼)𝑎𝛼))

∫
𝜋−

𝑑𝑎

2
𝑎

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (

1

√𝜇
), (4.5) 

𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞. 

Furthermore, we have  

∫
𝜋−

(𝑑+1)𝑎

2
𝑎

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (𝑒

(
−𝑖√𝜇

𝛼
(2𝜋𝛼+(1−(𝑑+2)𝛼)𝑎𝛼)𝑑𝛼𝑡) ,   (4.6) 

𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞. 

Now, let's define the function,  

𝐺(√𝜇) = 𝑒
(
𝑖√𝜇

𝛼
(2𝜋𝛼+(1−(𝑑+2)𝛼)𝑎𝛼))

∫
𝜋−

𝑑𝑎

2

𝜋−
(𝑑+1)𝑎

2

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 (4.7) 

which is entirely in 𝜇. Clearly, 𝐺(√𝜇) = 𝑂(1) for 𝐼𝑚√𝜇 ≤ 0, also, it follows from (4.5) and (4.6) that 𝐺(√𝜇) = 𝑂(1) for 

𝐼𝑚√𝜇 ≥ 0. Since the function 𝐺(√𝜇) is entire bounded it follows from Liouville’s theorem [51] that 𝐺(√𝜇) = 𝑐, where 

c is a constant. From 𝐺(√𝜇) = 𝑜(1) for real √𝜇, |√𝜇| → ∞, then 𝐺(√𝜇) = 0, hence (4.7) gives  

 ∫
𝜋−

𝑣𝑎

2

𝜋−
(𝑑+1)𝑎

2

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 0 

which gives 𝑞(𝑥) = 0 almost everywhere on (𝜋 −
(𝑑+1)𝑎

2
, 𝜋 −

𝑑𝑎

2
) which completes the proof.  

We obtained 𝑞(𝑥) = 0 almost everywhere on (𝜋 − 𝑀𝑎, 𝜋) by applying lemma 4.2 successively for 𝑑 = 0,1,3, … 2𝑚 −
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1.  

We noted that lemma 4.2 is for the odd case. Now, let 𝑑 ≥ 2𝑀 such that 𝑁 is even. 

Lemma 4.3. If the potential 𝑞(𝑥) = 0 almost everywhere on 𝜋 − 𝑀𝑎, 𝜋, then 𝑞(𝑥) = 0 almost everywhere on 

(
(𝑀+2)𝑎

2
, 𝜋).  

Proof. If 𝑘 ≥ 𝑀 + 2, we then have 𝜋 −𝑀𝑎 − 𝑘𝑎 ≤ 𝜋 − (𝑁 + 1)𝑎 ≤ 0 and hence, 𝑆𝜇 = 0 for 𝑘 ≥ 𝑀 + 2. 

According to (3.23), for 𝑘 = 2,3,4, … ,𝑀 + 1, 

𝑆𝑘(𝜇) = 𝑂 ((√𝜇)
−𝑘 ∫

𝜋−𝑀𝑎

𝑘𝑎
𝑞(𝑡)𝑒

(
−𝑖√𝜇

𝛼
(2𝑡𝛼−𝜋𝛼−(𝑘𝑎)𝛼)𝑑𝛼𝑡), (4.8) 

for 𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞.  

Being 2𝑡 − 𝜋 − 𝑘𝑎 ≤ 0, it follows that  

𝑆𝑘(𝜇) = 𝑂 ((√𝜇)
−𝑘𝑒

(
𝑖√𝜇

𝛼
(𝜋𝛼−(𝑘𝑎)𝛼)), (4.9) 

for 𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞,  𝑓𝑜𝑟 𝑘 = 2,3,4, … ,𝑀 + 1 and hence  

𝑆+(𝜇) = 𝑂 (
1

𝜇
𝑒
(
𝑖√𝜇

𝛼
(𝜋𝛼−((𝑀+1)𝑎)𝛼))), (4.10) 

for 𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞, 

As a result of (4.1), (4.2) and (4.9) we obtained  

 𝑒
(
𝑖√𝜇

𝛼
(𝜋𝛼+𝑎𝛼))

∫
𝜋−𝑀𝑎

𝑎
𝑞(𝑡)𝑒

(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (

1

√𝜇
𝑒
(
𝑖√𝜇

𝛼
(𝜋𝛼−((𝑀+1)𝑎)𝛼))), 

 𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞ or, which is equivalent to,  

𝑒
(
𝑖√𝜇

𝛼
((𝑀+2)𝑎)𝛼)

∫
𝜋−𝑀𝑎

𝑎
𝑞(𝑡)𝑒

(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (

1

√𝜇
) ,  𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞ (4.11) 

furthermore,  

∫
(𝑀+2)𝑎

2
𝑎

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (𝑒

(
−𝑖√𝜇

𝛼
((𝑀+2)𝑎)𝛼)) (4.12) 

𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞ 

Let us denote  

 𝐺∗(√𝜇) = 𝑒
(
𝑖√𝜇

𝛼
((𝑀+2)𝑎)𝛼)

∫
𝜋−𝑀𝑎
(𝑀+2)𝑎

2

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 

Which is entire in 𝜇 and 𝐺∗(√𝜇) = 𝑂(1) for 𝐼𝑚√𝜇 ≤ 0. In view of (4.11) and (4.12), 𝐺∗(√𝜇) = 𝑂(1) for 𝐼𝑚√𝜇 ≥ 0. 

Therefore,as in the above similar case, 𝐺∗(√𝜇) = 𝐶, since 𝐺∗(√𝜇) = 𝑜(1) for real √𝜇, |√𝜇| → ∞, then 𝐺∗(√𝜇) = 0, that 

is,  

 ∫
𝜋−

𝑀𝑎

2
(𝑀+2)𝑎

2

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 0. 
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This implies that 𝑞(𝑥) = 0 almost everywhere on (
(𝑀+2)𝑎

2
, 𝜋 − 𝑀𝑎) which completes the proof.  

It has been proved that 𝑞(𝑥) = 0 almost everywhere on (2𝑎, 𝜋) for 𝑀 = 1 or 𝑀 = 2. According to lemma 4.1, (𝑥) =

0 almost everywhere on (𝑎, 𝜋). Therefore, theorem 4.1 is proved for 𝑀 = 1 and 𝑀 = 2. 

Let now 𝑀 ≥ 3. Fix 𝑑 = 5,6,7,8, . . . , 𝑀 + 2. Let 𝑙 =
(𝑑+1)

2
. Clearly, 𝑙 < 𝑑.  

Lemma 4.4. If the potential 𝑞(𝑥) = 0 almost everywhere on (
𝑑𝑎

2
, 𝜋), then 𝑞(𝑥) = 0 almost everywhere on (

𝑙𝑎

2
, 𝜋).  

Proof. Considering 
𝑑

2
− 𝑘 ≤

𝑑

2
− 𝑙 ≤ 0 for 𝑘 ≥ 𝑙, we have 𝑆𝑘(𝜇) = 0 for 𝑘 ≥ 𝑙. By virtue of (3.23)  

𝑆𝑘(𝜇) = 𝑂 ((√𝜇)
−𝑘 ∫

𝑑𝑎

2
𝑘𝑎

𝑞(𝑡)𝑒
(
−𝑖√𝜇

𝛼
(2𝑡𝛼−𝜋𝛼−(𝑘𝑎)𝛼))𝑑𝛼𝑡), (4.13) 

for 𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞,   𝑘 = 2,3,4, … , 𝑙 − 1. Now, 2𝑡 − 𝜋 − 𝑘𝑎 < 0 that is, the exponent is decreasing for 𝐼𝑚√𝜇 >

0, then,  

𝑆𝑘(𝜇) = 𝑂 ((√𝜇)
−𝑘𝑒

(
𝑖√𝜇

𝛼
(𝜋𝛼−(𝑘𝑎)𝛼))), (4.14) 

for 𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞,   𝑘 = 2,3,4, … , 𝑙 − 1, therefore,  

𝑆+(𝜇) = 𝑂 (
1

𝜇
𝑒
(
𝑖√𝜇

𝛼
(𝜋𝛼−((𝑙−1)𝑎)𝛼))) ,  𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞, (4.15) 

from (4.1), (4.2) and (4.15) we obtained  

𝑒
(
𝑖√𝜇

𝛼
(𝑙𝑎)𝛼)

∫
𝑑𝑎

2
0

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (

1

√𝜇
) (4.16) 

for 𝐼𝑚√𝜇 ≥ 0,  |√𝜇| → ∞. moreover,  

∫
𝑙𝑎

2
𝑎

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 = 𝑂 (𝑒

(
−𝑖√𝜇

𝛼
(𝑙𝑎)𝛼))  𝑓𝑜𝑟 𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞. (4.17) 

𝐼𝑚√𝜇 ≥ 0, |√𝜇| → ∞ Let us denote,  

 𝐺∗∗(√𝜇) = 𝑒
(
𝑖√𝜇

𝛼
((𝑙𝑎)𝛼))

∫
𝑑𝑎

2
(𝑙𝑎)

2

𝑞(𝑡)𝑒
(
−2𝑖√𝜇

𝛼
𝑡𝛼)𝑑𝛼𝑡 

Which is entire in 𝜇 as well, and 𝐺∗∗(√𝜇) = 𝑂(1) for 𝐼𝑚√𝜇 ≤ 0. Considering (4.16) and (4.17), 𝐺∗∗(√𝜇) = 𝑂(1) for 

𝐼𝑚√𝜇 ≥ 0. consequently 𝐺∗∗(√𝜇) = 𝑜(1) for real √𝜇, |√𝜇| → ∞, therefore 𝐺∗∗(√𝜇) = 0 and as a result of which 𝑞(𝑥) =

0 almost everywhere on (
𝑙𝑎

2
,
𝑑𝑎

2
). Hence lemma 4.4 is proved.  

Applying the lemma 4.4 many times consecutively starting from 𝑑 = 𝑀 + 2, we obtain that the potential 𝑞(𝑥) = 0 

almost everywhere on (2𝑎, 𝜋). Therefore, due to lemma 4.1, 𝑞(𝑥) = 0 almost everywhere on (𝑎, 𝜋). Hence, this 

completes the proof of the theorem. 

It can be seen that, with regard to our problem we proved the existence of the solution, the spectral properties, 

and also the uniqueness theorem in detail using the proposed fractional approach and these completes our work. 

5. Conclusion 

In conclusion, the method of conformable derivative, which is more accessible to the other existing fractional 

derivative approaches due to its satisfying properties, has been used in this work as a derivative operator with which 
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we show and express the possibility of solving the inverse SLP with constant delay. The problem discussed is under 

mixed boundary conditions and in each case, a result is obtained. Also, the specifications of the respective 

spectrums are given affirming the solution obtained. The asymptotics of the eigenvalues were extended to the 

Regge-type boundary value problem and analyzed. The proof of the uniqueness theorem is similar to the one in the 

classical case of the problem. Similar problems with different boundary conditions can be discussed under this new 

fractional derivative approach with their corresponding spectral properties and this will lead to providing an entire 

phase of fractional SLP. 
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