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ABSTRACT 

Soil moisture dynamics is a complex phenomenon that depends on the atmospheric 

conditions, the geomorphological characteristics of the region under study, and the 

corresponding land use. It can be formally described by a diffusion model based on 

Darcy’s law and the law of mass continuity. In this work, the obtained numerical 

solution of the hydrological model has been exploited to evaluate the soil moisture in 

a given region and build a risk map for the slope stability of this region. More in detail, 

the infinite slope model from slope stability analysis has been used for evaluating the 

safety factor and constructing the corresponding quantitative hazard maps. Some 

results of the proposed method applied to a real case study are shown and discussed. 
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1. Introduction 

Slope instability is widely recognized as an ever-present danger [1, 2]: in fact, landslides are frequent disasters 

and constitute an important and costly problem. Europe itself, due to its geography, has many highly hazardous 

regions [3], since landslides are a major hazard in most mountainous and hilly regions. Furthermore, intense and/or 

long-lasting rainfalls represent the most frequent triggers of landslides [4, 5]. Nowadays, a large body of knowledge, 

which concerns various parameters, variables, and models that are important to a clear understanding of the 

processes affecting the stability/instability of natural slopes, is available [6-9]. Nevertheless, actual methods for 

landslide evaluation are mainly based on scientific literature of geomorphologic studies and historical landslide events. 

In this work, the relation between the stability and the hydrological conditions of a considered region is 

investigated. The slope failure hazard during rainfall events is analyzed by simultaneously considering a hydrological 

model for evaluating the soil water content and a stability model for landslide forecasting. In the formalization of 

hydrodynamic problems, the most famous model involves the Navier-Stokes equations and, eventually, the heat 

equation [10, 11]. On the other hand, hydrological problems must take into consideration the porous medium, which 

strongly modifies the behavior of the flow. In this case, a proper model is based on Richard’s equation [12-14]. In the 

hydrological model considered in this paper, the following classical assumptions are made: 

• the infiltration capacity of the soil always exceeds the rainfall intensity, so the groundwater table rises when the 

rainfall infiltrates; this means that the water does not run off and the soil can catch all the water from rainfall, 

even when heavy rainfall occurs, and the water table rises unless the soil is saturated; in addition, run-off yields 

erosion and flooding but does not affect the landslide hazard; 

• flow from or inside bedrock is not considered [15]. 

In the literature, there are various methods for slope stability analysis, such as the method of slices and the limit 

equilibrium analysis model, [16] for an overview of these models. In this preliminary work, the infinite slope model 

has been used as a stability model, which is a simple method inside the general limit equilibrium analysis model. 

However, another interesting method, which can be used when the three-dimensional case is considered, is the one 

shown in [17], where the force and moment limit equilibrium analysis is used to produce a three-dimensional slope 

stability analysis. In this method, a potential sliding mass is divided into a group of square soil columns, which will be 

henceforth called sections, and the equilibrium analysis model allows: 

• to work in areas of irregular geometrical and/or geological conditions, where the direction of potential sliding 

may vary considerably and be difficult to guess in advance; 

• to avoid establishing local coordinate systems for various potential failure surfaces. 

This study was part of the European project “LANDSLIDE: Landslide risk assessment model for disaster 

prevention and mitigation”. The objectives of the LANDSLIDE project are: 

• the development of a Landslide Hazard Assessment Model and Software for shallow landslide events triggered 

by rainfalls, that predicts, based on weather forecasts, the corresponding landslide hazard and sends this 

prediction to appropriate territorial authorities; 

• the test and the transfer of the Landslide Hazard Assessment Model and Software into the civil protection 

systems of the partner territories evolved; 

• the involvement of other sectors concerned in risk prevention and mitigation, enabling them to consider risk 

prevention in their respective planning and development policies; 

• the involvement of people directly affected by the identified risks, to make them engaged in self-protection 

and prevention activities. 

The following of the paper is structured as follows. Section 2 defines the factor of safety 𝐹 and the infinite slope 

model for its computation. Section 3 illustrates the hydrological model used for computing the soil moisture. Section 

4 reports the discretization scheme. Section 5 contains the numerical results obtained from a case study. Section 

6 gives final remarks and shows possible developments of this work. 
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2. The Factor of Safety 𝑭 and the Stability Model 

The infinite slope model is used in this paper as a mathematical model for slope stability analysis used in this 

work. The infinite slope model allows, starting from the soil characteristics and the water content, the computation 

of the factor of safety 𝐹. Such 𝐹 is the ratio between forces that prevent the slope from sliding down and those that 

bring the slope to collapse and measures the resistance of inclined surfaces to failure by sliding or collapsing. 

Roughly speaking, a factor of safety larger than 1 indicates stable conditions, whereas a factor of safety smaller than 

1 indicates unstable ones. When 𝐹 =  1, the slope is at the point of failure. Therefore, the factor of safety 𝐹 is a 

hazard index and its numerical evaluation is required to obtain quantitative hazard maps. 

2.1. The Factor of Safety 𝑭 

The following expression of the factor of safety 𝐹 at a section of the soil can be obtained from the Mohr-

Coulomb’s law [18, 19]: 

𝐹 =
𝑐′ + (𝜎𝑛 − 𝑢𝑛) 𝑡𝑎𝑛(𝜙)

𝑠
,  (1) 

where 𝑐′ is the cohesion, 𝜎 is related to the total force applied on the section base 𝜎𝑛  is its normal component, 

𝑢 is related to the uplifting force at the failure surface that consists in the pore-fluid pressure and 𝑢𝑛 is its normal 

component, 𝜙 is the angle of shearing resistance or friction angle, and 𝑠 is related to the driving force and is 

called ultimate shear stress. Hence, 𝐹 is the ratio between the resisting force and the driving force. More in detail, 

the resisting force is composed of two addenda: the cohesion 𝑐′, which includes some attractions among the 

particles (perhaps at the molecular level) that give shearing resistance even at zero effective stress, see [20] for more 

details; the friction (𝜎𝑛 − 𝑢𝑛)𝑡𝑎𝑛(𝜙), which is the shear strength of soil along the failure surface. In particular, the 

frictional resistance to movement depends on 𝜎 and 𝑢, in fact, the friction is related to the soil grain contact forces 

and it is reduced by the pressure 𝑢 of a fluid in the soil pores, since it reduces the grain-to-grain contact loads. 

2.2. The Infinite Slope Model 

Suppose that each soil section is a large slope having uniform steepness and geological features. Under these 

assumptions, the infinite slope model [21] can be leveraged to describe the stability of the considered section by using 

an “infinitely large failure plane”, approximately parallel to the slope surface. Hence, 𝐹 can be computed in a bi-

dimensional grid (one point for each vertical section) on the slope surface, each discretization point is considered a 

homogeneous unit, and the effect of the neighboring discretization points (sections) is not considered. 

The infinite slope model is based on the so-called limit equilibrium analysis, where a granular material (like soil) 

is subjected to forces that cannot move the material but can deform it. In the case of soil, the usually involved forces 

are gravity and seismic waves, and the corresponding deformations may produce landslides. In particular, with the 

infinite slope model, it can be evaluated when this deformation starts, but there is no information about the 

dynamics of this deformation under the action of the forces. 

Let us note that, from Formula (1), the resisting stress due to friction (𝜎𝑛  −  𝑢𝑛) 𝑡𝑎𝑛(𝜙) depends on the 

component of the effective stress 𝜎 − 𝑢 normal to the failure surface, where 𝜎 is the total stress. 

In the infinite slope model, the following assumptions hold: 

• the total stress 𝜎 is equal to the sum of the weights of the soil section and of the water contained in it; 

• the driving force 𝑠 is equal to the component of the total stress 𝜎 tangent to the failure surface. 

The resulting formula for the safety factor, see [22] for details, is then 

𝐹 =
𝐶 + (𝑧𝛾 − 𝑧𝑤𝛾𝑤) 𝑐𝑜𝑠2(𝛽) 𝑡𝑎𝑛(𝜙)

𝑧𝛾 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽)
,   (2) 
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where 

• 𝐶 is the effective cohesion; 

• 𝛾𝑤 is the unit weight of water, in [𝑘𝑁/𝑚3], and it is equal to 9.81; 

• 𝛾 is the unit weight of the soil, in [𝑘𝑁/𝑚3]; 

• 𝑧 is the depth of the failure surface, in [𝑚]; 

• 𝑧𝑤  is the height of the groundwater table above the failure surface, in [𝑚]; 

• 𝛽 is the slope of the inclined surface; 

• 𝜙 is the angle of internal friction. 

The water content, obtained from the hydrological model, is used for computing 𝐹 by (2) and obtaining information 

about the stability of the slope surface at each point, and this results in a landslide hazard map. 

3. The Hydrological Model 

The water infiltration into the soil can be formally described by Richard’s equation [12] and arises from Darcy’s law 

[23] and the mass conservation equation. Richard's equation is a partial differential equation defining the water 

flow in saturated or unsaturated porous media. In particular, if (𝑥, 𝑦, 𝑧)  ∈  Ω ⊆  ℝ3 and 𝑡 is the time variable, then 

Richard’s equation has the following form 

(𝐶(ℎ − 𝑧) + 𝑆
𝜃(ℎ − 𝑧)

𝑛𝜖

)
𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐾(ℎ − 𝑧)

𝜕ℎ

𝜕𝑥
)   +   

𝜕

𝜕𝑦
(𝐾(ℎ − 𝑧)

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾(ℎ − 𝑧)

𝜕ℎ

𝜕𝑧
) + 𝑊 − 𝐸𝑇, (3) 

where: 

• 𝑛𝜖 is the porosity; 

• ℎ = ℎ(𝑥, 𝑦, 𝑧, 𝑡) is the hydraulic head at point (𝑥, 𝑦, 𝑧)  ∈  Ω at time 𝑡; 

• 𝜓 =  ℎ −  𝑧 is the pressure head; 

• 𝜃(𝜓) is the water content, which is equal to the ratio between the volume of water and the total volume 

θ =  
Vw   

; 

      V 

the water content 𝜃 is related to the saturation of the porous medium and since, in real physical situations, it 

is very difficult to achieve complete saturation as well as a moisture-free soil, 𝜃𝑠 denotes the saturated water 

content, and 𝜃𝑟 the residual water content in the soil; 

• 𝐶(𝜓) =
𝑑𝜃

𝑑𝜓
 is the specific capillary capacity; 

• 𝐾(𝜓) is the hydraulic conductivity; 

• 𝑆 is the storage coefficient; 

• 𝑊 is the recharge and is related to the rate of precipitation [23, 24]; 

• 𝐸𝑇 is the evapotranspiration and represents the loss of water due to evaporation and transpiration of plants; it 

can be estimated by the Penman-Montieth equation [24, 25]. 

Although both 𝜃 and 𝐾 are complicated nonlinear functions, there are a few fairly standard forms that are used 

to define them. Popular forms for them are due to Van Genuchten [26-28] and are given by the following formulas: 
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𝜃(𝜓) − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟

= {
(

1

1 + |𝛼𝜓|𝑛
)

𝑚

,       𝑖𝑓 𝜓 <  0,

1,                               𝑖𝑓 𝜓 ≥ 0,

         (4) 

𝐾(𝜓) = {𝐾𝑠[1 − (α𝜓)𝑛]−
𝑚

2 [1 − (
|𝛼𝜓|𝑛

1 + |𝛼𝜓|𝑛
)

𝑚

]

2

,         𝑖𝑓 𝜓 <  0,

𝐾𝑠 ,                                                                              𝑖𝑓 𝜓 ≥ 0,

   (5) 

where 

• 𝛼 is the inverse of the pressure head 𝜓0 at the air-entry point; 

• parameters 𝑛 and 𝑚 are empirical quantities such that 𝑛 ·  𝑚 =  𝑛 −  1; 

• 𝐾𝑠 is the value of the permeability when the soil is saturated. 

Note that, from Formula (4), it is possible to distinguish between saturated and unsaturated soil according to the 

value of the pressure head 𝜓: if 𝜓 < 0, the soil is unsaturated; if 𝜓 ≥ 0 the soil is saturated. In addition, since all 

the above-described hydraulic parameters are related to the pore size distribution and pore geometry, they depend 

on the medium, i.e., on the type of considered soil. 

Equation (3) can be numerically solved by considering appropriate initial and boundary conditions. In the next 

section, a suitable discretization is given when Ω is the basin taken into account and [0, 𝐿𝑡] is the time interval of 

observation, see [29] for more details. Finite difference schemes for Richard’s equation can be found in [30-32], 

whereas finite element schemes on fixed spatial grids are adopted in [33-35] and an adaptive approach is shown in 

[36]. Another discretization scheme for Richard’s equation that can be adaptable in parallel computing can be seen 

in [37]. 

4. The Discretization Method for the Hydrological Model 

To numerically solve Equation (3), the central finite difference scheme for the space derivatives approximation 

is applied. To accomplish this goal, the considered region Ω should satisfy 

Ω ⊆  [0, 𝐿𝑥]  ×  [0, 𝐿𝑦]  ×  [0, 𝐿𝑧]  ⊆  ℝ3.   (6) 

Let 𝑁𝑥, 𝑁𝑦, 𝑁𝑧  be positive integers. Then, the following discretization steps can be defined along the 𝑥, 𝑦,  

and 𝑧 directions, ∆𝑥 = 𝐿𝑥/𝑁𝑥, ∆𝑦 = 𝐿𝑦/𝑁𝑦 and ∆𝑧 = 𝐿𝑧/𝑁𝑧, respectively. These discretization steps define the 

partitions of the intervals [0, 𝐿𝑥], [0, 𝐿𝑦] and [0, 𝐿𝑧], respectively, and the corresponding nodes are 

                      𝑥𝑖 = 𝑖Δ𝑥,      ∀𝑖 = 0,1, … , 𝑁𝑥 ,                                         

𝑦𝑗 = 𝑗Δ𝑦,      ∀𝑗 = 0,1, … , 𝑁𝑦 , (7) 

                     𝑧𝑘 = 𝑘Δ𝑧,     ∀𝑘 = 0,1, … , 𝑁𝑧.                                       

Fig. (1) shows the 3D space approximation around the point corresponding to the indices (𝑖, 𝑗, 𝑘) as well as its 

stencil, used in the finite difference scheme. To obtain the approximated solution, the time domain, supposed to 

be [0, 𝐿𝑡], needs to be discretized, too. The time interval is partitioned by the nodes 

𝑡𝑛 = 𝑛Δ𝑡,       ∀𝑛 = 0,1, … , 𝑁𝑡, (8) 

where 𝑁𝑡  is a positive integer and ∆𝑡 = 𝐿𝑡/𝑁𝑡  is the corresponding time step. From now on, the following notation 

is adopted: given a function 𝑔(𝑥, 𝑦, 𝑧, 𝑡), for 𝑖 = 0,1, . . . , 𝑁𝑥 , 𝑗 = 0,1, . . . , 𝑁𝑦 , 𝑘 = 0,1, . . . , 𝑁𝑧 , and 𝑛 = 0,1, . . . , 𝑁𝑡 , 

𝑔𝑖,𝑗,𝑘
𝑛 = 𝑔(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 , 𝑡𝑛). 

Similarly, when 𝑔 does not depend on 𝑡, 
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Figure 1: Space approximation and stencil (in red) of the point corresponding to the indices (𝑖, 𝑗, 𝑘) in the finite difference scheme. 

𝑔𝑖,𝑗,𝑘 = 𝑔(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘). 

So, leveraging the central differences for the first order space derivatives, with half discretization step, from 

Equation (3) it follows 

(𝐶𝑖,𝑗,𝑘
𝑛 + 𝑆

𝜃𝑖,𝑗,𝑘
𝑛

𝑛ϵ

)
∂ℎ

∂𝑡
(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 , 𝑡𝑛)

≈
1

(Δ𝑥)2
[𝐾

𝑖+
1

2
,𝑗,𝑘

𝑛 (ℎ𝑖+1,𝑗,𝑘
𝑛 − ℎ𝑖,𝑗,𝑘

𝑛 ) − 𝐾
𝑖−

1

2
,𝑗,𝑘

𝑛 (ℎ𝑖,𝑗,𝑘
𝑛 − ℎ𝑖−1,𝑗,𝑘

𝑛 )]

+
1

(Δ𝑦)2
[𝐾

𝑖,𝑗+
1

2
,𝑘

𝑛 (ℎ𝑖,𝑗+1,𝑘
𝑛 − ℎ𝑖,𝑗,𝑘

𝑛 ) − 𝐾
𝑖,𝑗−

1

2
,𝑘

𝑛 (ℎ𝑖,𝑗,𝑘
𝑛 − ℎ𝑖,𝑗−1,𝑘

𝑛 )]

+
1

(Δ𝑧)2
[𝐾

𝑖,𝑗,𝑘+
1

2

𝑛 (ℎ𝑖,𝑗,𝑘+1
𝑛 − ℎ𝑖,𝑗,𝑘

𝑛 ) − 𝐾
𝑖,𝑗,𝑘−

1

2

𝑛 (ℎ𝑖,𝑗,𝑘
𝑛 − ℎ𝑖,𝑗,𝑘−1

𝑛 )] +  𝑊𝑖,𝑗,𝑘
𝑛 − 𝐸𝑇𝑖,𝑗,𝑘

𝑛 , 

(9) 

for 𝑖 = 0,1, … , 𝑁𝑥, 𝑗 = 0,1, … , 𝑁𝑦 , 𝑘 = 0,1, … 𝑁𝑧 , and (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ Ω, 𝑛 = 0,1, . . . , 𝑁𝑡 − 1, where values of discretized 

function 𝐾 at non-integer indices are obtained by the average of the same function at integer indices. 

To be solved, Equation (9) must be completed with boundary conditions. In particular, the zero normal flow 

condition is imposed at the boundary 𝜕Ω, that is the Neumann condition: 

∂ℎ

∂�̂�
(𝑥, 𝑦, 𝑧, 𝑡) = 0, 

where (𝑥, 𝑦, 𝑧) is a point on 𝜕Ω and �̂� is the outward unit normal vector. For example: if (𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) is one of 

these boundary points and (𝑥𝑖−1, 𝑦𝑗 , 𝑧𝑘) ∉ Ω, then the discretized Neumann boundary condition with normal 

direction parallel to the 𝑥 coordinate axis gives 

ℎ𝑖−1,𝑗,𝑘
𝑛 ≈ ℎ𝑖,𝑗,𝑘

𝑛 . 

With an abuse of notation, the same symbol ℎ𝑖,𝑗,𝑘
𝑛  denotes the unknown and its approximation. Hence Equation 

(9) and boundary conditions can be also expressed as follows 

∂ℎ𝑛

∂𝑡
= 𝐹(ℎ𝑛, 𝑡𝑛),  (10) 

where: 
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• for 𝑛 = 0,1, . . . , 𝑁𝑡, ℎ𝑛 is the vector whose entries are ℎ𝑖,𝑗,𝑘
𝑛 , 𝑖 = 0,1, … , 𝑁𝑥 , 𝑗 = 0,1, … , 𝑁𝑦 , 𝑘 = 0,1, … , 𝑁𝑧, such that 

(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) ∈ Ω, 

• 𝐹(ℎ, 𝑡) is the nonlinear vectorial function obtained from (9) and the boundary conditions. 

By applying the Crank-Nicolson Method to (10) it follows 

ℎ𝑛+1 = ℎ𝑛 +
Δ𝑡

2
(𝐹(ℎ𝑛, 𝑡𝑛)  + 𝐹(ℎ𝑛+1, 𝑡𝑛+1)),  (11) 

which is an implicit method that is solved through the following predictor-corrector-like strategy. 

Let ℎ0 be the vector given by the initial conditions and suppose knowing or having computed ℎ𝑛 with 𝑛 ≥  0. By 

applying the Euler’s Explicit Method to (10), the corresponding solution ℎ𝑛+1,1 at time 𝑡𝑛+1 is 

ℎ𝑛+1,1 = ℎ𝑛 + Δ𝑡𝐹(ℎ𝑛, 𝑡𝑛)       𝑛 = 0,1, … , 𝑁𝑡 − 1. (12) 

By using (11), it is possible to construct 

ℎ𝑛+1,𝑟  =  ℎ𝑛 +
Δ𝑡

2
(𝐹(ℎ𝑛, 𝑡𝑛) + 𝐹(ℎ𝑛+1,𝑟−1, 𝑡𝑛+1)) ,      𝑟 =  2, 3, . . . , 𝑅,   

ℎ𝑛+1  =  ℎ𝑛+1,𝑅 , (13) 

where 𝑅 is the first integer that satisfies 

‖ℎ𝑖,𝑗,𝑘
𝑛+1,𝑅 − ℎ𝑖,𝑗,𝑘

𝑛+1,𝑅−1‖
∞

< 𝑡𝑜𝑙, (14) 

and 𝑡𝑜𝑙 is an adequate tolerance. 

5. Results and Discussion 

The proposed numerical method for the construction of a hazard map has been tested on a landslide that 

occurred in March 2015 in the province of Ancona (Italy). This region is shown in Fig. (2a) inside the red polygonal 

curve, while a 3D graph of the used approximations of the corresponding altitudes is in Fig. (2b) and a 2D approximation 

is shown in Fig. (2c). Such approximated altitudes vary from 175𝑚 (blue in Fig. (2b), black in Fig. (2c)) to 292𝑚 (yellow  
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The Italian region used in the simulation. 3D approximation of the corresponding altitudes. 2D approximation of the corresponding altitudes. 

Figure 2: Italian region and approximation of its altitudes. 
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in Fig. (2b), white in Fig. (2c)). The bounding box [0, 𝐿𝑥] × [0, 𝐿𝑦] × [0, 𝐿𝑧] is given by 𝐿𝑥 = 280𝑚, 𝐿𝑦 = 360𝑚, 𝐿𝑧 =

137𝑚, in particular, it has been considered a soil depth of 20𝑚 over the bedrock. The discretization steps are: 

∆𝑥 =  ∆𝑦 =  20𝑚, ∆𝑧 =  1𝑚, thus the bounding box has been partitioned in 𝑁𝑥 = 14, 𝑁𝑦 = 18, 𝑁𝑧 = 137 points 

along the 𝑥, 𝑦, 𝑧 directions, respectively. It is worth noting that, with this choice, the region is contained in the 

bounding box, with the convention that the area with the highest altitude corresponds to a point with 𝑧 =  137. 

For the recharge and the evapotranspiration, data gathered by weather stations in the three months preceding 

the landslide event have been used. In particular, Fig. (3) shows the millimeters of rainfall in the considered period, 

with a measurement every 15 minutes. These data were used in the hydrological model to obtain, at each time step, 

the height of the water table 𝑧𝑤  and then to compute the safety factor 𝐹 in Formula (2) at each grid point 

corresponding to a vertical soil section between the Earth surface and the bedrock. On each vertical soil section, 

the depth 𝑧 of the failure surface was chosen to be equal to the soil depth. Furthermore, the geomorphological 

information about the region was used for obtaining the various parameters present in the two models, such as, 

for example, the slope 𝛽 of the inclined surface and the angle 𝜙 of internal friction. 

 

 

 

 

 

 

Figure 3: Millimeters of rain fallen every 15 minutes during the three months preceding the considered landslide event. 

The results of this simulation, shown in Fig. (4), confirm that the proposed method can be effectively used to 

numerically construct hazard maps. Indeed, Fig. (4) shows the evolution of these hazard maps from 90 days before 

the landslide event to 10 days before. In particular, the legend reads that 

• a black zone represents an unstable region (𝐹 ≤ 1); 

• a grey zone represents a stable region (𝐹 > 1); 

• a white zone represents a not-considered region. 

The computational time of the numerical simulations was not logged, as the aim of this study is to assess the 

reliability of the proposed method. However, in some preliminary simulations carried out over large areas, the 

results were obtained within the time needed to make forecasts. This means that, after receiving weather data for 

the current day, the results arrive within a few hours and allow forecasts to be made for the following day. 

Finally, it is worth noting that, in Fig. (4), 60 days before the landslide, black zones started to emerge. Of course, 

there are no temporal hints in such information. This suggests to investigate the emerging risk areas through more 

accurate methods for a more reliable evaluation of the safety factor. 

6. Conclusions 

In this work, a numerical method to analyze the hazard of slope failure during rainfall events has been proposed. 

Regarding the equilibrium analysis, the simplest model has been considered, i.e., the infinite slope model. 

Nevertheless, the novelty of our approach is that the soil moisture information at the event time has been obtained 

by computing the numerical solution of a hydrological model [29] and from the weather station data, without 

resorting to statistical and historical information, as it usually happens. The proposed method has successfully built 

a hazard map agreeing with a real landslide. 
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Figure 4: The graphical representation of the safety factor computed DD days before the considered landslide event. 

In future works, the idea is to first compute the factor of safety with the infinite slope model for large-scale 

landslide hazard analysis and create a quantitative hazard map, as the one shown in this work. Then, the factor of 

safety should be computed with the method of slices for small-scale landslide hazard analysis. Such a method is 

more accurate but with a higher computational cost because it computes the factor of safety from a numerical 

solution of a suitable nonlinear system of algebraic equations. In this way, the quantitative hazard map, obtained 

with the infinite slope model, can be leveraged to determine limited zones, on which to perform a small-scale 

landslide hazard analysis through the method of slices. 

In the future, some comparisons with statistical methods should be performed, as well as some additional tests 

on real case studies. These last tests would be particularly useful to validate the proposed method and eventually to 

formulate and validate a hypothesis on the minimum ratio between stable and unstable areas, in the interested 

region, that can trigger a landslide. Besides, several other developments need to be considered. For example, more 

refined numerical techniques for the algebraic system from the limit equilibrium model need to be studied, to assure 

a more accurate evaluation of the safety factor. Furthermore, the proposed system can be integrated with models of 

runoff and flood risk. 
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