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ABSTRACT 

In this paper, the 𝐺′/𝐺 expansion method is applied to the (2+1)-dimensional 

Asymmetric-Nizhnik-Novikov-Veselov equation (ANNV). The motivation is creating 

new families of solitary waves. The system of equations has been combined in 

one partial differential equation (PDE) and the traveling wave variable has been 

applied to transform the resultant equation into an ordinary differential equation 

(ODE). The homogenous balance condition has been applied to determine the 

truncation variable of the 𝐺′/𝐺 expansion. Four cases are created according to 

the appropriate choice of the arbitrary constants relations. For each case, some 

new solitary wave solutions including solitons and kinks represented by 

trigonometric, hyperbolic, logarithmic, polynomial, and combinations of these 

functions. 
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1. Introduction 

Mathematical models that take into account nonlinearity in the dynamics of a system are referred to as nonlinear 

evolution equations. These models are used to represent the change that occurs in a system over time. These 

equations are very important in a variety of scientific fields, including engineering, biology, and physics, among 

others [1-4]. In these areas, the ability to understand and analyze the behavior of nonlinear evolution equations has 

major consequences for the ability to forecast and regulate complex processes. The purpose of this study article is 

to investigate the applications of one of the well-known nonlinear evolution equations Asymmetric - Nizhnik - 

Novikov - Veselov equation in a variety of fields and to emphasize the significance of these equations in terms of 

comprehending events that occur in the real world.  

The Asymmetric - Nizhnik - Novikov - Veselov equation is a two-dimensional KdV equation described by the 

system of equations: 

𝑢𝑥 − 𝑣𝑦 = 0 (1.1a)  

𝑢𝑡 − 3(𝑢𝑣)𝑥 + 𝑢𝑥𝑥𝑥 = 0 (1.1b) 

This system of equations first derived by Boiti et al. [5] is a model for an incompressible fluid where 𝑢 and 𝑣 are 

the components of the dimensionless velocity [6]. ANNV equations are also obtained from a symmetry constraint 

of the Kadomtsev-Petviashvili (KP) equation [7, 8]. The system of equations (1.1a) and (1.1b) has been widely 

investigated from various perspectives, such as the study of its Painlevé property [9], Lie symmetries [10, 11] and 

solutions using arbitrary exponential functions [12]. The conservation laws forms of this equation were also studied 

in [13] while iterative solutions based on Darboux and Bäcklund transformations were presented in [14, 15]. Its 

exact solution using a separation of variable approach was also considered in [16-19]. Equations (1.1a) and (1.1b) 

are here reduced to a single equation through the transformations; 𝑣 = 𝜔𝑥 and 𝑢 = 𝜔𝑦  giving; 

𝜔𝑦𝑡 + 𝜔𝑥𝑥𝑥𝑦 − 3𝜔𝑥𝑦𝜔𝑥 − 3𝜔𝑦𝜔𝑥𝑥 = 0 (1.2) 

In [20], multi-periodic wave solutions were constructed for Eq. (1.2) using Hirota’s bilinear method and Riemann 

theta function while in [21] new solutions were obtained through a Bäcklund transformation and a modified 

Clarkson direct method. New exact solutions of Eq. (1.2) were obtained using Bell exponential polynomial in [22] or 

through a linearizing function having a Miura form in [23]. Notice that most of the quoted previous work is 

concerned with the similarity reduction of Eq. (1.2) while the reduction of its Lax pair is much less frequent [11]. 

Generally, evolution equations were heavily discussed using numerous techniques such as Lie infinitesimals and 

hidden symmetries [24-33], Lax pair and group method [34-38], numerical techniques [39-44], direct traveling wave 

methods [26, 45-51]. 

This research is organized as follows. Section 2 is devoted by describing the (𝐺′ 𝐺⁄ ) method. Next, the method is 

applied to the ANNV equation in Section 3. Number of obtained cases are described and depicted in the section 4. 

Finally, the paper ends with the concluding remarks. 

2. Description of (𝑮′ 𝑮⁄ ) Expansion Method 

The (2+1) nonlinear evolution equation represented by 

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑦 , 𝑢𝑥𝑡 , 𝑢𝑦𝑡 , 𝑢𝑡𝑡 , 𝑢𝑥𝑥 , 𝑢𝑦𝑦 , …… ) = 0 (2.1) 

where 𝑢 =  𝑢(𝑥, 𝑦, 𝑡) is an unknown function, 𝑃 is a polynomial in 𝑢 and its partial derivatives. The (𝐺′ 𝐺⁄ ) expansion 

method can be summarized as: 

First, the PDE (2.1) is transformed into an ODE: 



Analysis of the Computational Cost of Poly Front Mabrouk and Rashed 

 

41 

𝑃(𝑢, 𝑢′, 𝑢′′, …… ) = 0 (2.2) 

through introducing a traveling wave variable:  

𝑢(𝑥, 𝑦, 𝑡)  =  𝑢(), =  𝑥 +  𝑦 −  𝑐𝑡 (2.3) 

where c is a constant. If necessary, the ODE (2.2) can be integrated many times considering the constant of 

integration to be zero. 

Second, the solution of the nonlinear differential equation is expressed in the form 

𝑢(𝜂) =  ∑𝑎𝑖  (
𝐺′

𝐺
)

𝑖𝑚

𝑖=0

 (2.4) 

where 𝐺 =  𝐺 () satisfies the second-order linear ordinary differential equation  

𝐺′′(𝜂) + 𝜆 𝐺′(𝜂) + 𝜇𝐺(𝜂) = 0 (2.5)  

where 𝐺′ =
𝑑𝐺

𝑑𝜂
 , 𝐺′′ =

𝑑2𝐺

𝑑𝜂2
 , 𝑎𝑖 ,  and µ are real constants to be determined. 

The positive integer 𝑚 is determined through the homogeneous balance between the orders of the highest 

derivatives and highly nonlinear terms as follows: 

{
 
 

 
 𝑂 [𝑢𝑟 (

𝑑𝑞𝑢

𝑑𝜂𝑞
)

𝑠

] = 𝑚𝑟 + 𝑠 (𝑞 + 𝑚)

𝑂 (
𝑑𝑝𝑢

𝑑𝜂𝑝
) = 𝑚 + 𝑝

 (2.6) 

Substituting (2.4) into (2.2), using (2.5), then collecting all terms with the same order of (𝐺′ 𝐺⁄ ) and setting each 

coefficient to zero yields a set of algebraic equations for 𝑎𝑖 , 𝑐, µ and . 

3. Mathematical Application 

This section is motivated to find the explicit solutions of Eq. (1.2). First, inserting equation (2.3) into (1.2) confers 

𝑢(4) − 6 𝑢′𝑢′′ −  𝑐𝑢′′ = 0 (3.1) 

where dashes refer to the derivatives with . Integrating (3.1) with respect to  yields 

𝑢′′′ − 3𝑢′
2
− 𝑐𝑢′ = 0 (3.2) 

Letting 𝑢′ = 𝑣, yields 

𝑣′′ − 𝑐𝑣 − 3𝑣2 = 0 (3.3) 

Homogeneous balance between 𝑣′′ and 𝑣2 yields 𝑚 = 2, then substituting into (2.4) yields,  

𝑣(𝜂) =  𝑎0 + 𝑎1 (
𝐺′

𝐺
) + 𝑎2 (

𝐺′

𝐺
)

2

 (3.4) 

Substituting from (3.4) using (2.5) into (3.3) yields, 
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(6𝑎2 − 3𝑎2
2) (

𝐺′

𝐺
)

4

+ (10𝑎2𝜆 − 6𝑎1𝑎2 + 2𝑎1) (
𝐺′

𝐺
)

3

+ (3𝑎1𝜆 + 4𝑎2𝜆
2 + 8𝑎2𝜇 − 𝑐𝑎2 − 3𝑎1

2 − 6𝑎0𝑎2) (
𝐺′

𝐺
)

2

+ (𝑎1𝜆
2 + 2𝑎1𝜇 + 6𝑎2𝜆𝜇 − 𝑐𝑎1 − 6𝑎0𝑎1) (

𝐺′

𝐺
) + (𝑎1𝜆𝜇 + 2𝑎2𝜇

2 − 𝑐𝑎0 − 3𝑎0
2) = 0 

(3.5) 

after collecting all terms with the same order of (𝐺′ 𝐺⁄ ) with setting each coefficient to zero obtain a set of algebraic 

equations for 𝑎𝑖 , 𝑐, µ and . 

{
 
 

 
 

6𝑎2 − 3𝑎2
2 = 0

10𝑎2𝜆 − 6𝑎1𝑎2 + 2𝑎1 = 0

3𝑎1𝜆 + 4𝑎2𝜆
2 + 8𝑎2𝜇 − 𝑐𝑎2 − 3𝑎1

2 − 6𝑎0𝑎2 = 0

𝑎1𝜆
2 + 2𝑎1𝜇 + 6𝑎2𝜆𝜇 − 𝑐𝑎1 − 6𝑎0𝑎1 = 0

𝑎1𝜆𝜇 + 2𝑎2𝜇
2 − 𝑐𝑎0 − 3𝑎0

2 = 0

 (3.6) 

Solving this system of equations reveal four cases. 

4. Cases Study 

In this section, many cases are studied according to the relations between the constants (Fig 1-4). 

Case 1  

𝑎0  =  2µ, 𝑎1  =  2, 𝑎2  =  2 and 𝑐 =  2 −  4µ =  𝛼 (4.1) 

𝐺 is found through solution of equation (2.5) by setting 𝛼 = 2 −  4µ 

i- for 𝛼 >  0  

𝑣 = 2𝜇 + 2𝜆 [
−𝜆

2
+

√𝛼

2
(
𝐶1 sinh(

√𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠ℎ(

√𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠ℎ(
√𝛼

2
𝜂)+𝐶2 sinh(

√𝛼

2
𝜂)
)] + 2 [

−𝜆

2
+

√𝛼

2
(
𝐶1 sinh(

√𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠ℎ(

√𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠ℎ(
√𝛼

2
𝜂)+𝐶2 sinh(

√𝛼

2
𝜂)
)]

2

  (4.2) 

For 𝐶1  =  0 and 𝐶2  =  1  

𝑣1 = 2𝜇 + 2𝜆 [
−𝜆

2
+

√𝛼

2
(coth (

√𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√𝛼

2
(coth (

√𝛼

2
𝜂))]

2

  (4.3) 

𝑢1 = 2𝜇𝜂 −
𝜆2𝜂

2
− √𝛼 coth (

√𝛼

2
𝜂) −

√𝛼

2
ln (𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂) − 1) +

√𝛼

2
ln (𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂) + 1)  (4.4) 

 

 

 

 

 

 

 

 

Figure 1: The soliton solution 𝒖𝟏 for 𝝀 = 𝟑,𝝁 = 𝟏, 𝒕 = 𝟏𝟎,𝜶 = 𝟓 and 𝒄 = 𝟓.  
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For 𝐶1  =  1 and 𝐶2  =  0  

𝑣2 = 2𝜇 + 2𝜆 [
−𝜆

2
+

√𝛼

2
(tanh (

√𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√𝛼

2
(tanh (

√𝛼

2
𝜂))]

2

  (4.5) 

𝑢2 = 2𝜇𝜂 −
𝜆2𝜂

2
− √𝛼 tanh (

√𝛼

2
𝜂) −

√𝛼

2
ln (𝑡𝑎𝑛ℎ (

√𝛼

2
𝜂) − 1) +

√𝛼

2
ln (𝑡𝑎𝑛ℎ (

√𝛼

2
𝜂) + 1)  (4.6) 

ii- for 𝛼 <  0 

𝑣 = 2𝜇 + 2𝜆 [
−𝜆

2
+

√−𝛼

2
(
𝐶1 sin(

√−𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠(

√−𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠(
√−𝛼

2
𝜂)+𝐶2 sin(

√−𝛼

2
𝜂)
)] + 2 [

−𝜆

2
+

√−𝛼

2
(
𝐶1 sin(

√−𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠(

√−𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠(
√−𝛼

2
𝜂)+𝐶2 sin(

√−𝛼

2
𝜂)
)]

2

  (4.7) 

For 𝐶1  =  0 and 𝐶2  =  1   

𝑣3 = 2𝜇 + 2𝜆 [
−𝜆

2
+

√−𝛼

2
(𝑐𝑜𝑡 (

√−𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√−𝛼

2
(𝑐𝑜𝑡 (

√−𝛼

2
𝜂))]

2

  (4.8) 

𝑢3 = 2𝜇𝜂 −
𝜆2𝜂

2
+

𝛼

√−𝛼
(cot (

√−𝛼

2
𝜂))  −

𝛼𝜋

2√−𝛼
+

𝛼

√−𝛼
cot−1 (𝑐𝑜𝑡 (

√−𝛼

2
𝜂))  (4.9) 

For 𝐶1  =  1 and 𝐶2  =  0 

𝑣4 = 2𝜇 + 2𝜆 [
−𝜆

2
+

√−𝛼

2
(tan (

√−𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√−𝛼

2
(tan (

√−𝛼

2
𝜂))]

2

  (4.10) 

𝑢4 = 2𝜇𝜂 −
𝜆2𝜂

2
−

𝛼

√−𝛼
(tan (

√−𝛼

2
𝜂))  +

𝛼

√−𝛼
tan−1 (𝑡𝑎𝑛 (

√−𝛼

2
𝜂))  (4.11) 

 

 

 

 

 

 

 

 

a. solution u3 for 𝝀 = 𝟑, 𝝁 = 𝟒, b. multi kink solution u4 for 𝝀 = 𝟑, 

𝒕 = 𝟎. 𝟓, 𝜶 = −𝟖 and 𝒄 = −𝟖 𝝁 = 𝟒, 𝒕 = 𝟎. 𝟓, 𝜶 = −𝟖 and 𝒄 = −𝟖 

Figure 2: The traveling wave solutions u3 and u4. 

Case 2  

𝑎0 =
𝜆2

3
+

2

3
𝜇, 𝑎1 = 2𝜆 , 𝑎2 = 2 and  𝑐 = −𝛼  (4.12)  

i- for 𝛼 >  0  



Mabrouk and Rashed  Journal of Advances in Applied & Computational Mathematics, 10, 2023 

 

44 

𝑣 =
𝜆2

3
+

2

3
𝜇 + 2𝜆 [

−𝜆

2
+

√𝛼

2
(
𝐶1 sinh(

√𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠ℎ(

√𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠ℎ(
√𝛼

2
𝜂)+𝐶2 sinh(

√𝛼

2
𝜂)
)] + 2 [

−𝜆

2
+

√𝛼

2
(
𝐶1 sinh(

√𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠ℎ(

√𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠ℎ(
√𝛼

2
𝜂)+𝐶2 sinh(

√𝛼

2
𝜂)
)]

2

  (4.13) 

For 𝐶1  =  0 𝑎𝑛𝑑 𝐶2  =  1  

𝑣5 =
𝜆2

3
+

2

3
𝜇 + 2𝜆 [

−𝜆

2
+

√𝛼

2
(𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√𝛼

2
(𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂))]

2

  (4.14) 

𝑢5 =
2

3
𝜇𝜂 −

𝜆2𝜂

6
− √𝛼 coth (

√𝛼

2
𝜂) −

√𝛼

2
ln (𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂) − 1) +

√𝛼

2
ln (𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂) + 1)  (4.15) 

 

 

 

 

 

 

 

 

Figure 3: The soliton solution u5 for 𝝀 = 𝟑, 𝝁 = 𝟏, 𝒕 = 𝟎. 𝟏, 𝜶 = 𝟓 and 𝒄 = 𝟓 

For 𝐶1  =  1 𝑎𝑛𝑑 𝐶2  =  0 

𝑣6 =
𝜆2

3
+

2

3
𝜇 + 2𝜆 [

−𝜆

2
+

√𝛼

2
(tanh (

√𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√𝛼

2
(tanh (

√𝛼

2
𝜂))]

2

  (4.16) 

𝑢6 =
2

3
𝜇𝜂 −

𝜆2𝜂

6
− √𝛼 tanh (

√𝛼

2
𝜂) −

√𝛼

2
ln (𝑡𝑎𝑛ℎ (

√𝛼

2
𝜂) − 1) +

√𝛼

2
ln (𝑡𝑎𝑛ℎ (

√𝛼

2
𝜂) + 1)  (4.17) 

ii- for 𝛼 <  0 

𝑣 =
𝜆2

3
+

2

3
𝜇 + 2𝜆 [

−𝜆

2
+

√−𝛼

2
(
𝐶1 sin(

√−𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠(

√−𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠(
√−𝛼

2
𝜂)+𝐶2 sin(

√−𝛼

2
𝜂)
)] + 2 [

−𝜆

2
+

√−𝛼

2
(
𝐶1 sin(

√−𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠(

√−𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠(
√−𝛼

2
𝜂)+𝐶2 sin(

√−𝛼

2
𝜂)
)]

2

 (4.18) 

For 𝐶1  =  0 𝑎𝑛𝑑 𝐶2  =  1  

𝑣7 =
𝜆2

3
+

2

3
𝜇 + 2𝜆 [

−𝜆

2
+

√−𝛼

2
(𝑐𝑜𝑡 (

√−𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√−𝛼

2
(𝑐𝑜𝑡 (

√−𝛼

2
𝜂))]

2

  (4.19) 

𝑢7 =
2

3
𝜇𝜂 −

𝜆2𝜂

6
+

𝛼

√−𝛼
(cot (

√−𝛼

2
𝜂))  −

𝛼𝜋

2√−𝛼
+

𝛼

√−𝛼
cot−1 (𝑐𝑜𝑡 (

√−𝛼

2
𝜂))  (4.20) 

For 𝐶1 = 1 and 𝐶2 = 0 

𝑣8 =
𝜆2

3
+

2

3
𝜇 + 2𝜆 [

−𝜆

2
+

√−𝛼

2
(tan (

√−𝛼

2
𝜂))] + 2 [

−𝜆

2
+

√−𝛼

2
(tan (

√−𝛼

2
𝜂))]

2

  (4.21) 
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𝑢8 =
2

3
𝜇𝜂 −

𝜆2𝜂

6
+

𝛼

√−𝛼
(tan (

√−𝛼

2
𝜂)) +

𝛼

√−𝛼
tan−1 (𝑡𝑎𝑛 (

√−𝛼

2
𝜂))  (4.22) 

 

 

 

 

 

 

 

 
a. Descending kink solution u7 for 𝝀 = 𝟑, b. Multi kink solution u8 for 𝝀 = 𝟑, 

𝝁 = 𝟒, 𝒕 = 𝟎. 𝟓, 𝜶 = −𝟖 and 𝒄 = −𝟖 𝝁 = 𝟒, 𝒕 = 𝟎. 𝟓, 𝜶 = −𝟖 and 𝒄 = −𝟖 

Figure 4: The solution u5 for 𝝀 = 𝟑, 𝝁 = 𝟏, 𝒕 = 𝟎. 𝟏, 𝜶 = 𝟓 and 𝒄 = 𝟓 

Case 3  

𝑎0 =
1

6
(𝜆2 + 2𝜇 − √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) , 𝑎1 = 𝜆 , 𝑎2 = 0 and c = √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇 (4.23)  

i- for 𝛼 >  0   

𝑣 =
1

6
(𝜆2 + 2𝜇 − √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) + 𝜆 [

−𝜆

2
+

√𝛼

2
(
𝐶1 sinh(

√𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠ℎ(

√𝛼

2
𝜂)

𝐶1𝑐𝑜𝑠ℎ(
√𝛼

2
𝜂)+𝐶2 sinh(

√𝛼

2
𝜂)
)]  (4.24) 

For 𝐶1 = 0 and 𝐶2 = 1   

𝑣9 =
1

6
(𝜆2 + 2𝜇 − √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇)  + 𝜆 [

−𝜆

2
+

√𝛼

2
(𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂))]  (4.25) 

𝑢9 = (−
1

3
𝜆2 +

1

3
𝜇 −

1

6
 √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) 𝜂 −

𝜆

2
ln (𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂) − 1) −

𝜆

2
ln (𝑐𝑜𝑡ℎ (

√𝛼

2
𝜂) + 1)  (4.26) 

For 𝐶1 = 1 and 𝐶2 = 0  

𝑣10 =
1

6
(𝜆2 + 2𝜇 − √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇)  + 𝜆 [

−𝜆

2
+

√𝛼

2
(tanh (

√𝛼

2
𝜂))]  (4.27) 

𝑢10 = (−
1

3
𝜆2 +

1

3
𝜇 −

1

6
 √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) 𝜂 −

𝜆

2
ln (𝑡𝑎𝑛ℎ (

√𝛼

2
𝜂) − 1) −

𝜆

2
ln (𝑡𝑎𝑛ℎ (

√𝛼

2
𝜂) + 1)  (4.28)  

ii- for 𝛼 <  0 

𝑣 =
1

6
(𝜆2 + 2𝜇 − √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) + 𝜆 [

−𝜆

2
+

√−𝛼

2
(
𝐶1 sin(

√−𝛼

2
𝜂)+𝐶2𝑐𝑜𝑠(

√−𝛼

2
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𝐶1𝑐𝑜𝑠(
√−𝛼

2
𝜂)+𝐶2 sin(

√−𝛼

2
𝜂)
)]  (4.29) 

𝐶1 = 0 and 𝐶2 = 1  

𝑣11 =
1

6
(𝜆2 + 2𝜇 − √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇)  + 𝜆 [

−𝜆

2
+

√−𝛼

2
(𝑐𝑜𝑡 (

√−𝛼

2
𝜂))]  (4.30) 
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𝑢11 = (−
1

3
𝜆2 +

1
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6
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𝜆

2
ln ((𝑐𝑜𝑡 (

√−𝛼

2
𝜂))

2

+ 1)  (4.31) 

For 𝐶1 = 1 and 𝐶2 = 0 

𝑣12 =
1

6
(𝜆2 + 2𝜇 − √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇)  + 𝜆 [

−𝜆

2
+

√−𝛼

2
(tan (

√−𝛼

2
𝜂))]  (4.32) 

𝑢12 = (−
1

3
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3
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6
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√−𝛼

2
𝜂))

2

+ 1)  (4.33) 

Case 4  

𝑎0 =
1

6
(𝜆2 + 2𝜇 + √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇), 𝑎1 = 𝜆 , 𝑎2 = 0 and c = √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇  (4.34)  

i- for 𝛼 >  0  

𝑣 =
1

6
(𝜆2 + 2𝜇 + √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) + 𝜆 [
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+
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𝜂)+𝐶2 sinh(

√𝛼

2
𝜂)
)]  (4.35) 

For 𝐶1 = 0 and 𝐶2 = 1  

𝑣13 =
1
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(𝜆2 + 2𝜇 + √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) + 𝜆 [

−𝜆

2
+

√𝛼

2
(𝑐𝑜𝑡ℎ (
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𝜂))]  (4.36) 
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3
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2
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√𝛼

2
𝜂) + 1)  (4.37) 

For 𝐶1 = 1 and 𝐶2 = 0  

𝑣14 =
1

6
(𝜆2 + 2𝜇 + √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) + 𝜆 [
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2
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2
(tanh (
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2
𝜂))]  (4.38) 

𝑢14 = (−
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3
𝜇 +

1

6
 √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) 𝜂 −
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√𝛼

2
𝜂) − 1) −

𝜆

2
ln (𝑡𝑎𝑛ℎ (

√𝛼

2
𝜂) + 1)  (4.39) 

ii- for 𝛼 <  0 

𝑣 =
1

6
(𝜆2 + 2𝜇 + √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇)  + 𝜆 [

−𝜆

2
+

√−𝛼
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)]  (4.40) 

For 𝐶1 = 0 and 𝐶2 = 1  

𝑣15 =
1

6
(𝜆2 + 2𝜇 + √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) + 𝜆 [

−𝜆
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√−𝛼
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𝜂))]  (4.41) 

𝑢15 = (−
1
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𝜆
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ln ((𝑐𝑜𝑡 (

√−𝛼

2
𝜂))

2

+ 1)  (4.42) 

For 𝐶1 = 1 and 𝐶2 = 0  

𝑣16 =
1

6
(𝜆2 + 2𝜇 + √(𝜆2 − 2𝜇)2 − 4𝜆2𝜇) + 𝜆 [

−𝜆

2
+

√−𝛼

2
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𝑢16 = (−
1
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2
𝜂))
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5. Conclusions 

Solitary waves of the ANNV equation in its (2+1)-dimensional form have been investigated by exploiting the 𝐺′/𝐺 

method. This method had the ability to create new forms of solitary waves after getting the homogenous balance 

required for this method. Four cases were formulated according to the appropriate choice of the relations between 

the arbitrary constants. The solutions included trigonometric, hyperbolic, logarithmic, polynomial, and 

combinations of these functions. The attained soliton and kink solutions are very useful in describing the behavior 

of the solitary wave in different engineering and physical applications including plasma explosions and ocean waves.  
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