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1. Introduction 

Lyapunov functionals play a crucial role in the analysis of dynamic systems, including delay systems. The 

application of Lyapunov functionals in delay systems is both fruitful and challenging for several reasons. Many real-

world systems are nonlinear and complex. Lyapunov functionals provide a powerful tool for analyzing the stability 

of nonlinear systems, but in the context of delay systems, the combination of nonlinearity and delay introduces 

additional challenges in constructing Lyapunov functionals that accurately capture the system’s dynamics. 

Employing Lyapunov functionals in delay systems is fruitful because it provides a systematic approach to analyze 

stability and understand the impact of delays on system behavior. However, challenges arise in constructing suitable 

Lyapunov functionals due to the unique characteristics of delay systems, including non-local dependencies, 

nonlinearity, and computational complexity. Researchers continue to explore and develop techniques to address 

these challenges and enhance the applicability of Lyapunov functionals in the analysis of delay systems. In this 

report, we intend to introduce different types of Lyapunov functionals that are suited for different types of delay 

systems. We intend to prove general theorems that require the existence of such Lyapunov functionals in arriving 

at our specific results. Examples are provided throughout this paper. 

Let 𝑅𝑛 denote the 𝑛 -dimensional Euclidean vector space; 𝑅+ denote the set of all non-negative real numbers; 

|𝜙| denote the Euclidean norm of a vector 𝑥 ∈ 𝑅𝑛. For ℎ > 0, define the set 𝐵ℎ(0, 𝐻) to be the space of all continuously 

differentiable functions 𝜙: [−ℎ, 0] → 𝑅𝑛 such that |𝜙| ≤ 𝐻, where |𝜙| = 𝑚𝑎𝑥
𝑡∈[−ℎ,0]

||𝜙(𝑡)||. This paper considers the 

boundedness of solutions and stability of the zero solution of the functional delay differential system  

𝑥 ′ = 𝑓(𝑡, 𝑥𝑡 , ),  𝑡 ≥ 0, (1.1) 

𝑥(𝑠) = 𝜙(𝑠),  𝑠 ∈ [−ℎ, 0],  ℎ > 0 

where 𝑥 ∈ 𝑅𝑛, 𝑓: 𝑅+ × 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛 is a given nonlinear continuous function in 𝑡 and 𝑥, where 𝑡 ∈ 𝑅+. The notation 

𝑥𝑡 means that 𝑥𝑡 = 𝑥(𝑡 + 𝜏), 𝜏 ∈ [−ℎ, 0] as long as 𝑥(𝑡 + 𝜏) is defined. Thus, 𝑥𝑡 is a function on an interval [−ℎ, 0] into 

𝑅𝑛 . Let 𝜙 ∈ 𝐵ℎ(0, 𝐻). We say that 𝑥(𝑡) ≡ 𝑥(𝑡, 𝑡0, 𝜙) is a solution of (1.1) if 𝑥(𝑡) satisfies (1.1) for 𝑡 ≥ 𝑡0 and 𝑥𝑡0
= 𝑥(𝑡0 +

𝑠) = 𝜙(𝑠), 𝑠 ∈ [−ℎ, 0]. Our interest in studying the boundedness of solutions of (1.1), beside other topics arise from 

the fact that in the study of the stability of the zero solution when 𝑓(𝑡, 0) = 0, one may have to assume the existence 

of solutions for all positive time. For more on the stability, we refer the interested reader to [1, 2]. In [3], the author 

obtained by using positive definite Lyapunov functionals interesting results regarding the boundedness of solutions 

of systems that are similar to (1.1). For more results regarding the stability of the zero solution or boundedness of 

solutions of (1.1), we refer the interested reader to [4-7]. Inspired by the work in [2, 8], in this investigation, we 

establish sufficient conditions yielding that all solutions of (1.1) are bounded and obtain results regarding the 

stability of the zero solution when 𝑓(𝑡, 0) = 0. We achieve this by assuming the existence of a Lyapunov function that 

is bounded below and above and that its derivative along the trajectories of (1.1) to be bounded by a negative 

definite function, plus a positive constant. Our motivation stem from the fact that finding a suitable Lyapunov 

function or functional presents big challenges when the system has delay terms or of neutral type.  

System (1.1) encompasses linearly delayed or retarded models. Linear retarded differential equations are a 

specific type of ordinary differential equations that might include a time delay in the derivative term. These 

equations are used in various fields of science and engineering to model systems where the response of a variable 

depends on its past values with a delay. Linear retarded differential equations have applications in control systems 

and chemical processes, which often involve reaction kinetics and transport phenomena with time delays. The 

application of linear systems with delay is also found in the fields of environmental sciences, mechanical and 

structural engineering, economics, population dynamics, and heat transfer. These are just a few examples of the 

many applications of linearly retarded differential equations in various fields. They provide a powerful tool for 

understanding and predicting the behavior of systems with inherent time delays. Typically, research on linear 

systems of differential equations with delays involves developing mathematical models, analyzing system behavior, 

and designing control strategies to achieve desired system performance. Engineers in various disciplines collaborate 

with mathematicians to address these complex problems and develop practical solutions. Most engineers are 
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interested in the asymptotic stability of the zero solution of a delayed linear system. This can be seen from the 

references [9, 10], and [6, 11-15]. Partial differential equations are a powerful tool in modeling and analyzing 

dynamic systems in various scientific fields, including mathematical biology. In the context of biological systems, 

PDEs are often employed to describe the spatiotemporal evolution of different quantities, such as population 

densities, concentrations of biochemical species, or distributions of traits within a population. For more on this we 

refer to [16-18]. 

In many practical applications of delay differential equations, unbounded solutions are not physically meaningful 

or desirable. Boundedness of solutions ensures that the system’s behavior remains within a certain range, which is 

often a physical requirement. For example, in control systems, unbounded solutions can lead to control signal 

saturation, which can be undesirable or even harmful. Thus, the boundedness of solutions in delay differential 

equations is a fundamental property that allows for the application of stability analysis techniques like Lyapunov’s 

method. It ensures that the system’s behavior remains well-behaved and within a certain range, which is not only 

mathematically important but also practically significant for understanding and controlling systems with time 

delays.  

2. Stability 

We begin by considering stability criteria for system (1.1). First, we introduce, a function 𝑉 that we refer to as 

Lyapunov functional. For an extensive reading about various stability and the construction of Lyapunoiv functionals 

we refer to [3, 19, 20]. 

If 𝑥(𝑡) is any solution of system (1.1), then for a continuously differentiable function  

𝑉: 𝑅+ × 𝑅𝑛 → 𝑅+, 

we define the derivative 𝑉 ′ of 𝑉 by  

𝑉 ′(𝑡): = 𝑉 ′(𝑡, 𝑥) =
𝜕𝑉(𝑡, 𝑥)

𝜕𝑡
+ ∑

𝜕𝑉(𝑡, 𝑥)

𝜕𝑥𝑖

𝑓𝑖(𝑡, 𝑥𝑡),

𝑛

𝑖=1

 

where 𝑓𝑖 ,  𝑖 = 1,2, … ,3, 𝑛 are the components of 𝑓 in system (1.1). A continuous function 𝑊: [0, ∞) → [0, ∞) with 𝑊(0) =

0 is called a wedge if 𝑊 strictly increasing. In this paper wedges are always denoted by 𝑊 or 𝑊𝑖 where 𝑖 is a positive 

integer. For the next definition we denote 𝐶 to be the set of continuous functions 𝜑: [−𝛼, 0] → 𝑅𝑛 ,  𝛼 > 0. If 𝑡0 = −∞, 

then the notation 𝑡 ≥ 𝑡0 means 𝑡 > 𝑡0. It is to be understood that when  

𝐶(𝑡) = {𝜑: [𝑡 − 𝛼, 𝑡] → 𝑅𝑛}, 

then 𝐶(𝑡) is 𝐶 when 𝑡 = 0. Also 𝜑𝑡 denotes 𝜑 ∈ 𝐶(𝑡) and |,)(|max||=|| ststt   −  where | ⋅ | is a convenient norm on 

𝑅𝑛 .  

Definition 1 ([19]) Suppose 𝑥(𝑡) = 0 is a solution of (1.1). (a) The zero solution of (1.1) is stable if for each 𝜀 > 0 

and 𝑡1 ≥ 𝑡0 there exists 𝛿 > 0 such that [𝜑 ∈ 𝐶(𝑡1), ‖𝜑‖ < 𝛿, 𝑡 ≥ 𝑡1] imply that |𝑥(𝑡, 𝑡1, 𝜑)| < 𝜀. (b) The zero solution of 

(1.1) is uniformly stable if it is stable and if 𝛿 is independent of 𝑡1 ≥ 𝑡0. (c) The zero solution of (1.1) is asymptotically 

stable if it is stable and if for each 𝑡1 ≥ 𝑡0 there is an 𝜂 > 0 such that [𝜑 ∈ 𝐶(𝑡1), ‖𝜑‖ < 𝜂] imply that |𝑥(𝑡, 𝑡1, 𝜑)| → 0 as 

𝑡 → ∞. Note that if this is true for every 𝜂 > 0, then 𝑥 = 0 is asymptotically stable in the large or globally 

asymptotically stable. 

(d) The zero solution is uniformly asymptotically stable if it is (US) and if there exists a 𝛾 > 0 with the property 

that for each 𝜇 > 0 there exists 𝑇 = 𝑇(𝜇) > 0 such that [𝑡1 > 𝑡0, 𝜑 ∈ 𝐶(𝑡1), ‖𝜑‖ < 𝛾, 𝑡 ≥ 𝑡1 + 𝑇] imply that |𝑥(𝑡, 𝑡1, 𝜑)| <
𝜇.  

Another definition regarding boundedness of solutions is as follows.  
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Definition 2 We say that solutions of system (1.1) are bounded, if there exists a positive constant 𝐷 = 𝐷(|𝜙|, 𝑡0) 

such that any solution 𝑥(𝑡, 𝑡0, 𝜙) of (1.1) satisfies  

|𝑥(𝑡, 𝑡0, 𝜙)| ≤ 𝐷,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0, 

where 𝐷: 𝑅+ × 𝑅+ → 𝑅+ is a constant that depends on 𝑡0 and 𝜙. We say that solutions of system (1.1) are uniformly 

bounded if 𝐷 is independent of 𝑡0. 

For more various types of stability and qualitative analysis of solutions of delay systems, we refer to [6, 21, 22] 

and the references therein. Our first result is given in the next theorem.  

Theorem 1 Consider the neutral and totally nonlinear differential equation with bounded delay  

𝑥 ′(𝑡) = −𝑎𝑥5(𝑡) + 𝑏𝑥5(𝑡 − 𝑟), 𝑡 ≥ 𝑡0 ≥ 0 (2.1) 

where 𝑎, 𝑏 and 𝑟 are positive constants. If  

𝑏 − 𝑎 ≤ 0, 

then all solutions of (2.1) are bounded and its zero solution is uniformly stable. Moreover, 𝑥5(𝑡) ∈ 𝐿1[0,∞).  

Proof. Consider the Lyapunov type functional  

𝑉(𝑥𝑡) = |𝑥(𝑡)| + 𝑏 ∫ |𝑥5(𝑠)|𝑑𝑠.
𝑡

𝑡−𝑟

 

Assume 𝑎 ≥ 𝑏. Then along the solutions we have  

𝑉 ′(𝑥𝑡) =
𝑥

|𝑥|
𝑥 ′ − 𝑏|𝑥5(𝑡 − 𝑟)| + 𝑏|𝑥5(𝑡)| =

𝑥

|𝑥|
(−𝑎𝑥5(𝑡) + 𝑏𝑥5(𝑡 − 𝑟)) − 𝑏|𝑥5(𝑡 − 𝑟)| + 𝑏|𝑥5(𝑡)| 

(2.2) 
≤ −𝑎|𝑥5(𝑡)| + 𝑏|𝑥5(𝑡 − 𝑟)| − 𝑏|𝑥5(𝑡 − 𝑟)| + 𝑏|𝑥5(𝑡)| = [−𝑎 + 𝑏]|𝑥5| ≤ 0. 

Let 𝑡1 ∈ 𝑅, 𝜙 ∈ 𝐶(𝑡1) and 𝑥(𝑡) = 𝑥(𝑡, 𝑡1, 𝜙). Using the fact that |𝑥(𝑡)| ≤ 𝑉(𝑥𝑡), and integrating (2.2) from 𝑡1 − 𝑟 to 𝑡1 

yield  

|𝑥(𝑡)| ≤ 𝑉(𝑥𝑡) ≤ 𝑉(𝜙𝑡1
) = |𝜙(𝑡1)|5 + 𝑏 ∫ |𝜙5(𝑠)|𝑑𝑠

𝑡1

𝑡1−𝑟
 ≤ (1 + 𝑏𝑟)||𝜙𝑡1

||5. (2.3) 

Therefore, it follows from (2.3) that all solutions of (2.1) are bounded. As for the uniform stability, we let 𝜀 > 0 

and take 𝛿 = (
𝜀

1+𝑏𝑟
)1/5. Then for ||𝜙𝑡1

|| < 𝛿, (2.3) yields that  

|𝑥(𝑡)| ≤ (1 + 𝑏𝑟)[(
𝜀

1 + 𝑏𝑟
)1/5]5 = 𝜀. 

Thus, the zero solution is uniformly stable. We remark that the stability does not depend on the size of the delay 
𝑟.  

Next we integrate (2.2) for 0 to 𝑡 and obtain 𝑉(𝑥𝑡) − 𝑉(𝜙0) ≤ − ∫ |𝑥(𝑠)|3𝑑𝑠,
𝑡

0
 which implies that  

∫ |𝑥(𝑠)|5𝑑𝑠 ≤ 𝑉(𝜙0) − 𝑉(𝑥𝑡) ≤ 𝑉(𝜙0) < ∞,
𝑡

0

 

for all 𝑡 ≥ 0. Hence 𝑥3(𝑡) ∈ 𝐿1[0,∞).  

It is worth noting that (2.3) does not necessary imply |𝑥(𝑡, 𝑡1, 𝜙)| → 0, as 𝑡 → ∞. Moreover, the results did not 

depend on the size of the delay 𝑟. Finally, we observe that the function 𝑉 = |𝑥(𝑡)| would not have produced 𝑉 ′(𝑡) ≤ 0 

along the solutions of (2.1). Also, Theorem 1, without any difficulty, can be extended to neutral equations with a 

time delay. For more on delay differential equations with oscillation properties we refer to [23-25].  
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3. General Theorems 

In this section, we state a known theorem that provides sufficient conditions for various types of stability of the 

zero solution of (1.1). The proof of the next theorem can be found in [19].  

Theorem 2 ([19]) Let 𝐷 > 0 and there is a scalar functional 𝑉(𝑡, 𝜓𝑡) that is continuous in 𝜓 and locally Lipschitz in 

𝜓𝑡 when 𝑡 ≥ 𝑡0 and 𝜓𝑡 ∈ 𝐶(𝑡) with ||𝜓𝑡|| < 𝐷. Suppose also that 𝑉(𝑡, 0) = 0 and  

𝑊1(|𝜓(𝑡)|) ≤ 𝑉(𝑡, 𝜓𝑡). (3.1) 

(a) If  

𝑉 ′(𝑡, 𝜓𝑡) ≤ 0 𝑓𝑜𝑟 𝑡0 ≤ 𝑡 < ∞ 𝑎𝑛𝑑 ||𝜓𝑡|| ≤ 𝐷, (3.2) 

then the zero solution of (1.1) is stable. 

(b) If in addition to (a),  

𝑉(𝑡, 𝜓𝑡) ≤ 𝑊2(||𝜓𝑡||), (3.3) 

then the zero solution of (1.1) is uniformly stable. 

(c) If there is an 𝑀 > 0 with |𝐹(𝑡, 𝜓𝑡)| ≤ 𝑀 𝑓𝑜𝑟 𝑡0 ≤ 𝑡 < ∞ 𝑎𝑛𝑑 ||𝜓𝑡|| ≤ 𝐷, and if  

𝑉 ′(𝑡, 𝜓𝑡) ≤ −𝑊2(|𝜓(𝑡)|), (3.4) 

then the zero solution of (1.1) is asymptotically stable.  

Part (c) of Theorem 2 requires the existence of a lower wedge on the Lyapunov function or functional, a 

requirement that is sometimes hard to fulfill. To get around it, we state and prove the following theorem, which is 

new for delay equations. 

Theorem 3 Let 𝑄 ⊂ 𝑅𝑛 that is open with 0 ∈ 𝑄. Let 𝑉: 𝑄 → [0,∞) be an autonomous function so that  

𝑉(0) = 0 and 𝑉(𝑥) > 0,  if 𝑥 ≠ 0. 

Suppose that along the solutions of (1.1) we have  

𝑉 ′(𝑥) ≤ 0. 

Let 𝑥(𝑠) = 𝜙(𝑠),  𝑠 ∈ [−ℎ, 0],  ℎ > 0. Assume each solution 𝑥(𝑡, 𝑡1, 𝜙), which remains in 𝑄 exists on [𝑡1,∞). Then the 

zero solution of (1.1) is uniformly stable.  

Proof. Let 𝜀 > 0 be given. The proof will be done if we can find 𝛿 > 0 so that [𝜙 ∈ 𝐶(𝑡1), |𝜙| < 𝛿, 𝑡 ≥ 𝑡1 ≥ 0] imply 

that |𝑥(𝑡, 𝑡1, 𝜙)| < 𝜀. Let 𝜕𝑃(0, 𝜀) be the boundary of the spherical neighborhood centered at the origin with radius 𝜀. 

Since 𝑉 is continuous and 𝜕𝑃(0, 𝜀) is compact, then the minimum 𝑚 > 0 of 𝑉 exists in 𝜕𝑃(0, 𝜀). Due to the fact that 

𝑉(0) = 0, and 𝑉 is continuous, there is a 𝛿 > 0 such that |𝜙| < 𝛿 implies 𝑉(𝜙) < 𝑚 < 𝜀. Since solutions exist for all 

time in 𝑄, we can find a 𝑑 > 0 such that 𝑥(𝑡, 𝑡1, 𝜙) exists for 𝑡1 ≤ 𝑡 < 𝑑. Consequently, based on the hypothesis of the 

theorem, we have 𝑉 ′(𝑥(𝑡, 𝑡1, 𝜙)) ≤ 0. This gives  

𝑉 ′(𝑥(𝑡, 𝑡1, 𝜙)) ≤ 𝑉(𝜙) < 𝑚 

for as long as the solution is defined and in 𝑄. However, the solution’s path of 𝑥(𝑡, 𝑡1, 𝜙) is connected and starts 

inside 𝑃(0, 𝜀), and 𝑉(𝑥) ≥ 𝑚 on 𝜕𝑃(0, 𝜀). Thus, 𝑥(𝑡, 𝑡1, 𝜙) could never reach 𝜕𝑃(0, 𝜀). We conclude that |𝑥(𝑡, 𝑡1, 𝜙)| < 𝜀 

for all future times, and hence 𝑑 = ∞. This concludes the proof.  
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As an application of Theorem 3, we offer the following example.  

Example 1 Let ℎ > 0 and consider the neutral differential equation with finite delay  

𝑥 ′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑥 ′(𝑡 − ℎ) + 𝑐𝑥(𝑡 − ℎ),  𝑡 ≥ 0, (3.5) 

with 𝑥(𝑡0) = 𝜙. Suppose  

2𝑎 + |𝑐 − 𝑎𝑏| ≤ 0,  |𝑐 − 𝑎𝑏| − 2𝑏𝑐 ≤ 0. 

Then the zero solution is uniformly stable. 

Let  

𝑉(𝑡, 𝑥𝑡) = (𝑥(𝑡) − 𝑏𝑥(𝑡 − ℎ))2 

and rewrite equation (3.5) as  

𝑑

𝑑𝑡
[𝑥(𝑡) − 𝑏𝑥(𝑡 − ℎ)] = 𝑎𝑥(𝑡) + 𝑐𝑥(𝑡 − ℎ),  𝑡 ≥ 0. 

Then along solutions of (3.5) we have  

𝑉 ′(𝑡, 𝑥) = 2(𝑥(𝑡) − 𝑏𝑥(𝑡 − ℎ))
𝑑

𝑑𝑡
(𝑥(𝑡) − 𝑏𝑥(𝑡 − ℎ)) 

(3.6) 

= 2𝑎𝑥2(𝑡) + 2(𝑐 − 𝑎𝑏)𝑥(𝑡)𝑥(𝑡 − ℎ) − 2𝑏𝑐𝑥2(𝑡 − ℎ). 

Using the inequality that for any two real numbers 𝑦 and 𝑧, 𝑦𝑧 ≤ 𝑦2/2 + 𝑧2/2, we have  

2(𝑐 − 𝑎𝑏)𝑥(𝑡)𝑥(𝑡 − ℎ) ≤ |(𝑐 − 𝑎𝑏)|(𝑥2(𝑡) + 𝑥2(𝑡 − ℎ)). 

Thus, expression (3.6) reduces to  

𝑉′(𝑡, 𝑥) ≤ (2𝑎 + |𝑐 − 𝑎𝑏|)𝑥2(𝑡) + (|𝑐 − 𝑎𝑏| − 2𝑏𝑐)𝑥2(𝑡 − ℎ) ≤ 0. 

Consequently, the result follows from Theorem 3.  

It is natural to be interested in the asymptotic stability of the zero solution. The next theorem offers a criterion 

for uniform asymptotic stability. Dealing with delay systems with delay in the derivatives is difficult and tricky when 

finding a suitable Lyapunov functional. The next theorem provides sufficient conditions for the uniform asymptotic 

stability of the zero solution, and its proof can be found in [26]. The theorem assumes the following norm. For 𝜑 ∈

𝐶(𝑡), we let  

|||𝜑𝑡||| = [∑ ∫ 𝜑𝑖
2(𝑠)]1/2

𝑡

𝑡−𝛼

𝑛

𝑖=1

 

where 𝜑(𝑡) = (𝜑1(𝑡), ⋯ , 𝜑𝑛(𝑡)).  

Theorem 4 ([19]) Let 𝐷 > 0 and there is a scalar functional 𝑉(𝑡, 𝜑𝑡) that is continuous in 𝜓 and locally Lipschitz in 

𝜑𝑡 when 𝑡 ≥ 𝑡0 and 𝜑𝑡 ∈ 𝐶(𝑡) with ||𝜑𝑡|| < 𝐷. If 𝑉 such that 𝑉(𝑡, 0) = 0,  

𝑊1(|𝜑(𝑡)|) ≤ 𝑉(𝑡, 𝜑𝑡) ≤ 𝑊2(|𝜑𝑡|) + 𝑊3(|||𝜑𝑡|||), 

and  

𝛥𝑉(𝑡, 𝜑𝑡) ≤ −𝑊4(|𝜑(𝑡)|), 
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then the zero solution of (1.1) is uniformly asymptotically stable .  

As an application we offer the following example. 

Example 2 Consider the system with multiple delays  

𝑥 ′(𝑡) = 𝑎(𝑡)𝑥(𝑡) + ∑ 𝑏𝑖(𝑡)𝑥(𝑡 − ℎ𝑖),

𝑘

𝑖=1

 (3.7) 

where the delays ℎ𝑖 are positive integers for 𝑖 = 1,2,3, . . . , 𝑘. Assume there are positive constants 𝛼 and 𝛿 such that  

2𝑎(𝑡) + ∑ |𝑏𝑖(𝑡)| + 𝑘𝛿 ≤ −𝛼 𝑎𝑛𝑑 𝛿 ≥ ∑ |𝑏𝑖(𝑡)|.

𝑘

𝑖=1

𝑘

𝑖=1

 

Then the zero solution of (3.7) is (UAS). Consider the Lyapunov functional  

𝑉(𝑡, 𝑥𝑡) = 𝑥2(𝑡) + 𝛿 ∑ ∫ 𝑥2(𝑠)𝑑𝑠.
𝑡

𝑡−ℎ𝑖

𝑘

𝑖=1

 (3.8) 

Then along the solutions of (3.7) we have  

 𝑉 ′(𝑡, 𝑥𝑡) = 2𝑥(𝑡)𝑥 ′(𝑡) + 𝛿 ∑ [𝑥2(𝑡) − 𝑥2(𝑡 − ℎ𝑖)]𝑘
𝑖=1  

 = 2𝑥(𝑡)(𝑎𝑥(𝑡) + ∑  𝑏𝑖(𝑡)𝑥(𝑡 − ℎ𝑖))𝑘
𝑖=1  

 +𝛿 ∑ [𝑥2(𝑡) − 𝑥2(𝑡 − ℎ𝑖)]𝑘
𝑖=1  

 ≤ (2𝑎(𝑡) + ∑ 𝑏𝑖(𝑡) + 𝑘𝛿)𝑥2(𝑡)𝑘
𝑖=1  

 +(∑ |𝑏𝑖(𝑡)| − 𝛿)𝑥2(𝑡 − ℎ𝑖)
𝑘
𝑖=1  

 ≤ −𝛼𝑥2(𝑡). 

To make sure the conditions of Theorem 4 are satisfied, we note that  

 𝑥2(𝑡) ≤ 𝑉(𝑡, 𝑥𝑡) = 𝑥2(𝑡) + 𝛿 ∑ ∫ 𝑥2(𝑠)𝑑𝑠
𝑡

𝑡−ℎ𝑖

𝑘
𝑖=1  

 = 𝑥2(𝑡) + 𝛿 ∑ ∫ 𝑥2(𝑢 + 𝑡)𝑑𝑢.
0

−ℎ𝑖

𝑘
𝑖=1  

Hence, if we take  

𝑊1(|𝜑(𝑡)|) = 𝑊2(|𝜑(𝑡)|) = 𝜑2(𝑡), 𝑊4(|𝜑(𝑡)|) = 𝛼𝜑2(𝑡) 

and  

𝑊3(|𝜑𝑡|) = 𝛿 ∑ ∫ 𝜑2(𝑢 + 𝑡)|𝑑𝑢,
0

−ℎ𝑖

𝑘

𝑖=1

 

then we satisfy all the requirements of Theorem 4 and hence we have that the zero solution of (3.7) is (UAS). This 

completes the proof.  

4. Boundedness and Exponential Stability 

In this section we use non-negative Lyapunov type functions and establish sufficient conditions to obtain 

boundedness results on all solutions 𝑥(𝑡) of (1.1) and on the exponential stability when 𝑥 = 0 is a solution. In the 

realm of control systems, for instance, exponential stability is a desirable trait because it guarantees that the system 
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will reach a stable state efficiently and without unnecessary oscillations. This makes the system more predictable 

and easier to control, which is crucial in applications like robotics or electronic circuits. 

From this point forward, if a function is written without its argument, then the argument is assumed to be 𝑡. 

Definition 3 Assume 𝑥 = 0 is a solution of (1.1). That is 𝑓(𝑡, 0) = 0. Then the zero solution of (1.1) is said to be 𝛼 

-exponentially asymptotically stable if there is a positive continuous function 𝛼(𝑡) so that ∫
𝑡

𝑡0
𝛼(𝑠)𝑑𝑠 → ∞  𝑎𝑠  𝑡 →

∞ any solution 𝑥(𝑡, 𝑡0, 𝜙) of (1.1) satisfies  

|𝑥(𝑡, 𝑡0, 𝜙)| ≤ 𝐶(|𝜙|, 𝑡0)(𝑒
− ∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
)𝑑,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [𝑡0,∞), 

where 𝑑 is a positive constant and 𝐶 ∈ 𝑅+. Moreover, the zero solution of (1.1) is said to be 𝛼 - uniformly exponentially 

asymptotically stable if 𝐶 is independent of 𝑡0.  

Theorem 5 Assume 𝐷 ⊂ 𝑅𝑛 and there exists a type I Lyapunov function 𝑉: 𝐷 → [0, ∞) such that for all (𝑡, 𝑥) ∈

[−ℎ,∞) × 𝐷:  

𝑊1(||𝑥||) ≤ 𝑉(𝑡, 𝑥), (4.1) 

𝑉 ′(𝑡, 𝑥) ≤ −𝛼(𝑡)𝑉𝑞(𝑡, 𝑥) + 𝛽(𝑡), (4.2) 

𝑉(𝑡, 𝑥) − 𝑉𝑞(𝑡, 𝑥) ≤ 𝛾(𝑡), (4.3) 

where 𝛼(𝑡), 𝛾(𝑡) and 𝛽(𝑡) are non-negative and continuous functions; 𝑝, 𝑞 are positive constants. Then all solutions 

of (1.1) that start in 𝐷 satisfy  

||𝑥|| ≤ 𝑊1
−1{𝑉(𝑡0, 𝜙)𝑒

− ∫
𝑡

𝑡0
𝛼(𝑠)𝑑𝑠

+ ∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒− ∫
𝑡

𝑢 𝛼(𝑠)𝑑𝑠 𝑑𝑢},
𝑡

𝑡0

 (4.4) 

for all 𝑡 ≥ 𝑡0.  

We remark that in the case 𝑞 = 1, then the proof is a simple application of the variation of parameters formula. 

On the other hand, if 𝑞 ≠ 1, using the variation of parameters formula will not be of much help. Now we prove the 

theorem. 

Proof. For any initial time 𝑡0 ≥ 0, let 𝑥(𝑡, 𝑡0, 𝜙) be any solution of (1.1) with 𝑥𝑡0
= 𝜙. Consider  

 
𝑑

𝑑𝑡
(𝑒

∫
𝑡

𝑡0
𝛼(𝑠)𝑑𝑠

𝑉(𝑡, 𝑥)) 

 = [𝑉 ′(𝑡, 𝑥) + 𝛼(𝑡)𝑉(𝑡, 𝑥)]𝑒
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
 

 ≤ (−𝛼(𝑡)𝑉𝑞(𝑡, 𝑥) + 𝛽(𝑡) + 𝛼(𝑡)𝑉(𝑡, 𝑥))𝑒
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
 

 ≤ (𝛼(𝑡)(𝑉(𝑡, 𝑥) − 𝑉𝑞(𝑡, 𝑥)) + 𝛽(𝑡))𝑒
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
 

 ≤ (𝛼(𝑡)𝛾(𝑡) + 𝛽(𝑡))𝑒
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
. 

Integrating both sides from 𝑡0 to 𝑡 with 𝑥𝑡0
= 𝜙, we obtain, for 𝑡 ∈ [𝑡0,∞),  

𝑉(𝑡, 𝑥)𝑒
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
≤ 𝑉(𝑡0, 𝜙) + ∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒

∫
𝑢

𝑡0
𝛼(𝑠)𝑑𝑠

 𝑑𝑢.
𝑡

𝑡0

 

It follows that  
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𝑉(𝑡, 𝑥𝑡) ≤ 𝑉(𝑡0, 𝜙)𝑒
− ∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
+ ∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒− ∫

𝑡
𝑢 𝛼(𝑠)𝑑𝑠 𝑑𝑢

𝑡

𝑡0

 

for all 𝑡 ∈ [𝑡0,∞). Inequality (4.1) implies that  

||𝑥(𝑡)|| ≤ 𝑊−1{𝑉(𝑡0, 𝑥0)𝑒
− ∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
+ ∫ (𝛾𝛼(𝑢) + 𝛽(𝑢)) 𝑒− ∫

𝑡
𝑢 𝛼(𝑠)𝑑𝑠 𝑑𝑢},

𝑡

𝑡0

 

for all 𝑡 ≥ 𝑡0. This concludes the proof.  

Notice that that if 𝑊1(||𝑥||) = ||𝑥||𝑝 for some positive 𝑝, then from inequality (4.1) we have that  

||𝑥|| ≤ {𝑉(𝑡0, 𝜙)𝑒
− ∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
 +𝑡0𝑡(𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒− ∫

𝑡
𝑢 𝛼(𝑠)𝑑𝑠 𝑑𝑢}1/𝑝. (4.5) 

Corollary 1 Assume the hypothesis of Theorem 5 hold.  

(a) If the initial function 𝜙 is uniformly bounded and  

∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒− ∫
𝑡

𝑢 𝛼(𝑠)𝑑𝑠 𝑑𝑢 ≤ 𝑀, ∀𝑡 ≥ 𝑡0 ≥ 0,
𝑡

𝑡0

 (4.6) 

for some positive constant 𝑀, then all solutions of (1.1) are uniformly bounded. 

(b) If  

𝑓(𝑡, 0) = 0, 

∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒
∫

𝑢
𝑡0

𝛼(𝑠)𝑑𝑠
 𝑑𝑢 ≤ 𝑀,

𝑡

𝑡0

 (4.7) 

for some positive constant 𝑀, and  

∫ 𝛼(𝑠)𝑑𝑠 → ∞  𝑎𝑠  𝑡 → ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑡 ≥ 𝑡0,
𝑡

𝑡0

 (4.8) 

then the zero solution of (1.1) is 𝛼 -exponentially asymptotically stable with 𝑑 = 1/𝑝.  

Proof. Let 𝑥 be a solution to (1.1) that starts in 𝐷 for all 𝑡 ≥ 𝑡0 ≥ 0. Hence the proof of (a) is an immediate 

consequence of inequality (4.5). For the proof of (b), we consider the inequality from the proof of Theorem 5  

𝑉(𝑡, 𝑥𝑡)𝑒
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
≤ 𝑉(𝑡0, 𝜙) + ∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒

∫
𝑢

𝑡0
𝛼(𝑠)𝑑𝑠

 𝑑𝑢
𝑡

𝑡0

 

for all 𝑡 ∈ [𝑡0,∞). This yields  

𝑉(𝑡, 𝑥𝑡) ≤ [𝑉(𝑡0, 𝜙) + ∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒
∫

𝑢
𝑡0

𝛼(𝑠)𝑑𝑠
 𝑑𝑢]𝑒

− ∫
𝑡

𝑡0
𝛼(𝑠)𝑑𝑠

𝑡

𝑡0

 

for all 𝑡 ∈ [𝑡0, ∞). Using 𝑊1(||𝑥||) = ||𝑥||𝑝, we have  

||𝑥(𝑡)|| ≤ [𝑉(𝑡0, 𝜙) + ∫ (𝛾(𝑢)𝛼(𝑢) + 𝛽(𝑢)) 𝑒
∫

𝑢
𝑡0

𝛼(𝑠)𝑑𝑠
 𝑑𝑢]1/𝑝𝑒

−
1

𝑝
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
.

𝑡

𝑡0

 

This concludes the proof.  
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Remark 1 If 𝑓(𝑡, 0) ≠ 0 and (4.7) and (4.8) hold, then all solutions of (1.1) decay exponentially to zero.  

Next, we furnish examples in the form of theorems since all the results are fundamental and new to such neutral 

delay equations. In the next four theorems we assume the existence of an initial function 𝜙 that is continuous on 
[−ℎ, 0].  

Theorem 6 Let ℎ > 0 and consider the neutral differential equation with finite delay  

𝑥 ′(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑏(𝑡)𝑥 ′(𝑡 − ℎ) + 𝑔(𝑡),  𝑡 ≥ 0, (4.9) 

with 𝑥(𝑡0) = 𝜙. Suppose 𝑎(𝑡), 𝑔(𝑡) are continuous for all 𝑡 ≥ 0 and for all 𝑡 ≥ 0, 𝑏(𝑡) is continuously differentiable. 

Assume for all 𝑡 ≥ 0, that  

𝑏′(𝑡) + (1 + 𝑎(𝑡))𝑏(𝑡) = 0, (4.10) 

2𝑎(𝑡) + 1 + |𝑔(𝑡)| ≤ 0, (4.11) 

2𝑏(𝑡)𝑏′(𝑡) + 𝑏2(𝑡) + |𝑔(𝑡)| ≤ 0, (4.12) 

and there exists a positive constant 𝐿 such that  

|𝑔(𝑡)| + 𝑏2(𝑡)|𝑔(𝑡)| ≤ 𝐿,  𝑡 ≥ 0. 

Then |𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ)| is bounded and decays exponentially to zero.  

Proof. Let  

𝑉(𝑡, 𝑥𝑡) = (𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ))2 

and rewrite equation (4.9) as  

𝑑

𝑑𝑡
[𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ)] = 𝑎(𝑡)𝑥(𝑡) − 𝑏′(𝑡)𝑥(𝑡 − ℎ) + 𝑔(𝑡),  𝑡 ≥ 0. 

Then along solutions of (4.9) we have  

𝑉 ′(𝑡, 𝑥) = 2(𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ))
𝑑

𝑑𝑡
(𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ)) 

(4.13) 
= 2𝑎(𝑡)𝑥2(𝑡) − 2(𝑏′(𝑡) + 𝑎(𝑡)𝑏(𝑡))𝑥(𝑡)𝑥(𝑡 − ℎ) 

+2𝑏(𝑡)𝑏′(𝑡)𝑥2(𝑡 − ℎ) + 2𝑥(𝑡)𝑔(𝑡) − 2𝑏(𝑡)𝑥(𝑡 − ℎ)𝑔(𝑡). 

Using the inequality 𝑦𝑧 ≤ 𝑦2/2 + 𝑧2/2 for any two real numbers 𝑦 and 𝑧 we have  

2𝑥(𝑡)𝑔(𝑡) ≤ 2|𝑥(𝑡)| |𝑔(𝑡)| = 2|𝑥(𝑡)| |𝑔(𝑡)|1/2|𝑔(𝑡)|1/2 ≤ 𝑥2(𝑡)|𝑔(𝑡)| + |𝑔(𝑡)|. 

A similar work on −2𝑏(𝑡)𝑥(𝑡 − ℎ)𝑔(𝑡) leads to  

−2𝑏(𝑡)𝑥(𝑡 − ℎ)𝑔(𝑡) ≤ 𝑥2(𝑡 − ℎ)|𝑔(𝑡)| + 𝑏2(𝑡)|𝑔(𝑡)|. 

Thus, expression (4.13) reduces to  

 𝑉 ′(𝑡, 𝑥) ≤ (2𝑎(𝑡) + |𝑔(𝑡)|)𝑥2(𝑡) − 2(𝑏′(𝑡) + 𝑎(𝑡)𝑏(𝑡))𝑥(𝑡)𝑥(𝑡 − ℎ) 

 +(2𝑏(𝑡)𝑏′(𝑡) + |𝑔(𝑡)|)𝑥2(𝑡 − ℎ) + |𝑔(𝑡)| + 𝑏2(𝑡)|𝑔(𝑡)|. 

We observe that (4.3) is immediate since since 𝑞 = 1. Left to show condition (4.2) hold. Using conditions (4.10)-

(4.12) we have  



Youssef N. Raffoul  Journal of Advances in Applied & Computational Mathematics, 10, 2023 

 

130 

 𝑉(𝑡, 𝑥𝑡) + 𝑉 ′(𝑡, 𝑥𝑡) = (2𝑎(𝑡) + 1 + |𝑔(𝑡)|)𝑥2(𝑡) + (2𝑏(𝑡)𝑏′(𝑡) + 𝑏2(𝑡) 

 +|𝑔(𝑡)|)𝑥2(𝑡 − ℎ) + |𝑔(𝑡)| + 𝑏2(𝑡)|𝑔(𝑡)| 

 −2(𝑏′(𝑡) + 𝑎(𝑡)𝑏(𝑡) + 𝑏(𝑡))𝑥(𝑡)𝑥(𝑡 − ℎ) 

 ≤ |𝑔(𝑡)| + 𝑏2(𝑡)|𝑔(𝑡)|: = 𝛾. 

Inequality (4.1) of Theorem 5 yields,  

 (𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ))2 ≤ 𝑉(𝑡0, 𝜙)𝑒−(𝑡−𝑡0) + 𝛾 

 ≤ (𝜙(𝑡0) − 𝑏(𝑡0)𝜙(𝑡0 − ℎ))2𝑒−(𝑡−𝑡0) + 𝛾. 

Taking the square root we obtain  

|𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ)| ≤ [(𝜙(𝑡0) − 𝑏(𝑡0)𝜙(𝑡0 − ℎ))2𝑒−(𝑡−𝑡0) + 𝛾]1/2,  𝑓𝑜𝑟 𝑡 ≥ 𝑡0. 

Upon closely examining (4.12), we find that substituting 𝑢 = 𝑏2(𝑡) yields the linear differential equation 
𝑑𝑢

𝑑𝑡
+ 𝑢 =

−|𝑔(𝑡)|, which yields 𝑏(𝑡) = (𝑐𝑒−𝑡 − 𝑒−𝑡 ∫ |𝑔(𝑠)|𝑒𝑠𝑑𝑠)1/2,
𝑡

0
where 𝑐 is an appropriate constant that ensures that 𝑏(𝑡) is 

well defined for all 𝑡 ≥ 0. Taking 𝑐 = 1, 𝑎 = −1, and 𝑔(𝑡) = 𝑒−2𝑡, for instance, makes it simple to check the conditions 

(4.10), (4.11), and (4.12). 

We have the following corollary.  

Corollary 2 If 𝑔(𝑡) = 0 for all 𝑡 ≥ 0, then 𝛾 = 0, and the conditions of Theorem 6 take the form  

𝑏′(𝑡) + (1 + 𝑎(𝑡))𝑏(𝑡) = 0, 

2𝑎(𝑡) + 1 ≤ 0, 

2𝑏(𝑡)𝑏′(𝑡) + 𝑏2(𝑡) ≤ 0. 

The we have  

|𝑥(𝑡) − 𝑏(𝑡)𝑥(𝑡 − ℎ)| ≤ (1 + |𝑏(𝑡0)|)||𝜙||𝑒−
1

2
(𝑡−𝑡0),  𝑓𝑜𝑟 𝑡 ≥ 𝑡0. (4.14) 

Remark 2 Since 𝑏(𝑡) is bounded, and if the initial function is uniformly bounded, then from Theorem 6 and 

Corollary 2 we deduce that the boundedness and the exponential decay are uniform.  

Remark 3 The condition (4.11) is somewhat onerous. For 𝑘 ≥ 2., it necessitates that the function 𝑔(𝑡) decay 

exponentially on the order of 𝑔(𝑡) = 𝑒−𝑘𝑡. Assuming that 𝑔(𝑡) is bounded above and does not have to decay to zero 

as 𝑡 → ∞, one anticipates that all solutions of (4.9) are bounded, with additional assumptions on the coefficients 

𝑎(𝑡), 𝑏(𝑡), and 𝑏′(𝑡). In the next corollary, we review 𝑉 ′(𝑡, 𝑥𝑡) in order to alleviate this restriction.  

Corollary 3 Consider equation (4.9) and assume the hypothesis of Theorem 6 holds along with condition (4.10). 

Suppose  

𝑎(𝑡) + 1 ≤ 0, (4.15) 

2𝑏(𝑡)𝑏′(𝑡) + 𝑏2(𝑡) ≤ 0, (4.16) 

and there exists a positive constant 𝐿 such that  

|𝑔(𝑡)| ≤ 𝐿,  𝑡 ≥ 0. 

Then all solutions of (4.9) are uniformly bounded.  
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Proof. Let 𝑉(𝑡, 𝑥𝑡) be defined as in Theorem 6. We recalculate the expression 𝑉 ′(𝑡, 𝑥𝑡). We revisit the following two 

terms.  

2𝑥(𝑡)𝑔(𝑡) ≤ 2|𝑥(𝑡)| |𝑔(𝑡)| ≤ 𝑥2(𝑡) + 𝑔2(𝑡). 

A similar work on −2𝑏(𝑡)𝑥(𝑡 − ℎ)𝑔(𝑡) leads to  

−2𝑏(𝑡)𝑥(𝑡 − ℎ)𝑔(𝑡) ≤ 𝑏2(𝑡)𝑥2(𝑡 − ℎ) + 𝑔2(𝑡). 

Then, expression (4.13) reduces to  

 𝑉 ′(𝑡, 𝑥) ≤ (2𝑎(𝑡) + 1)𝑥2(𝑡) − 2(𝑏′(𝑡) + 𝑎(𝑡)𝑏(𝑡))𝑥(𝑡)𝑥(𝑡 − ℎ) 

 +(2𝑏(𝑡)𝑏′(𝑡) + 𝑏2(𝑡))𝑥2(𝑡 − ℎ) + 2𝑔2(𝑡). 

Thus  

 𝑉(𝑡, 𝑥𝑡) + 𝑉 ′(𝑡, 𝑥𝑡) = 2(𝑎(𝑡) + 1)𝑥2(𝑡) + (2𝑏(𝑡)𝑏′(𝑡) + 2𝑏2(𝑡))𝑥2(𝑡 − ℎ) + 2𝑔2(𝑡) 

 −2(𝑏′(𝑡) + (1 + 𝑎(𝑡))𝑏(𝑡))𝑥(𝑡)𝑥(𝑡 − ℎ) 

 ≤ 2𝑔2(𝑡): = 𝛾. 

The results are obtained by invoking Theorem 5.  

Again, we note that condition (4.16) yields that the function 𝑏(𝑡) is of the form 𝑏(𝑡) = 𝑘𝑒−𝑡 , for some suitable 

positive constant 𝑘. Also, in Corollary 3 the function 𝑔(𝑡) has to be only bounded. 

The results of Theorem 6 and Corollary 3 have profound usage in the study of control theory. For example, in 

[27] the author considered the control system 

𝑑𝑥(𝑡)

𝑑𝑡
− 𝑐

𝑑𝑥(𝑡 − 𝜏(𝑡))

𝑑𝑡
= 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡 − 𝜏(𝑡)),   𝑥(𝑡0) = 𝑥0. (4.17) 

By letting  

𝑦(𝑡) = 𝑥(𝑡) − 𝑐𝑥(𝑡 − 𝜏(𝑡)) 

system (4.17) is transferred to  

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑎𝑦(𝑡) + (𝑎𝑐 + 𝑏)𝑥(𝑡 − 𝜏(𝑡)),   𝑦(𝑡0) = 𝑥0 − 𝑐𝜙(−𝜏). (4.18) 

In the papers [6, 11–15] it was argued that if the zero solution of 
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑎𝑦(𝑡) is asymptotically stable, then the 

zero solution of (4.18) is asymptotically stable provided that |𝑎𝑐 + 𝑏| < 1. 

In the next theorem, we consider a delay differential equation with forcing function 𝑓 and display an unusual 

Lyapunov functional to prove boundedness on all solutions and exponential asymptotic stability in the case 𝑓(𝑡) =

0, for all 𝑡 ≥ 0. The type of Lyapunov functional that we display here does not require constraints on the delay, 

instead the emphasis will be on the size of the coefficients. 

Theorem 7 For positive ℎ, we consider the delay equation  

𝑥 ′(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑏(𝑡)𝑥(𝑡 − ℎ) + 𝑓(𝑡),  𝑡 ≥ 0, (4.19) 

with 𝑥(𝑡0) = 𝜙. Suppose 𝑎(𝑡), 𝑏(𝑡) and 𝑓(𝑡) are continuous for all 𝑡 ≥ 0. 

Assume  
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2𝑎(𝑡) + 3 + |𝑏(𝑡)| ≤ 0, (4.20) 

|𝑏(𝑡)| − 𝑒−ℎ ≤ 0, (4.21) 

and there exists a positive constant 𝐿 such that  

|𝑓(𝑡)| ≤ 𝑀,  𝑡 ≥ 0. 

Then all solutions of (4.19) are uniformly bounded. Moreover, if 𝑓(𝑡) = 0, for all 𝑡 ≥ 0, then the zero solution is 

exponentially asymptotically stable.  

Proof. For 𝑡 ≥ 0, let  

𝑉(𝑡, 𝑥𝑡) = 𝑥2(𝑡) + ∫ 𝑒−(𝑡−𝑠)𝑥2(𝑠) 𝑑𝑠.
𝑡

𝑡−ℎ

 

Then along solutions of (4.19) we have  

 𝑉 ′(𝑡, 𝑥) = 2𝑎(𝑡)𝑥2(𝑡) + 2𝑏(𝑡)𝑥(𝑡)𝑥(𝑡 − ℎ) + 2𝑥(𝑡)𝑓(𝑡) + 𝑥2(𝑡) 

 −𝑒−ℎ𝑥2(𝑡 − ℎ) − ∫ 𝑒−(𝑡−𝑠)𝑥2(𝑠) 𝑑𝑠
𝑡

𝑡−ℎ
 

 ≤ (2𝑎(𝑡) + 2 + |𝑏(𝑡)|)𝑥2(𝑡) + (|𝑏(𝑡)| − 𝑒−ℎ)𝑥2(𝑡 − ℎ) 

 − ∫ 𝑒−(𝑡−𝑠)𝑥2(𝑠) 𝑑𝑠 + 𝑓2(𝑡).
𝑡

𝑡−ℎ
 

Using conditions (4.20) and (4.21) we have  

 𝑉(𝑡, 𝑥𝑡) + 𝑉 ′(𝑡, 𝑥𝑡) ≤ (2𝑎(𝑡) + 3 + |𝑏(𝑡)|)𝑥2(𝑡) + (|𝑏(𝑡)| − 𝑒−ℎ)𝑥2(𝑡 − ℎ) 

 − ∫ 𝑒−(𝑡−𝑠)𝑥2(𝑠) 𝑑𝑠 + ∫ 𝑒−(𝑡−𝑠)𝑥2(𝑠) 𝑑𝑠 + 𝑓2(𝑡)
𝑡

𝑡−ℎ

𝑡

𝑡−ℎ
 

 ≤ 𝑓2(𝑡): = 𝛾. 

It follows from inequality (4.4) that  

 |𝑥| ≤ [𝑉(𝑡0, 𝜙)𝑒−(𝑡−𝑡0) + 𝛾]1/2 

 ≤ [(1 + ∫ 𝑒−(𝑡0−𝑠) 𝑑𝑠)||𝜙||2 𝑒−(𝑡−𝑡0) + 𝛾]1/2𝑡0

𝑡0−ℎ
 

 ≤ [(2 − 𝑒−ℎ)||𝜙||2 𝑒−(𝑡−𝑡0) + 𝛾]1/2. 

This gives boundedness. Now if 𝑓(𝑡) = 0, for all 𝑡 ≥ 0, then 𝛾 = 0 and hence the above inequality gives the 

exponential stability.  

As we know, conditions that ensure stability, depend on the Lyapunov functional, as the next corollary shows.  

Corollary 4 Assume the hypothesis of Theorem 7 hold, where condition (4.20) is replaced with  

𝑎(𝑡) + 2 ≤ 0. 

Then all solutions of (4.19) are uniformly bounded. Moreover, if 𝑓(𝑡) = 0, for all 𝑡 ≥ 0, then the zero solution is 

exponentially asymptotically stable.  

Proof. The proof is achieved by taking  

𝑉(𝑡, 𝑥𝑡) = |𝑥(𝑡)| + ∫ 𝑒−(𝑡−𝑠)|𝑥(𝑠)| 𝑑𝑠.
𝑡

𝑡−ℎ
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The next theorem deals with distributed delays. 

Theorem 8 Let ℎ > 0 and consider the functional delay differential equation  

𝑥 ′(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑏(𝑡)𝑥(𝑡 − ℎ) + 𝑒−2𝑡 ∫ 𝐶(𝑠)𝑥(𝑠)𝑑𝑠 + 𝑔(𝑡),  𝑡 ≥ 0,
𝑡

𝑡−ℎ

 (4.22) 

with 𝑥(𝑡0) = 𝜙 and all the functions are continuous for all 𝑡 ≥ 0.  

Assume  

𝑎(𝑡) + 1 + ∫ |𝐶(𝑢 + 𝑡)| 𝑑𝑢 ≤ 0,
∞

𝑡−ℎ

 (4.23) 

|𝑏(𝑡)| − 𝑒−ℎ ∫ |𝐶(𝑢 + 𝑡 − ℎ)| 𝑑𝑢 ≤ 0,
∞

𝑡−ℎ

 (4.24) 

𝑒−2𝑡|𝐶(𝑠)| − 𝑒−(𝑡−𝑠)|𝐶(𝑡 + 𝑠 − ℎ)| ≤ 0,  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 − ℎ ≤ 𝑠 ≤ 𝑡,  𝑡 ≥ 0, (4.25) 

and there exists a positive constant 𝐿 such that  

|𝑔(𝑡)| ≤ 𝐿,  𝑡 ≥ 0. 

Then all solutions of (4.22) are uniformly bounded provided that  

∫ ∫ 𝑒−(𝑡−𝑠) |𝐶(𝑢 + 𝑠)| 𝑑𝑢 𝑑𝑠 < ∞.
∞

𝑡−ℎ

𝑡

𝑡−ℎ

  

Moreover, if 𝑔(𝑡) = 0 for all 𝑡 ≥ 0, then the zero solution of (4.22) is exponentially asymptotically stable. 

Proof. For 𝑡 ≥ 0, let  

𝑉(𝑡, 𝑥𝑡) = |𝑥(𝑡)| + ∫ ∫ 𝑒−(𝑡−𝑠) |𝐶(𝑢 + 𝑠)| 𝑑𝑢 |𝑥(𝑠)| 𝑑𝑠.
∞

𝑡−ℎ

𝑡

𝑡−ℎ

  

Then along solutions of (4.22) we have  

 𝑉 ′(𝑡, 𝑥) ≤ 𝑎(𝑡)|𝑥(𝑡)| + |𝑏(𝑡)||𝑥(𝑡 − ℎ)| + 𝑒−2𝑡 ∫ |𝐶(𝑠)||𝑥(𝑠)| 𝑑𝑠 + |𝑔(𝑡)|
𝑡

𝑡−ℎ
 

 + ∫ |𝐶(𝑢 + 𝑡)| 𝑑𝑢 |𝑥(𝑡)| − ∫ 𝑒−ℎ |𝐶(𝑢 + 𝑡 − ℎ)| 𝑑𝑢 |𝑥(𝑡 − ℎ)|
∞

𝑡−ℎ

∞

𝑡−ℎ
  

 − ∫ 𝑒−(𝑡−𝑠) |𝐶(𝑡 + 𝑠 − ℎ)||𝑥(𝑠)| 𝑑𝑠
𝑡

𝑡−ℎ
 

 − ∫ ∫ 𝑒−(𝑡−𝑠) |𝐶(𝑢 + 𝑠)| 𝑑𝑢 |𝑥(𝑠)| 𝑑𝑠.
∞

𝑡−ℎ

𝑡

𝑡−ℎ
  

Using conditions (4.23), (4.24) and (4.25), we have  

 𝑉(𝑡, 𝑥𝑡) + 𝑉 ′(𝑡, 𝑥𝑡) ≤ (𝑎(𝑡) + 1 + ∫ |𝐶(𝑢 + 𝑡)| 𝑑𝑢)|𝑥(𝑡)|
∞

𝑡−ℎ
 

 +(|𝑏(𝑡)| − 𝑒−ℎ ∫ |𝐶(𝑢 + 𝑡 − ℎ)| 𝑑𝑢)|𝑥(𝑡 − ℎ)|
∞

𝑡−ℎ
 

 + ∫ [𝑒−2𝑡|𝐶(𝑠)| − 𝑒−(𝑡−𝑠)|𝐶(𝑡 + 𝑠 − ℎ)|]|𝑥(𝑠)| 𝑑𝑠 + |𝑔(𝑡)|
𝑡

𝑡−ℎ
 

 ≤ 𝐿. 

By invoking Theorem 5 we arrive at boundedness result. Now, we set 𝑔(𝑡) = 0 for all 𝑡 ≥ 0, which implies that 

𝐿 = 0 and hence by Theorem 8 the zero solution of (4.22) is exponentially asymptotically stable.  
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Remark 4 All the requirements of Theorem 8 are satisfied if we let 𝐶(𝑡) = 𝑒−𝑡 , given that 𝑔(𝑡) is bounded and 

|𝑏(𝑡)| ≤ 𝑒ℎ−2𝑡 for all 𝑡 ≥ 0. 

The author Wang in [28], considered (4.19) and provided sufficient conditions concerning uniform asymptotic 

stability of the zero solution. The motivation behind his work was to arrive at the asymptotic stability without 

requiring that 𝑎(𝑡) ≤ 0 for all 𝑡 ≥ 0. This was achieved by using the negativeness of 𝑏(𝑡) to offset the positiveness of 

𝑎(𝑡). There was a price to pay, which is the limitation on the size of the delay ℎ in order to satisfy the sufficient 

condition  

−
1

2ℎ
≤ 𝑎(𝑡) + 𝑏(𝑡 + ℎ) ≤ −ℎ 𝑏2(𝑡 + ℎ). 

For example, if we set 𝑎(𝑡) = −2 and 𝑏(𝑡) = 𝑒−ℎ , then all the conditions of Theorem 7 are satisfied regardless of 

the size of the delay ℎ. On the other hand, if we set ℎ = 2, then the above inequality will not hold. For fairness, 

Wang’s inequality does not ask for requires 𝑎(𝑡) ≤ 0 for all 𝑡 ≥ 0. 

So far, we have been applying Theorem 5 with 𝛼(𝑡) equal to a constant and 𝑞 = 1. In the next theorem, we will 

display a Lyapunov functional for (4.19), in which the 𝛼(𝑡) of Theorem 5 depends on time. This permits us to consider 

functions 𝑔(𝑡) that may not be bounded and yet still obtain boundedness of solutions and exponential stability of 

the zero solution.  

Theorem 9 Consider (4.19) and define a continuous function 𝜂(𝑡) ≥ 0 such that for some 𝜏 > 0  

𝜂(𝑡) =
𝑒∫

𝑡
0 𝑐(𝑠)𝑑𝑠

1 + 2ℎ ∫
𝑡+𝜏

𝑡
𝑒∫

𝑢
0 𝑐(𝑠)𝑑𝑠𝑑𝑢

, (4.26) 

where 𝑐(𝑡): = 2𝑎(𝑡) + |𝑔(𝑡)|. Let  

|𝑏(𝑡) ≤ ℎ𝜂(𝑡). (4.27) 

Then every solution of (4.19) with 𝑥(𝑡0) = 𝜙 satisfies the inequality  

||𝑥(𝑡)|| ≤ [𝑉(𝑡0, 𝜙) + ∫ |𝑔(𝑢)| 𝑒
∫

𝑢
𝑡0

𝛼(𝑠)𝑑𝑠
 𝑑𝑢]1/2𝑒

−
1

2
∫

𝑡
𝑡0

𝛼(𝑠)𝑑𝑠
,

𝑡

𝑡0

 (4.28) 

where  

𝛼(𝑡) = 𝑐(𝑡) + 2ℎ𝜂(𝑡)  𝑎𝑛𝑑  𝑉(𝑡0, 𝜙) = 𝜙2(0) + ℎ𝜂(𝑡0) ∫ 𝜙2(𝑠)𝑑𝑠.
0

−ℎ

 

Proof. For 𝑡 ≥ 0, let  

𝑉(𝑡, 𝑥𝑡) = 𝑥2(𝑡) + ℎ𝜂(𝑡) ∫ 𝑥2(𝑠)𝑑𝑠
𝑡

𝑡−ℎ

 

Then along solutions of (4.19) we have  

𝑉 ′(𝑡, 𝑥𝑡) = 2𝑎(𝑡)𝑥2(𝑡) + 2𝑏(𝑡)𝑥(𝑡)𝑥(𝑡 − ℎ) + 2𝑥(𝑡)𝑔(𝑡) + ℎ𝜂(𝑡)𝑥2(𝑡) 

(4.29) 
−ℎ𝜂(𝑡)𝑥2(𝑡 − ℎ) + ℎ𝜂′(𝑡) ∫ 𝑥2(𝑠) 𝑑𝑠.

𝑡

𝑡−ℎ

 

As before,  

2𝑥(𝑡)𝑔(𝑡) ≤ 2|𝑥(𝑡)| |𝑔(𝑡)| = 2|𝑥(𝑡)| |𝑔(𝑡)|1/2|𝑔(𝑡)|1/2 ≤ 𝑥2(𝑡)|𝑔(𝑡)| + |𝑔(𝑡)|, 
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and  

2𝑏(𝑡)𝑥(𝑡)𝑥(𝑡 − ℎ) ≤ 𝑥2(𝑡 − ℎ)|𝑏(𝑡)| + 𝑥2(𝑡)|𝑏(𝑡)|. 

Also, a simple differentiation in (4.26) yields to  

 𝜂′(𝑡) = 𝑐(𝑡)𝜂(𝑡) + 2ℎ𝜂2(𝑡) − 2ℎ𝜂2(𝑡)𝑒∫
𝑡+𝛽

𝑡 𝑐(𝑠)𝑑𝑠 

 ≤ 𝑐(𝑡)𝜂(𝑡) + 2ℎ𝜂2(𝑡). 

As a consequence, (4.28) reduces to  

 𝑉 ′(𝑡, 𝑥𝑡) ≤ (𝑐(𝑡) + |𝑔(𝑡)|)𝑉(𝑡, 𝑥𝑡) + |𝑔(𝑡)| 

 = 𝛼(𝑡)𝑉(𝑡, 𝑥𝑡) + |𝑔(𝑡)|. (4.30) 

Applying the variation of parameters formula on (4.30) gives the desired inequality (4.28). 

If there is a positive constant 𝑀 so that  

∫ |𝑔(𝑢)| 𝑒
∫

𝑢
𝑡0

𝛼(𝑠)𝑑𝑠
 𝑑𝑢 ≤ 𝑀,  forall𝑡 ≥ 𝑡0,

𝑡

𝑡0

 

then it follows from (4.28) that all solutions of (4.19) are bounded and uniformly bounded if the initial function is 

uniformly bounded. Additionally, if 𝑔 = 0, then the zero solution (4.19) is exponentially stable.  

5. Conclusion 

The key findings of this research include the establishment of general theorems concerning the boundedness 

and various forms of stability of the zero solution, with a particular emphasis on achieving exponential stability. The 

attainment of exponential stability was shown to demand meticulous attention in the construction of a suitable 

Lyapunov functional. The theorems presented in this paper, specifically Theorems 5 and 9, offer constructive 

approaches for building such Lyapunov functions tailored to nonlinear delay systems. These findings contribute 

valuable insights into the intricate dynamics of these systems and provide a foundation for further exploration in 

the field of stability analysis. In conclusion, this paper not only extends the theoretical understanding of 

boundedness and stability but also offers practical tools through the provided theorems. The emphasis on 

constructing Lyapunov functionals for nonlinear delay systems adds depth to the existing knowledge, paving the 

way for advancements in control theory and related areas. The insights gained from this research hold significance 

in addressing real-world problems where stability considerations play a crucial role. 
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