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ABSTRACT 

In this study, we first offer a novel integral identity using twice-differentiable convex 

mappings for the proportional Caputo-hybrid operator. Next, we demonstrate many 

integral inequalities related to the Milne-type integral inequalities for proportional 

Caputo-hybrid operator with the use of this newly discovered identity. Also, we present 

several examples along with their corresponding graphs in order to provide a better 

understanding of the newly obtained inequalities. Finally, we observe that the obtained 

results improve and generalize some of the previous results in the area of integral 

inequalities.  
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1. Introduction 

The theory of convexity has several applications in classical analysis, which makes it both significant and 

appealing. This theory enables us to solve a wide range of problems that arise in both practical and pure 

mathematics. Furthermore, the usage of integral inequalities and their applications has expanded rapidly, and it 

has impacted many scientific and technological domains in addition to the numerous current mathematical 

subjects, such as measure theory, approximation theory, and information theory. It is also possible to determine 

the error bounds of numerical integration formulae for the differentiable mappings, by using the integral 

inequalities. Common inequality types, such as Grüss-type, Hermite-Hadamard-type, Ostrowski-type, Simpson-type, 

and Ostrowski-type, evaluate the remainder term and provide error boundaries for quadrature methods. Because 

of the close relationship between the theory of inequality and the theory of convexity, numerous researchers have 

been interested in merging them, which aids in developing and generalizing the integral inequalities [1-6]. 

Simpson’s inequality is one of the most important and frequently required inequalities, which is as follows:  
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This inequality establishes an upper limit on the error that occurs when estimating a definite integral using 

Simpson’s rule. It is widely recognized that when the mapping f  is not four times differentiable or when its fourth 

derivative 
(4)f  is unbounded on the interval ),( ba , the classical Simpson quadrature formula cannot be employed. 

In recent years, several authors have highlighted Simpson-type inequalities for various classes of mappings due to 

its abundant geometric importance and applications. For instance, in [7], Dragomir et al. demonstrated some recent 

advancements in Simpson’s inequality, where the remaining part is expressed in terms of derivatives lower than the 

fourth order. In [8], Alomari introduced Simpson’s type inequalities for s -convex functions. Sarikaya et al. gave some 

Simpson’s type inequalities via twice differentiable functions in [9]. For the other results, one can refer to [10], [11-

13]. 

Under conditions similar to those in Simpson inequality, the Milne inequality is the one that gives estimates of 

the error boundaries for the Milne formula: 

,
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. In the recent 

times, researchers’ attention to the Milne inequality has been considerable. Alomari and Liu [14] established error 

estimations for the Milne’s rule for mappings of bounded variation and for absolutely continuous mappings. Rom

a n-Flores et al. [15] proved some Milne type inequalities for interval-valued functions. Budak et al. [16] investigated 

Milne-type inequalities for bounded functions, Lipschitz functions and functions of bounded variation. Ali et al. [17] 

gave the fractional version of Milne’s formula-type inequalities for differentiable convex functions and Riemann–

Liouville fractional integrals. Many recent articles have been published on this subject, as in [18-20]. 

On the other hand, fractional calculus is a branch of mathematics that deals with derivatives and integrals of 

non-integer order. So, it plays a vital role in the generalization of classical calculus, modeling complex systems, 

solving fractional differential equations, analyzing fractal geometry and various scientific and engineering 

applications. Furthermore, it provides a framework for analyzing and understanding systems with fractional 

dynamics, allowing for a more comprehensive mathematical description of complex phenomena. Therefore, due to 
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the new fractional integral and derivative such as Caputo-Fabrizio [21], Atangana-Baleanu [22] and tempered [23], 

this calculus has gained more importance and has found applications in various fields of science and engineering. 

The Caputo derivative is defined as the application of a fractional integral to a standard derivative of the function 

whereas the Riemann-Liouville fractional derivative is obtained by differentiating the fractional integral of a function 

with respect to its independent variable of order n . The Caputo fractional derivative necessitates more suitable 

initial conditions in contrast to the conventional Riemann-Liouville fractional derivative considering fractional 

differential equations [24]. Accordingly, when evaluating other fractional derivatives, the Caputo derivative is 

advantageous since it yields solutions that are more meaningful in a physical sense for the specific problems. 

Besides, the operator of proportional derivative denoted as )(xfDP

  is given by the equation [25]: 

),(),()(),(=)( 01 tftKtftKxfD 'P  +
 

where 1K  and 0K  are the functions with respect to 0,1]  and Rt  subject to certain conditions and also, the 

function f  is differentiable with respect to .Rt  This mathematical operator is commonly used in control systems 

and robotics. In recent years, there has been a notable increase in the importance of research conducted on both 

the Caputo derivative and the proportional derivative [26-28]. 

2. Preliminaries 

To better understand the results obtained in this paper, we recall some basic concepts which we need in the 

sequel. 

One of the significant definitions in fractional analysis is the following [29]: 

Definition 1: Let 0>  and  ,1,2,...  1,][= +n  ],[ baACf n , the space of functions having thn−  

derivatives absolutely continuous. The left-sided and right-sided Caputo fractional derivatives of order   are 

defined as follows: 

axdttftx
n

xfD nn

x

a
a

C >,)()(
)(

1
=)( )(1−−

+ −
− 




 

and 

.<,)()(
)(

1
=)( )(1 bxdttfxt

n
xfD nn

b

x
b

C −−

− −
− 




 

If  1,2,3,...= n  and usual derivative )()( xf n
 of order n  exists, then Caputo fractional derivative 
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C D
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In [30], Baleanu et al. gave the following definition which they merge the concepts of Caputo derivative and 

proportional derivative in a novel manner, resulting in a hybrid fractional operator that can be represented as a 

linear combination of Caputo fractional derivative and Riemann-Liouville fractional integral. gave the following 

definition which they merge the concepts of Caputo derivative and proportional derivative in a novel manner, 

resulting in a hybrid fractional operator that can be represented as a linear combination of Caputo fractional 

derivative and Riemann-Liouville fractional integral. 
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Definition 2: Let RR → +If :  be a differentiable function on 
I  and 

'ff ,  are locally ).(1 IL  Then, the 

proportional Caputo-hybrid operator may be defined as follows: 
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Afterwards, Sarıkaya [31] presented a novel definition by employing distinct 1K  and 0K  functions based on 

Definition 2. Furthermore, Sarıkaya [31] derived the Hermite-Hadamard inequality utilizing his own new definition 

as presented below: 

Definition 3: Let RR → +If :  be a differentiable function on 
I  and ,f ).(1 ILf '   The left-sided and right-

sided proportional Caputo-hybrid operator of order  are defined respectively as follows:  
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Theorem 1: Let RR → +If :  be a differentiable function on ,I  the interior of the interval ,I  where 

Iba ,  with ba <  and let 
'ff , be the convex functions on .I  Then, the following inequalities hold: 
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In [32], Sarıkaya also gave the following Simpson’s type inequality using his own definition of the proportional 

Caputo operator: 

Theorem 2: Let RR → +If :  be differantiable function on ,I  the interior of the interval I where 
Iba ,  

with ,< ba  and ].,[, baLff '''   Then, the following identity holds:  
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The purpose of this work is to use the proportional Caputo-hybrid operator to study the similar forms of the 

Milne-type inequalities with respect to Riemann integrals. For this purpose, firstly, we give an identity by utilizing the 

newly found proportional Caputo-hybrid operator. Then, we present several Milne-type inequalities with the aid of 

convexity, the Hölder inequality and the power mean inequality. Moreover, these results enhance and generalize 

the inequalities derived in earlier works. Next, we provide some examples supported by graphical representations 

to verify the established inequalities. 

3. Results 

The following lemma is essential for demonstrating our other main results. Therefore, we will give the proof of 

this lemma. 

Lemma 1: Let RR → +If :  be a twice differentiable function on 
oI , the interior of the interval I, where 

oIba ,  satisfying ba <  and let ].,[,, 1 baLfff '''   Then, the following identity is satisfied: 
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By following similar steps, we reach 
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By using a variable substitution with the condition 1= , it is identical to Lemma 1 given by Budak et al. [16].  
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Proof. Firstly, let 1=q . By the convexity of || 'f  and || ''f , we obtain from Lemma 1 it follows that 
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Thus, the proof ends.  

Now, we show the effectiveness of our theorem with an illustrative example. 

Example 1: Let us consider a function R→[0,2]:f  given by )(xf  
3= x . Then, for 1=q , we can calculate the 

right-hand side of the inequality (3) as follows:  
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On the other hand, we obtain that  
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As one can see in Fig. (1), the left-hand side of the inequality (3) is always below the right-hand side of this 

inequality for all values of (0,1)  and 1=q .  

 

Figure 1: The graph of both sides of the inequality (3) according to Example 1, which is computed and drawn in MATLAB program, 

depending on (0,1)  and 1=q . 

Remark 2: Letting the limit as 1→  and putting 1=q  in Theorem 3, it follows that 
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which was proved by Budak et al. in [16]. Moreover, as   converges to 1 and 1q , the inequality in Theorem 3 is 

given by 
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which was proved by Budak et al. in [16].  

Corollary 2: In the limiting case 0=  in Theorem 3, we obtain 
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Theorem 4: Let RR → +If :  be a twice differentiable function on 
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When we calculate the integrals in the above inequality, we get  
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Thus, the validity of inequality (6) is demonstrated in Fig. (2).  

 

Figure 2: The graph of three parts of the inequality (6) in Example 2, which is computed and drawn in MATLAB program, 

depending on (0,1)  and (1,3]p . 
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Remark 3: In the special case when tends to 1 in Theorem 4, we reach  
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which was proved by Budak et al. in [16].  

Corollary 3: The following specific situation occurs as   approaches 0, according to Theorem 4:  
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4. Conclusion 

The purpose of this work is to develop new Milne-type integral inequalities for twice-differentiable convex 

mappings by using a proportional Caputo hybrid operator. We start by demonstrating a new integral identity of the 

Milne-type associated with proportional Caputo-hybrid operator in order to accomplish this purpose. Next, utilizing 

convexity, the Hölder inequality, and the power mean inequality, we present many Milne-type inequalities. Since our 

results for 1→  represent the specific case of previously established bounds, they are more useful in this study 

than in traditional calculus. Therefore, we hope that our methods and results will inspire readers to investigate this 

subject further. In future work, one can explore similar inequalities for distinct fractional integrals and obtain new 

Milne-type inequalities through the use of various forms of convexity. 
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