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ABSTRACT 

In this article, we study a generalized system of mixed ordered variational inequalities 

problems with various operations in a real ordered product Banach space and discuss 

the existence of the solution of our considered problem. Further, we discuss the 

convergence analysis of the proposed iterative algorithm using XNOR and XOR 

operations techniques. Most of the variational inequalities solved by the projection 

operator technique but we solved our considered problem without the projection 

technique. The results of this paper are more general and new than others in this 

direction. Finally, we give a numerical example to illustrate and show the convergence 

of the proposed algorithm in support of our main result has been formulated by using 

MATLAB programming. 
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1. Introduction 

Variational inequalities have been generalized and extended in different directions using novel and innovative 

techniques and are applicable to solve many problems related to optimization and control, transportation 

equilibrium and economic, engineering, and basic sciences. For the recent state of the art [1-17]. We would like to 

point out that the projection method technique used to find the solution of variational inequalities which are quite 

general and flexible method. 

In 1972, Amann [1] established for computing the solutions of nonlinear equations and fixed point theory with 

nonlinear mapping and applications have been studied with nonlinear increasing operators in real ordered Hilbert 

space or Banach spaces investigated by Du [18] which is applicable in nonlinear analysis and developed the methods 

to solve original mathematical problems. Future, many authors discussed and studied the idea of ordered nonlinear 

variational inequalities (inclusions) in different settings which is available in the literature [19-37]. 

In 2008, Li and his coauthors have investigated and analyzed the ordered variational inequality problem to obtain 

𝑢 ∈ 𝐵 such that 𝑇(ℎ(𝑢)) ≥ 0 and after that introduced and studied a general nonlinear ordered variational 

inequalities problem to obtain 𝑢 ∈ 𝐵 such that 𝐴(𝑢) ⊕ 𝐵(𝑢, ℎ(𝑢)) ≥ 0 (ℎ, 𝐴 and 𝐵(. , . )are nonlinear mappings), and 

discussed the existence and convergence results in real ordered Hilbert or Banach spaces with the help of restricted-

accretive mapping techniques [38-39]. Very recently, many authors have been considered and studied ordered 

equations (inclusions) problem which solved by using the several kinds of single-valued (multiple-valued) mappings 

to find the solutions of ordered variational inequality (inclusions) with ⊕ operations in different settings [2,3, 38-

43]. 

Inspired and motivated by ongoing research in this direction, the main aim of this paper is as follows. In section 

2, contains the basic results needed in this paper. In Section 3, we consider a SMOVIP with various operations and 

prove the existence of a solution to the considered problem. In Section 4, we propose the iterative algorithms which 

are more general than the previous iterative algorithms investigated by many authors in the literature and analyze 

the convergence criteria of the proposed algorithm. Finally, we demonstrate a numerical example that satisfies all 

the conditions and show the convergence of the proposed algorithm of our main result. 

2. Preliminaries 

Let 𝐵 be a real ordered Banach space with its norm 𝑃. 𝑃. Assume 𝐾 is a normal cone with normal constant 𝛿𝐾, 

and ≤ is a partial ordering defined by for arbitrary 𝑢, 𝑣 ∈ 𝐵, 𝑢 ≤ 𝑣 if and only if 𝑣 − 𝑢 ∈ 𝐾. For any elements 𝑢, 𝑣 ∈ 𝐵, 

𝑙𝑢𝑏{𝑢, 𝑣} and 𝑔𝑙𝑏{𝑢, 𝑣} are denoted by least upper bound and greatest lower bound of the set {𝑢, 𝑣}, respectively. 

Suppose 𝑔𝑙𝑏{𝑢, 𝑣} and 𝑙𝑢𝑏{𝑢, 𝑣} exist, some binary operations are defined as follows:  

1. 𝑢 ∨ 𝑣 = 𝑠𝑢𝑝{ 𝑢, 𝑣};  

2. 𝑢 ∧ 𝑣 = 𝑖𝑛𝑓{ 𝑢, 𝑣};  

3. 𝑢 ⊕ 𝑣 = (𝑢 − 𝑣) ∨ (𝑣 − 𝑢);  

4. 𝑢𝑒𝑣 = (𝑢 − 𝑣) ∧ (𝑣 − 𝑢).  

The operations ∨,∧, ⊕ and 𝑒 are called AND, OR, XNOR and XOR operations, respectively.  

Definition 2.1 (15,18) Let 𝐾(≠ ∅) ⊆ 𝐵. Then  

1. 𝐾 is called normal cone if and only if there exists a constant 𝛿𝐾 > 0 such that for 0 ≤ 𝑢 ≤ 𝑣, we have ||𝑢|| ≤

𝛿𝐾||𝑣||, for any 𝑢, 𝑣 ∈ 𝐵;  

2. For any 𝑢, 𝑣 ∈ 𝐵 if either 𝑣 ≤ 𝑢 or 𝑢 ≤ 𝑣 hold, then 𝑢 and 𝑣 are said to be comparable to each other (denoted 

by 𝑢 ∝ 𝑣).  
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Definition 2.2 (18,39) Let 𝑃: 𝐵 → 𝐵 be a single-valued mapping. Then  

1. 𝑃 is said to be a strongly comparison mapping, if 𝑃 is a comparison mapping and 𝑢 ∝ 𝑣 if and only if 𝑃(𝑢) ∝

𝑃(𝑣), for all 𝑢, 𝑣 ∈ 𝐵;  

2. a comparison mapping 𝑃 is said to be a 𝜇𝑃-ordered compression mapping, if there exists 0 < 𝜇𝑃 < 1 such that  

𝑃(𝑢) ⊕ 𝑃(𝑣) ≤ 𝜇𝑃(𝑢 ⊕ 𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝐵. 

Definition 2.3 A single-valued mapping 𝐺: 𝐵 × 𝐵 × 𝐵 → 𝐵 is called (𝜅, 𝜈, 𝜏) -ordered Lipschitz continuous, if 𝑎 ∝ 𝑢, 

𝑏 ∝ 𝑣 and 𝑐 ∝ 𝑤, then 𝐺(𝑎, 𝑏, 𝑐) ∝ 𝐺(𝑢, 𝑣, 𝑤) and there exist constants 𝜅, 𝜈, 𝜏 > 0 such that  

𝐺(𝑎, 𝑏, 𝑐) ⊕ 𝐺(𝑢, 𝑣, 𝑤) ≤ 𝜅(𝑎 ⊕ 𝑢) + 𝜈(𝑏 ⊕ 𝑣) + 𝜏(𝑐 ⊕ 𝑤), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏, 𝑐, 𝑢, 𝑣, 𝑤 ∈ 𝐵. 

Definition 2.4 (39) A compression mapping 𝐽: 𝐵 → 𝐵 is said to be restricted accretive mapping if there exist two 

constants 𝜉1, 𝜉2 ∈ (0,1] such that  

(𝐽(𝑢) + 𝐼(𝑢)) ⊕ (𝐽(𝑣) + 𝐼(𝑣)) ≤ 𝜉1(𝐽(𝑢) ⊕ 𝐽(𝑣)) + 𝜉2(𝑢 ⊕ 𝑣), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑢, 𝑣 ∈ 𝐵 

holds, where 𝐼 is an identity mapping on 𝐵.  

Definition 2.5 (38) Let 𝐽: 𝐵 → 𝐵 be a single-valued mapping. A single-valued mapping 𝐴: 𝐵 → 𝐵 is said to be 𝐽 -

restricted accretive mapping if 𝐴, 𝐽 and 𝐴 ∧ 𝐽 all are comparisons with each other, and there exist two constants 

𝜉1, 𝜉2 ∈ (0,1] such that for any 𝑢, 𝑣 ∈ 𝐵  

(𝐴(𝑢) ∧ 𝐽(𝑢) + 𝐼(𝑢)) ⊕ (𝐴(𝑣) ∧ 𝐽(𝑣) + 𝐼(𝑣)) ≤ 𝜉1((𝐴(𝑢) ∧ 𝐽(𝑢)) ⊕ (𝐴(𝑣) ∧ 𝐽(𝑣))) + 𝜉2(𝑢 ⊕ 𝑣), 

holds, where 𝐼 is an identity mapping on 𝐵.  

Definition 2.6 (39) Let 𝐵 × 𝐵 × 𝐵 be an real ordered product Banach space with the norm 𝑃. 𝑃 and an partial 

ordered relation ≤, and the following conditions are satisfied: for any (𝑤1, 𝑤2, 𝑤3), (�̂�1, �̂�2, �̂�3) ∈ 𝐵 × 𝐵 × 𝐵  

1. (𝑤1, 𝑤2, 𝑤3) ≤ (�̂�1, �̂�2, �̂�3) if and only if 𝑤1 ≤ �̂�1, 𝑤2 ≤ �̂�2 and 𝑤3 ≤ �̂�3 in 𝐵;  

2. (𝑤1, 𝑤2, 𝑤3) ∝ (�̂�1, �̂�2, �̂�3) if and only if 𝑤1 ∝ �̂�1, 𝑤2 ∝ �̂�2, 𝑤3 ∝ �̂�3,  

3. (𝑤1, 𝑤2, 𝑤3) ∧ (�̂�1, �̂�2, �̂�3) = (𝑤1 ∧ �̂�1, 𝑤2 ∧ �̂�2, 𝑤3 ∧ �̂�3), (𝑤1, 𝑤2, 𝑤3) ∨ (�̂�1, �̂�2, �̂�3) = (𝑤1 ∨ �̂�1, 𝑤2 ∨ �̂�2, 𝑤3 ∨ �̂�3), 
(𝑤1, 𝑤2, 𝑤3) ⊕ (�̂�1, �̂�2, �̂�3) = (𝑤1⊕ �̂�1, 𝑤2⊕ �̂�2, 𝑤3⊕ �̂�3).  

Definition 2.7. For arbitrary sequences {𝑢𝑛}, {𝑣𝑛}, and {𝑤𝑛} in 𝐵, and the sequence {(𝑢𝑛 , 𝑣𝑛, 𝑤𝑛)} in 𝐵 × 𝐵 × 𝐵,  

𝑢𝑛 → 𝑢∗, 𝑣𝑛 → 𝑣∗ 𝑎𝑛𝑑 𝑤𝑛 → 𝑤∗ 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 (𝑢𝑛, 𝑣𝑛, 𝑤𝑛) → (𝑢∗, 𝑣∗, 𝑤∗), 𝑎𝑠 𝑛 → ∞. 

Definition 2.8 (38) A vector-valued mapping �⃗� = (𝐹1, 𝐹2, 𝐹3) (𝑜𝑟 (𝐹1, 𝐹2, 𝐹3)
𝑇): 𝐵 × 𝐵 × 𝐵 → 𝐵 × 𝐵 × 𝐵 in 𝐵 × 𝐵 × 𝐵, if 

there exists a point (𝑢∗, 𝑣∗, 𝑤∗) ∈ 𝐵 × 𝐵 × 𝐵 such that  

�⃗�(𝑢∗, 𝑣∗, 𝑤∗) = (𝐹1, 𝐹2, 𝐹3)(𝑢
∗, 𝑣∗, 𝑤∗) = (𝑢∗, 𝑣∗, 𝑤∗), 

holds, then (𝑢∗, 𝑣∗, 𝑤∗) is called a fixed point of vector-valued mapping �⃗� in ordered product Banach space.  

Definition 2.9 (38) A vector-valued mapping �⃗� = (𝐹1, 𝐹2, 𝐹3) (𝑜𝑟 (𝐹1, 𝐹2, 𝐹3)
𝑇): 𝐵 × 𝐵 × 𝐵 → 𝐵 × 𝐵 × 𝐵 in 𝐵 × 𝐵 × 𝐵, if 

for any (𝑢𝑗, 𝑣𝑗 , 𝑤𝑗) ∈ 𝐵 × 𝐵 × 𝐵 (𝑗 = 1,2), (𝑢1, 𝑣1, 𝑤1) ∝ (𝑢2, 𝑣2, 𝑤2) and there exists a constant 𝜁 ∈ (0,1) such that  

𝑃(𝐹1, 𝐹2, 𝐹3)(𝑢1, 𝑣1, 𝑤1) ⊕ (𝐹1, 𝐹2, 𝐹3)(𝑢2, 𝑣2, 𝑤2)𝑃 ≤ 𝜁𝑃(𝑢1, 𝑣1, 𝑤1) ⊕ (𝑢2, 𝑣2, 𝑤2)𝑃, 

then �⃗� = (𝐹1, 𝐹2, 𝐹3) has a fixed point in ordered product Banach space.  
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Lemma 2.1 (4,15,18,38) Let ⊕ and 𝑒 be the XOR and XNOR operations, respectively. Then the following relations 

hold:  

1. 𝑤𝑒𝑤 = 0, 𝑤𝑒𝑣 = 𝑣𝑒𝑤 = −(𝑤 ⊕ 𝑣) = −(𝑣 ⊕𝑤);  

2. (𝜆𝑤)⊕ (𝜆𝑣) = |𝜆|(𝑤 ⊕ 𝑣);  

3. if 𝑤 ∝ 𝑣, then 𝑤⊕ 𝑣 = 0 if and only if 𝑤 = 𝑣;  

4. (𝑢 + 𝑣)𝑒(𝑤 + 𝑧) ≥ (𝑢𝑒𝑤) + (𝑣𝑒𝑧);  

5. if 𝑤, 𝑢 and 𝑣 are comparative to each other, then (𝑤 ⊕ 𝑢) ≤ 𝑤 ⊕ 𝑣 + 𝑣 ⊕ 𝑢;  

6. if 𝑤 ∝ 𝑣, then ((𝑤 ⊕ 0)⊕ (𝑣 ⊕ 0)) ≤ (𝑤 ⊕ 𝑣)⊕ 0 = 𝑤 ⊕ 𝑣;  

7. (𝑙𝑤) ⊕ (𝑚𝑤) = |𝑙 − 𝑚|𝑤 = (𝑙 ⊕ 𝑚)𝑤, for all  𝑢, 𝑣, 𝑤, 𝑧 ∈ 𝐵 and 𝑙, 𝑚, 𝜆 ∈ 𝑅.  

We construct the following example in support of restricted accretive mapping and 𝐽 -restricted accretive 

mapping.  

Example 2.1 Let 𝐵 = 𝑅 and the single-valued mapping 𝐽: 𝐵 → 𝐵 is defined by  

𝐽(𝑤) =
1

2
−
𝑤

3
, ∀ 𝑤 ∈ 𝐵. 

We can obtain the following expressions: 𝐽(𝑤) + 𝐼(𝑤) =
1

2
+

2𝑤

3
 and  

 𝐽(𝑤) ⊕ 𝐽(𝑣) = (
1

2
−

𝑤

3
) ⊕ (

1

2
−

𝑣

3
) 

 = ((
1

2
−

𝑤

3
) − (

1

2
−

𝑣

3
)) ∨ ((

1

2
−

𝑣

3
) − (

1

2
−

𝑤

3
)) 

 = (
𝑤

3
−

𝑣

3
) ∨ (

𝑣

3
−

𝑤

3
) 

 = (
𝑤

3
⊕

𝑣

3
) 

 =
1

3
(𝑤 ⊕ 𝑣), 

i.e.,  

𝐽(𝑤) ⊕ 𝐽(𝑣) =
1

3
(𝑤 ⊕ 𝑣).               

Now,  

 (𝐽(𝑤) + 𝐼(𝑤)) ⊕ (𝐽(𝑣) + 𝐼(𝑣)) = (
1

2
+

2𝑤

3
) ⊕ (

1

2
+

2𝑣

3
) 

 ≤ (
2𝑤

3
⊕

2𝑣

3
) 

 =
2

3
(𝑤 ⊕ 𝑣) 

 ≤ (𝑤 ⊕ 𝑣) 

 =
3

4
(𝐽(𝑤) ⊕ 𝐽(𝑣)) +

3

4
(𝑤 ⊕ 𝑣), 

i.e.,  

(𝐽(𝑤) + 𝐼(𝑤)) ⊕ (𝐽(𝑣) + 𝐼(𝑣)) ≤
3

4
(𝐽(𝑤)⊕ 𝐽(𝑣)) +

3

4
(𝑤 ⊕ 𝑣). 
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Therefore, 𝐽 is restricted accretive mapping with constants 𝜉1 =
3

4
 and 𝜉2 =

3

4
, respectively. 

Suppose the mapping 𝐴:𝐵 → 𝐵 is defined by  

𝐴(𝑤) =
1

4
−
𝑤

6
, ∀ 𝑤 ∈ 𝐵. 

Now,  

𝐴(𝑤) ∧ 𝐽(𝑤) = (
1

2
−
𝑤

3
) ∧ (

1

4
−
𝑤

6
) = 𝑖𝑛𝑓{

1

2
−
𝑤

3
,
1

4
−
𝑤

6
} =

1

4
−
𝑤

6
. 

and  

(𝐴(𝑤) ∧ 𝐽(𝑤)) ⊕ (𝐴(𝑣) ∧ 𝐽(𝑣)) =
5

6
(𝑤 ⊕ 𝑣). 

 (𝐴(𝑤) ∧ 𝐽(𝑤) + 𝐼(𝑤)) ⊕ (𝐴(𝑣) ∧ 𝐽(𝑣) + 𝐼(𝑣)) = (
1

4
+

5𝑤

6
) ⊕ (

1

4
+

5𝑣

6
) 

 = ((
1

4
+

5𝑤

6
) − (

1

4
+

5𝑣

6
)) 

 ∨ ((
1

4
+

5𝑤

6
) − (

1

4
+

5𝑣

6
)) 

 = (
5𝑤

6
−

5𝑣

6
) ∨ (

5𝑣

6
−

5𝑤

6
) 

 =
5

6
(𝑤 ⊕ 𝑣) 

 ≤ (𝑤 ⊕ 𝑣) 

 =
2

5
((𝐴(𝑤) ∧ 𝐽(𝑤)) ⊕ (𝐴(𝑣) ∧ 𝐽(𝑣))) 

 +
2

3
(𝑤 ⊕ 𝑣), 

i.e.,  

(𝐴(𝑤) ∧ 𝐽(𝑤) + 𝐼(𝑤)) ⊕ (𝐴(𝑣) ∧ 𝐽(𝑣) + 𝐼(𝑣)) ≤
2

5
((𝐴(𝑤) ∧ 𝐽(𝑤)) ⊕ (𝐴(𝑣) ∧ 𝐽(𝑣))) +

2

3
(𝑤 ⊕ 𝑣), 

Hence, 𝐴 is 𝐽 -restricted accretive mapping with constants 𝜉1 =
2

5
 and 𝜉2 =

2

3
, respectively.  

3. Formulation of 𝑮𝑺𝑴𝑶𝑽𝑰𝑷 and Existence Result 

For 𝑖 ∈ {1,2,3}, let 𝐵 be a real ordered Banach space and 𝐾 be a normal cone with normal constant 𝛿𝐾, and let 

𝐵 × 𝐵 × 𝐵 be an real ordered product Banach space. Let 𝑃𝑖 , 𝑄𝑖: 𝐵 × 𝐵 × 𝐵 → 𝐵 and 𝑔𝑖 , 𝑓𝑖 , ℎ𝑖: 𝐵 → 𝐵 be the ordered 

single-valued comparison mappings. We consider the generalized system of mixed ordered variational inequalities 

problems involving ⊕ and 𝑒 operations (in short, GSMOVIP): 

For 𝜙1, 𝜙2, 𝜙3 ∈ 𝐵, find (𝑢, 𝑣, 𝑤) ∈ 𝐵 × 𝐵 × 𝐵 such that 

𝑃1(𝑓1(𝑢), 𝑣, 𝑤) + 𝑄1(𝑢, 𝑓2(𝑣), 𝑓3(𝑤)) ≥ 𝜙1

𝑃2(𝑢, 𝑔2(𝑣), 𝑤) ⊕ 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) ≥ 𝜙2

𝑃3(𝑢, 𝑣, ℎ3(𝑤))𝑒𝑄3(ℎ1(𝑢), ℎ2(𝑣), 𝑤) ≥ 𝜙3
}
 
 

 
 

 (3.1) 
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In addition if 𝑃1(𝑓1(𝑢), 𝑣, . ) = 𝑃1(𝑓1(𝑢), 𝑣), 𝑄1(𝑢, 𝑓2(𝑣), . ) = 𝑄1(𝑢, 𝑣), 𝑃2(𝑢, 𝑣, . ) = 𝑃2(𝑢, 𝑣), 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) =

𝑄2(𝑢, 𝑔3(𝑣)), 𝑓2, 𝑓3, 𝑔1, 𝑔2 = 𝐼 (identity mappings) and 𝑃3, 𝑄3 = 0 (zero mappings), it is clear that for suitable choices of 

mappings involved in the formulation of problem (4.1), one can obtain many system of variational inequalities 

problems and variational inequalities studied in recent past [38, 39, 41]. 

Now, we have the following fixed point formulation of our considered GSMOVIP (3.1).  

Lemma 3.1. For 𝑖 ∈ {1,2,3}, let 𝑃𝑖 , 𝑄𝑖 : 𝐵 × 𝐵 × 𝐵 → 𝐵 and 𝑔𝑖 , 𝑓𝑖 , ℎ𝑖: 𝐵 → 𝐵 be the ordered single-valued comparison 

mappings with each other such that 𝑃𝑖  is (𝜅𝑖 , 𝜈𝑖 , 𝜏𝑖) -ordered Lipschitz continuous mapping, 𝑄𝑖  is (𝜅𝑖
′, 𝜈𝑖

′, 𝜏𝑖
′) -ordered 

Lipschitz continuous mapping, 𝑔𝑖 is 𝜇𝑔𝑖-ordered compression mapping, 𝑓𝑖 is 𝜇𝑓𝑖-ordered compression mapping and 

ℎ𝑖 is 𝜇ℎ𝑖-ordered compression mapping, respectively. Then, the GSMOVIP (4.1) has a solution (𝑢, 𝑣, 𝑤) if and only if 

there exist three ordered compressions mappings 𝐽1, 𝐽2 and 𝐽3 such that the vector-valued mapping �⃗� =
(𝐹1(𝑢, 𝑣, 𝑤), 𝐹2(𝑢, 𝑣, 𝑤), 𝐹3(𝑢, 𝑣, 𝑤)): 𝐵 × 𝐵 × 𝐵 → 𝐵 × 𝐵 × 𝐵,  

𝐹1(𝑢, 𝑣, 𝑤) = (𝑃1(𝑓1(𝑢), 𝑣, 𝑤) + 𝑄1(𝑢, 𝑓2(𝑣), 𝑓3(𝑤)) − 𝜙1) ∧ 𝐽1(𝑢) + 𝐼(𝑢)

𝐹2(𝑢, 𝑣, 𝑤) = (𝑃2(𝑢, 𝑔2(𝑣), 𝑤) ⊕ 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) − 𝜙2) ∧ 𝐽2(𝑣) + 𝐼(𝑣)
𝐹3(𝑢, 𝑣, 𝑤) = (𝑃3(𝑢, 𝑣, ℎ3(𝑤))𝑒𝑄3(ℎ1(𝑢), ℎ2(𝑣), 𝑤) − 𝜙3) ∧ 𝐽3(𝑤) + 𝐼(𝑤)

} (3.2) 

has the fixed point (𝑢∗, 𝑣∗, 𝑤∗) in an real ordered product Banach space 𝐵 × 𝐵 × 𝐵, where 𝐼 is identity mapping on 
𝐵.  

Proof. Let (𝑢∗, 𝑣∗, 𝑤∗) be a fixed point of the vector-valued mapping (4.2). Then, obviously (𝑢∗, 𝑣∗, 𝑤∗) is a solution 

of GSMOVIP (4.1). On the other hand, choosing  

𝐽1(𝑢) = (0, 𝑖𝑓 0 ≤ 𝑃1(𝑓1(𝑢), 𝑣, 𝑤) + 𝑄1(𝑢, 𝑓2(𝑣), 𝑓3(𝑤)) − 𝜙1, 𝜍1𝑢 + 𝜌1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

𝐽2(𝑣) = (0, 𝑖𝑓 0 ≤ 𝑃2(𝑢, 𝑔2(𝑣), 𝑤) ⊕ 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) − 𝜙2, 𝜍2𝑣 + 𝜌2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

and 

𝐽3(𝑤) = (0, 𝑖𝑓 0 ≤ 𝑃3(𝑢, 𝑣, ℎ3(𝑤))𝑒𝑄3(ℎ1(𝑢), ℎ2(𝑣), 𝑤) − 𝜙3, 𝜍3𝑤 + 𝜌3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

where 𝜍1, 𝜍2, 𝜍3 ∈ (0,1), and 𝜌1, 𝜌2, 𝜌3 ∈ 𝑅, if (𝑢
∗, 𝑣∗, 𝑤∗) is a solution of GSMOVIP (4.1), then  

(𝑃1(𝑓1(𝑢
∗), 𝑣∗, 𝑤∗) + 𝑄1(𝑢

∗, 𝑓2(𝑣
∗), 𝑓3(𝑤

∗)) − 𝜙1) ∧ 𝐽1(𝑢
∗) + 𝐼(𝑢∗) = 𝑢∗

(𝑃2(𝑢
∗, 𝑔2(𝑣

∗), 𝑤∗) ⊕ 𝑄2(𝑔1(𝑢
∗), 𝑣∗, 𝑔3(𝑤

∗)) − 𝜙2) ∧ 𝐽2(𝑣
∗) + 𝐼(𝑣∗) = 𝑣∗

(𝑃3(𝑢
∗, 𝑣∗, ℎ3(𝑤

∗))𝑒𝑄3(ℎ1(𝑢
∗), ℎ2(𝑣

∗), 𝑤∗) − 𝜙3) ∧ 𝐽3(𝑤
∗) + 𝐼(𝑤∗) = 𝑤∗ } (3.3) 

hold. Therefore, (𝑢∗, 𝑣∗, 𝑤∗) is a fixed point of the vector-valued mapping (3.2), where the mappings 𝐽1, 𝐽2 and 𝐽3 are 

ordered compressions. This completes the proof.  

4. Main Results 

In this section, we discuss the existence and convergence result of the proposed algorithms for GSMOVIP (4.1). 

Theorem 4.1. For 𝑖 ∈ {1,2,3}, let 𝑃𝑖 , 𝑄𝑖: 𝐵 × 𝐵 × 𝐵 → 𝐵 and 𝑔𝑖 , 𝑓𝑖 , ℎ𝑖 , 𝐽𝑖: 𝐵 → 𝐵 be the ordered single-valued 

comparison mappings with each other such that 𝑃𝑖  is (𝜅𝑖 , 𝜈𝑖 , 𝜏𝑖) -ordered Lipschitz continuous mapping, 𝑄𝑖  is (𝜅𝑖
′, 𝜈𝑖

′, 𝜏𝑖
′) 

-ordered Lipschitz continuous mapping, 𝑔𝑖 is 𝜇𝑔𝑖-ordered compression mapping, 𝑓𝑖 is 𝜇𝑓𝑖-ordered compression 

mapping, ℎ𝑖 is 𝜇ℎ𝑖-ordered compression mapping and 𝐽𝑖 is 𝜇𝐽𝑖-ordered compression mapping , respectively. Suppose 

𝑃1 + 𝑄1 − 𝜙1 is a 𝐽1-restricted-accretive mapping with constants (𝜉1, 𝜉2), with respect to first argument, 𝑃2⊕𝑄2 − 𝜙2 

is a 𝐽2-restricted-accretive mapping with constants (𝜌1, 𝜌2), with respect to second argument and 𝑃3𝑒𝑄3 − 𝜙3 is a 𝐽3-

restricted-accretive mapping with constants (𝜎1, 𝜎2), with respect to third argument, respectively. In addition, if 

𝑃𝑖 , 𝑄𝑖 , 𝑔𝑖 , 𝑓𝑖 , ℎ𝑖 , 𝐽𝑖 are compared to each other, the following condition is satisfied:  
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𝛿𝐾𝑚𝑎𝑥{ 𝜉1((𝜅1𝜇𝑓1 + 𝜅1
′ ) ∨ 𝜇𝐽1 + 𝜉2), 𝜉1(𝜈1 + 𝜈1

′ 𝜇𝑓2), 𝜉1(𝜏1 + 𝜏1
′ 𝜇𝑓3),       

  𝜌1(𝜅2⊕ 𝜅2
′ 𝜇𝑔1), 𝜌1((𝜈2𝜇𝑔2 ⊕𝜈2

′ ) ∨ 𝜇𝐽2 + 𝜌2), 𝜌1(𝜏2⊕ 𝜏2
′ 𝜇𝑔3),

         𝜎1(𝜅3⊕𝜅3
′ 𝜇ℎ1), 𝜎1(𝜈3⊕ 𝜈3

′ 𝜇ℎ2), 𝜎1((𝜏3𝜇ℎ3 ⊕ 𝜏3
′ ) ∨ 𝜇𝐽3 + 𝜎2)} < 1

} (4.1) 

holds. then the GSMOVIP (4.1) admits a solution (𝑢∗, 𝑣∗, 𝑤∗) which is a fixed point of the vector-valued mapping �⃗� =

(𝐹1(𝑢, 𝑣, 𝑤), 𝐹2(𝑢, 𝑣, 𝑤), 𝐹3(𝑢, 𝑣, 𝑤)) in an real ordered product Banach space 𝐵 × 𝐵 × 𝐵.  

Proof. Let 𝐵 be a real ordered Banach space, and let 𝐵 × 𝐵 × 𝐵 be an ordered product real Banach space. Setting  

𝐹1(𝑢, 𝑣, 𝑤) = (𝑃1(𝑓1(𝑢), 𝑣, 𝑤) + 𝑄1(𝑢, 𝑓2(𝑣), 𝑓3(𝑤)) − 𝜙1) ∧ 𝐽1(𝑢) + 𝐼(𝑢)

𝐹2(𝑢, 𝑣, 𝑤) = (𝑃2(𝑢, 𝑔2(𝑣), 𝑤) ⊕ 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) − 𝜙2) ∧ 𝐽2(𝑣) + 𝐼(𝑣)
𝐹3(𝑢, 𝑣, 𝑤) = (𝑃3(𝑢, 𝑣, ℎ3(𝑤))𝑒𝑄3(ℎ1(𝑢), ℎ2(𝑣), 𝑤) − 𝜙3) ∧ 𝐽3(𝑤) + 𝐼(𝑤)

} (4.2) 

Since 𝑃1 + 𝑄1 − 𝜙1 is a 𝐽1-restricted-accretive mapping with (𝜉1, 𝜉2), 𝑃2⊕𝑄2 − 𝜙2 is a 𝐽2-restricted-accretive 

mapping with (𝜌1, 𝜌2), and 𝑃3𝑒𝑄3 − 𝜙3 is a 𝐽3-restricted-accretive mapping with (𝜎1, 𝜎2), and 𝑃𝑖  is (𝜅𝑖 , 𝜈𝑖 , 𝜏𝑖) -ordered 

Lipschitz continuous mapping and 𝑄𝑖  is (𝜅𝑖
′, 𝜈𝑖

′, 𝜏𝑖
′) -ordered Lipschitz continuous mapping, respectively. For any given 

𝑢𝑗 , 𝑣𝑗 , 𝑤𝑗 ∈ 𝐵, (𝑗 = 1,2) which are compared to each other, by Lemma 3.1 and Definition 3.1, we can obtain the 

following inequalities:  

 0 ≤ 𝐹1(𝑢1, 𝑣1, 𝑤1) ⊕ 𝐹1(𝑢2, 𝑣2, 𝑤2) 

 = ((𝑃1(𝑓1(𝑢1), 𝑣1, 𝑤1) + 𝑄1(𝑢1, 𝑓2(𝑣1), 𝑓3(𝑤1)) − 𝜙1) ∧ 𝐽1(𝑢1) + 𝐼(𝑢1)) 

 ⊕ ((𝑃1(𝑓1(𝑢2), 𝑣2, 𝑤2) + 𝑄1(𝑢2, 𝑓2(𝑣2), 𝑓3(𝑤2)) − 𝜙1) ∧ 𝐽1(𝑢2) + 𝐼(𝑢2)) 

 ≤ 𝜉1(((𝑃1(𝑓1(𝑢1), 𝑣1, 𝑤1) + 𝑄1(𝑢1, 𝑓2(𝑣1), 𝑓3(𝑤1)) − 𝜙1) ∧ 𝐽1(𝑢1)) 

 ⊕ ((𝑃1(𝑓1(𝑢2), 𝑣2, 𝑤2) + 𝑄1(𝑢2, 𝑓2(𝑣2), 𝑓3(𝑤2)) − 𝜙1) ∧ 𝐽1(𝑢2))) + 𝜉2(𝑢1⊕𝑢2) 

 ≤ 𝜉1(((𝑃1(𝑓1(𝑢1), 𝑣1, 𝑤1) + 𝑄1(𝑢1, 𝑓2(𝑣1), 𝑓3(𝑤1))) ⊕ (𝑃1(𝑓1(𝑢2), 𝑣2, 𝑤2) 

 +𝑄1(𝑢2, 𝑓2(𝑣2), 𝑓3(𝑤2)))) ∨ (𝐽1(𝑢1) ⊕ 𝐽1(𝑢2))) + 𝜉2(𝑢1⊕𝑢2) 

 ≤ 𝜉1((𝑃1(𝑓1(𝑢1), 𝑣1, 𝑤1) ⊕ 𝑃1(𝑓1(𝑢2), 𝑣2, 𝑤2) + 𝑄1(𝑢1, 𝑓2(𝑣1), 𝑓3(𝑤1)) 

 ⊕𝑄1(𝑢2, 𝑓2(𝑣2), 𝑓3(𝑤2))) ∨ (𝜇𝐽1(𝑢1⊕𝑢2))) + 𝜉2(𝑢1⊕ 𝑢2) 

 ≤ 𝜉1((𝜅1𝜇𝑓1(𝑢1⊕𝑢2) + 𝜈1(𝑣1⊕𝑣2) + 𝜏1(𝑤1⊕𝑤2)) + (𝜅1
′ (𝑢1⊕𝑢2) 

 +𝜈1
′ 𝜇𝑓2(𝑣1⊕ 𝑣2) + 𝜏1

′ 𝜇𝑓3(𝑤1⊕𝑤2))) ∨ (𝜇𝐽1(𝑢1⊕𝑢2))) + 𝜉2(𝑢1⊕𝑢2) 

 ≤ 𝜉1(((𝜅1𝜇𝑓1 + 𝜅1
′ )(𝑢1⊕𝑢2) + (𝜈1 + 𝜈1

′ 𝜇𝑓2)(𝑣1⊕𝑣2) 

 +(𝜏1 + 𝜏1
′ 𝜇𝑓3)(𝑤1⊕𝑤2)) ∨ (𝜇𝐽1(𝑢1⊕𝑢2))) + 𝜉2(𝑢1⊕ 𝑢2) 

 ≤ 𝜉1((𝜅1𝜇𝑓1 + 𝜅1
′ ) ∨ 𝜇𝐽1 + 𝜉2)(𝑢1⊕𝑢2) + 𝜉1(𝜈1 + 𝜈1

′ 𝜇𝑓2)(𝑣1⊕𝑣2) 

 +𝜉1(𝜏1 + 𝜏1
′ 𝜇𝑓3)(𝑤1⊕𝑤2) 

 ≤ ϒ1(𝑢1⊕𝑢2) + ϒ2(𝑣1⊕𝑣2) + ϒ3(𝑤1⊕𝑤2),          (4.3) 

where ϒ1 = 𝜉1((𝜅1𝜇𝑓1 + 𝜅1
′ ) ∨ 𝜇𝐽1 + 𝜉2), ϒ2 = 𝜉1(𝜈1 + 𝜈1

′𝜇𝑓2) and ϒ3 = 𝜉1(𝜏1 + 𝜏1
′ 𝜇𝑓3). 

Using the same argument as for (4.3), we calculate  

 0 ≤ 𝐹2(𝑢1, 𝑣1, 𝑤1) ⊕ 𝐹2(𝑢2, 𝑣2, 𝑤2) 

 = ((𝑃2(𝑢1, 𝑔2(𝑣1), 𝑤1) ⊕ 𝑄2(𝑔1(𝑢1), 𝑣1, 𝑔3(𝑤1)) − 𝜙2) ∧ 𝐽2(𝑣1) + 𝐼(𝑣1)) 
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 ⊕ ((𝑃2(𝑢2, 𝑔2(𝑣2), 𝑤2) ⊕ 𝑄2(𝑔1(𝑢2), 𝑣2, 𝑔3(𝑤2)) − 𝜙2) ∧ 𝐽2(𝑣2) + 𝐼(𝑣2)) 

 ≤ 𝜌1(((𝑃2(𝑢1, 𝑔2(𝑣1), 𝑤1) ⊕ 𝑄2(𝑔1(𝑢1), 𝑣1, 𝑔3(𝑤1)) − 𝜙2) ∧ 𝐽2(𝑣2)) 

 ⊕ ((𝑃2(𝑢2, 𝑔2(𝑣2), 𝑤2) ⊕ 𝑄2(𝑔1(𝑢2), 𝑣2, 𝑔3(𝑤2)) − 𝜙2) ∧ 𝐽2(𝑣2))) + 𝜌2(𝑣1⊕ 𝑣2) 

 ≤ 𝜌1(((𝑃2(𝑢1, 𝑔2(𝑣1), 𝑤1) ⊕ 𝑄2(𝑔1(𝑢1), 𝑣1, 𝑔3(𝑤1))) ⊕ (𝑃2(𝑢2, 𝑔2(𝑣2), 𝑔2(𝑤2)) 

 ⊕𝑄2(𝑔1(𝑢2), 𝑣2, 𝑔3(𝑤2)))) ∨ (𝐽2(𝑣1) ⊕ 𝐽2(𝑣2))) + 𝜌2(𝑣1⊕𝑣2) 

 ≤ 𝜌1(((𝑃1(𝑢1, 𝑔2(𝑣1), 𝑤1) ⊕ 𝑃1(𝑢2, 𝑔2(𝑣2), 𝑤2)) ⊕ (𝑄1(𝑔1(𝑢1), 𝑣1, 𝑔3(𝑤1)) 

 ⊕𝑄2(𝑔1(𝑢2), 𝑣2, 𝑔3(𝑤2)))) ∨ (𝜇𝐽2(𝑣1⊕𝑣2))) + 𝜌2(𝑣1⊕ 𝑣2) 

 ≤ 𝜌1(((𝜅2(𝑢1⊕𝑢2) + 𝜈2𝜇𝑔2(𝑣1⊕ 𝑣2) + 𝜏2(𝑤1⊕𝑤2)) ⊕ (𝜅2
′ 𝜇𝑔1(𝑢1⊕𝑢2) 

 +𝜈2
′ (𝑣1⊕ 𝑣2) + 𝜏2

′ 𝜇𝑔3(𝑤1⊕𝑤2))) ∨ (𝜇𝐽2(𝑣1⊕𝑣2))) + 𝜌2(𝑣1⊕ 𝑣2) 

 ≤ 𝜌1(((𝜅2⊕𝜅2
′ 𝜇𝑔1)(𝑢1⊕𝑢2) + (𝜈2𝜇𝑔2 ⊕𝜈2

′ )(𝑣1⊕𝑣2) 

 +(𝜏2⊕ 𝜏2
′ 𝜇𝑔3)(𝑤1⊕𝑤2)) ∨ (𝜇𝐽2(𝑣1⊕𝑣2))) + 𝜌2(𝑣1⊕ 𝑣2) 

 ≤ 𝜌1(𝜅2⊕𝜅2
′ 𝜇𝑔1)(𝑢1⊕𝑢2) + 𝜌1((𝜈2𝜇𝑔2 ⊕𝜈2

′ ) ∨ 𝜇𝐽2 + 𝜌2)(𝑣1⊕𝑣2) 

 +𝜌1(𝜏2⊕ 𝜏2
′ 𝜇𝑔3)(𝑤1⊕𝑤2) 

 ≤ 𝛹1(𝑢1⊕𝑢2) + 𝛹2(𝑣1⊕ 𝑣2) + 𝛹3(𝑤1⊕𝑤2),          (4.4) 

where 𝛹1 = 𝜌1(𝜅2⊕ 𝜅2
′𝜇𝑔1), 𝛹2 = 𝜌1((𝜈2𝜇𝑔2 ⊕ 𝜈2

′ ) ∨ 𝜇𝐽2 + 𝜌2) and 𝛹3 = 𝜌1(𝜏2⊕ 𝜏2
′ 𝜇𝑔3). 

Using the same argument as for (4.3), we calculate  

 0 ≤ 𝐹3(𝑢1, 𝑣1, 𝑤1) ⊕ 𝐹3(𝑢2, 𝑣2, 𝑤2) 

 = ((𝑃3(𝑢1, 𝑣1, ℎ3(𝑤1))𝑒𝑄3(ℎ1(𝑢1), ℎ2(𝑣1), 𝑤1) − 𝜙3) ∧ 𝐽3(𝑤1) + 𝐼(𝑤1)) 

 ⊕ ((𝑃3(𝑢2, 𝑣2, ℎ3(𝑤2))𝑒𝑄3(ℎ1(𝑢2), ℎ2(𝑣2), 𝑤2) − 𝜙3) ∧ 𝐽3(𝑤2) + 𝐼(𝑤2)) 

 ≤ 𝜎1(((𝑃3(𝑢1, 𝑣1, ℎ3(𝑤1))𝑒𝑄3(ℎ1(𝑢1), ℎ2(𝑣1), 𝑤1) − 𝜙3) ∧ 𝐽3(𝑤2)) 

 ⊕ ((𝑃3(𝑢2, 𝑣2, ℎ3(𝑤2))𝑒𝑄3(ℎ1(𝑢2), ℎ2(𝑣2), 𝑤2) − 𝜙3) ∧ 𝐽3(𝑤2))) + 𝜎2(𝑤1⊕𝑤2) 

 ≤ 𝜎1(((𝑃3(𝑢1, 𝑣1, ℎ3(𝑤1))𝑒𝑄3(ℎ1(𝑢1), ℎ2(𝑣1), 𝑤1)) ⊕ (𝑃3(𝑢2, 𝑣2, ℎ2(𝑤2)) 

 𝑒𝑄3(ℎ1(𝑢2), ℎ2(𝑣2), 𝑤2))) ∨ (𝐽3(𝑤1) ⊕ 𝐽3(𝑤2))) + 𝜎2(𝑤1⊕𝑤2) 

 ≤ 𝜎1((| − 1|((𝑃3(𝑢1, 𝑣1, ℎ3(𝑤1)) ⊕ 𝑄3(ℎ1(𝑢1), ℎ2(𝑣1), 𝑤1)) ⊕ (𝑃3(𝑢2, 𝑣2, ℎ2(𝑤2)) 

 ⊕𝑄3(ℎ1(𝑢2), ℎ2(𝑣2), 𝑤2)))) ∨ (𝐽3(𝑤1) ⊕ 𝐽3(𝑤2))) + 𝜎2(𝑤1⊕𝑤2) 

 ≤ 𝜎1(((𝑃3(𝑢1, 𝑣1, ℎ3(𝑤1)) ⊕ 𝑃3(𝑢2, 𝑣2, ℎ3(𝑤2))) ⊕ (𝑄3(ℎ1(𝑢1), ℎ2(𝑣1), 𝑤1) 

 ⊕𝑄3(ℎ1(𝑢2), ℎ2(𝑣2), 𝑤2))) ∨ (𝜇𝐽3(𝑤1⊕𝑤2))) + 𝜎2(𝑤1⊕𝑤2) 

 ≤ 𝜎1(((𝜅3(𝑢1⊕𝑢2) + 𝜈3(𝑣1⊕𝑣2) + 𝜏3𝜇ℎ3(𝑤1⊕𝑤2)) ⊕ (𝜅3
′ 𝜇ℎ1(𝑢1⊕𝑢2) 

 +𝜈3
′ 𝜇ℎ2(𝑣1⊕𝑣2) + 𝜏3

′ (𝑤1⊕𝑤2))) ∨ (𝜇𝐽3(𝑤1⊕𝑤2))) + 𝜎2(𝑤1⊕𝑤2) 

 ≤ 𝜎1(((𝜅3⊕𝜅3
′ 𝜇ℎ1)(𝑢1⊕𝑢2) + (𝜈3⊕ 𝜈3

′ 𝜇ℎ2)(𝑣1⊕𝑣2) 

 +(𝜏3𝜇ℎ3 ⊕ 𝜏3
′ )(𝑤1⊕𝑤2)) ∨ (𝜇𝐽3(𝑤1⊕𝑤2))) + 𝜎2(𝑤1⊕𝑤2) 

 ≤ 𝜎1(𝜅3⊕ 𝜅3
′ 𝜇ℎ1)(𝑢1⊕𝑢2) + 𝜎1((𝜈3⊕𝜈3

′ 𝜇ℎ2)(𝑣1⊕𝑣2) 
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 +𝜎1((𝜏3𝜇ℎ3 ⊕ 𝜏3
′ ) ∨ 𝜇𝐽3 + 𝜎2)(𝑤1⊕𝑤2) 

 ≤ 𝛺1(𝑢1⊕𝑢2) + 𝛺2(𝑣1⊕ 𝑣2) + 𝛺3(𝑤1⊕𝑤2).          (4.5) 

where 𝛺1 = 𝜎1(𝜅3⊕ 𝜅3
′𝜇ℎ1), 𝛺2 = 𝜎1((𝜈3⊕ 𝜈3

′𝜇ℎ2) and 𝛺3 = 𝜎1((𝜏3𝜇ℎ3 ⊕ 𝜏3
′ ) ∨ 𝜇𝐽3 + 𝜎2). 

Combining (4.3), (4.4) and (4.5), we have  

0 ≤ �⃗�(𝑢1, 𝑣1, 𝑤1) ⊕ �⃗�(𝑢2, 𝑣2, 𝑤2) = (𝐹1, 𝐹2, 𝐹3)(𝑢1, 𝑣1, 𝑤1) ⊕ (𝐹1, 𝐹2, 𝐹3)(𝑢2, 𝑣2, 𝑤2) ≤ 𝛷((𝑢1, 𝑣1, 𝑤1) ⊕ (𝑢2, 𝑣2, 𝑤2)),   (4.6) 

where  

𝛷 = (
ϒ1 ϒ2 ϒ3
𝛹1 𝛹2 𝛹3
𝛺1 𝛺2 𝛺3

) 

By Definition 2.1 (i), we have  

‖�⃗�(𝑢1, 𝑣1, 𝑤1) ⊕ �⃗�(𝑢2, 𝑣2, 𝑤2)‖ = ‖(𝐹1, 𝐹2, 𝐹3)(𝑢1, 𝑣1, 𝑤1) ⊕ (𝐹1, 𝐹2, 𝐹3)(𝑢2, 𝑣2, 𝑤2)‖ 
(4.7) 

≤ 𝛿𝐾‖𝛷‖ ‖((𝑢1, 𝑣1, 𝑤1) ⊕ (𝑢2, 𝑣2, 𝑤2))‖, 

where ‖𝛷‖ = 𝑚𝑎𝑥{ ϒ1, ϒ2, ϒ3, 𝛹1 , 𝛹2, 𝛹3, 𝛺1, 𝛺2, 𝛺3} and 𝛿𝐾 is a normal constant of 𝐾. It follows from (4.7) and the 

assumption condition (4.1) that 0 < 𝛿𝐾𝑃𝛷𝑃 < 1, and hence the vector-valued mapping  

 (𝐹1, 𝐹2, 𝐹3)
𝑇 = ((𝑃1(𝑓1(. ), . , . ) + 𝑄1(. , 𝑓2(. ), 𝑓3(. )) − 𝜙1) ∧ 𝐽1(. ) + 𝐼(. ), 

 (𝑃2(. , 𝑔2(. ), . ) ⊕ 𝑄2(𝑔1(. ), . , 𝑔3(. )) − 𝜙2) ∧ 𝐽2(. ) + 𝐼(. ), 

 (𝑃3(. , . , ℎ3(. ))𝑒𝑄3(ℎ1(. ), ℎ2(. ), . ) − 𝜙3) ∧ 𝐽3(. ) + 𝐼(. ))
𝑇  

has a fixed point (𝑢∗, 𝑣∗, 𝑤∗) for Lemma 4.1, in an ordered product Banach space 𝐵 × 𝐵 × 𝐵, which is a solution for 

GSMOVIP (4.1) by Lemma 4.1. this completes the proof.  

Theorem 4.2. Suppose all the mappings 𝑃𝑖 , 𝑄𝑖 , 𝑔𝑖 , 𝑓𝑖 , ℎ𝑖 and 𝐽𝑖 are similar as in Theorem 4.1 such that all the 

hypotheses of Theorem 4.1 are satisfied. Besides, admit that the following assumptions hold:  

𝑚𝑎𝑥{ 𝜉1((𝜅1𝜇𝑓1 + 𝜅1
′ ) ∨ 𝜇𝐽1 + 𝜉2), 𝜉1(𝜈1 + 𝜈1

′ 𝜇𝑓2), 𝜉1(𝜏1 + 𝜏1
′ 𝜇𝑓3),           

 𝜌1(𝜅2⊕𝜅2
′ 𝜇𝑔1), 𝜌1((𝜈2𝜇𝑔2 ⊕ 𝜈2

′ ) ∨ 𝜇𝐽2 + 𝜌2), 𝜌1(𝜏2⊕ 𝜏2
′ 𝜇𝑔3), 𝜎1(𝜅3⊕ 𝜅3

′ 𝜇ℎ1),

𝜎1(𝜈3⊕ 𝜈3
′ 𝜇ℎ2), 𝜎1((𝜏3𝜇ℎ3 ⊕ 𝜏3

′ ) ∨ 𝜇𝐽3 + 𝜎2)} < 𝑚𝑖𝑛{
1

𝛿𝐾
, 1}

}
 
 

 
 

 (4.8) 

Then the iterative sequences {(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛)} generated by the following algorithm:  

𝑢𝑛+1 = (1 − 𝛼)𝑢𝑛 + 𝛼(𝑃1(𝑓1(𝑢𝑛), 𝑣𝑛 , 𝑤𝑛) + 𝑄1(𝑢𝑛, 𝑓2(𝑣𝑛), 𝑓3(𝑤𝑛)) − 𝜙1) ∧ 𝐽1(𝑢𝑛)

+𝐼(𝑢𝑛)

𝑣𝑛+1 = (1 − 𝛽)𝑣𝑛 + 𝛽(𝑃2(𝑢𝑛, 𝑔2(𝑣𝑛), 𝑤𝑛) ⊕ 𝑄2(𝑔1(𝑢𝑛), 𝑣𝑛 , 𝑔3(𝑤𝑛)) − 𝜙2) ∧ 𝐽2(𝑣𝑛)
+𝐼(𝑣𝑛)

𝑤𝑛+1 = (1 − 𝛾)𝑤𝑛 + 𝛾(𝑃3(𝑢𝑛 , 𝑣𝑛, ℎ3(𝑤𝑛))𝑒𝑄3(ℎ1(𝑢𝑛), ℎ2(𝑣𝑛), 𝑤𝑛) − 𝜙3) ∧ 𝐽3(𝑤𝑛)

+𝐼(𝑤𝑛) }
 
 

 
 

 (4.9) 

for any 𝑢0, 𝑣0, 𝑤0 ∈ 𝐵, 𝑢0 ∝ 𝑢1, 𝑣0 ∝ 𝑣1, 𝑤0 ∝ 𝑤1, (𝑢0, 𝑣0, 𝑤0) ∝ (𝑢1, 𝑣1, 𝑤1) and 0 < 𝛼, 𝛽, 𝛾 < 1, converges strongly to 

(𝑢∗, 𝑣∗, 𝑤∗), which is a solution of GSMOVIP (4.1).  

Proof. Let the assumption conditions in Theorem 4.1 hold. For any given 𝑢0, 𝑣0, 𝑤0 ∈ 𝐵, and 𝑢0 ∝ 𝑢1, 𝑣0 ∝ 𝑣1, 𝑤0 ∝

𝑤1, (𝑢0, 𝑣0, 𝑤0) ∝ (𝑢1, 𝑣1, 𝑤1), setting  
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𝐹1(𝑢, 𝑣, 𝑤) = (𝑃1(𝑓1(𝑢), 𝑣, 𝑤) + 𝑄1(𝑢, 𝑓2(𝑣), 𝑓3(𝑤)) − 𝜙1) ∧ 𝐽1(𝑢) + 𝐼(𝑢)
𝐹2(𝑢, 𝑣, 𝑤) = (𝑃2(𝑢, 𝑔2(𝑣), 𝑤) ⊕ 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) − 𝜙2) ∧ 𝐽2(𝑣) + 𝐼(𝑣)

   𝐹3(𝑢, 𝑣, 𝑤) = (𝑃3(𝑢, 𝑣, ℎ3(𝑤))𝑒𝑄3(ℎ1(𝑢), ℎ2(𝑣), 𝑤) − 𝜙3) ∧ 𝐽3(𝑤) + 𝐼(𝑤),
} (4.10) 

then for any 0 < 𝛼, 𝛽, 𝛾 < 1, by algorithm (4.9), and (4.3)-(4.5), we have  

 0 ≤ 𝑢𝑛+1⊕𝑢𝑛 

 = [(1 − 𝛼)𝑢𝑛 + 𝛼𝐹1(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛)] ⊕ [(1 − 𝛼)𝑢𝑛−1 + 𝛼𝐹1(𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)] 

 ≤ (1 − 𝛼)(𝑢𝑛⊕𝑢𝑛−1) + 𝛼(𝐹1(𝑢𝑛 , 𝑣𝑛, 𝑤𝑛) ⊕ 𝐹1(𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)) 

 ≤ (1 − 𝛼)(𝑢𝑛⊕𝑢𝑛−1) + 𝛼(ϒ1(𝑢𝑛⊕𝑢𝑛−1) + ϒ2(𝑣𝑛⊕𝑣𝑛−1) + ϒ3(𝑤𝑛⊕𝑤𝑛−1)) 

 ≤ (1 − 𝛼(1 − ϒ1))(𝑢𝑛⊕ 𝑢𝑛−1) + 𝛼ϒ2(𝑣𝑛⊕ 𝑣𝑛−1) + ϒ3(𝑤𝑛⊕𝑤𝑛−1).     (4.11) 

In similar, we have  

 0 ≤ 𝑣𝑛+1⊕ 𝑣𝑛 

 = [(1 − 𝛽)𝑣𝑛 + 𝛽𝐹2(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛)] ⊕ [(1 − 𝛽)𝑣𝑛−1 + 𝛽𝐹2(𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)] 

 ≤ (1 − 𝛽)(𝑣𝑛⊕ 𝑣𝑛−1) + 𝛽(𝐹2(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛) ⊕ 𝐹2(𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)) 

 ≤ (1 − 𝛽)(𝑣𝑛⊕ 𝑣𝑛−1) + 𝛽(𝛹1(𝑢𝑛⊕𝑢𝑛−1) + 𝛹2(𝑣𝑛⊕𝑣𝑛−1) + 𝛹3(𝑤𝑛⊕𝑤𝑛−1)) 

 ≤ 𝛽𝛹1(𝑢𝑛⊕𝑢𝑛−1) + (1 − 𝛽(1 − 𝛹2))(𝑣𝑛 ⊕𝑣𝑛−1) + 𝛹3(𝑤𝑛⊕𝑤𝑛−1).     (4.12) 

and  

 0 ≤ 𝑤𝑛+1⊕𝑤𝑛 

 = [(1 − 𝛾)𝑤𝑛 + 𝛽𝐹3(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛)] ⊕ [(1 − 𝛾)𝑤𝑛−1 + 𝛾𝐹3(𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)] 

 ≤ (1 − 𝛾)(𝑤𝑛⊕𝑤𝑛−1) + 𝛾(𝐹3(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛) ⊕ 𝐹3(𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)) 

 ≤ (1 − 𝛾)(𝑤𝑛⊕𝑤𝑛−1) + 𝛾(𝛺1(𝑢𝑛⊕𝑢𝑛−1) + 𝛺2(𝑣𝑛⊕ 𝑣𝑛−1) + 𝛺3(𝑤𝑛 ⊕𝑤𝑛−1)) 

 ≤ 𝛾𝛺1(𝑢𝑛⊕𝑢𝑛−1) + 𝛾𝛺2(𝑣𝑛⊕ 𝑣𝑛−1) + (1 − 𝛾(1 − 𝛺3))(𝑤𝑛⊕𝑤𝑛−1).     (4.13) 

Combining (4.11), (4.12) and (4.13), we have  

(𝑢𝑛+1, 𝑣𝑛+1, 𝑤𝑛+1) ⊕ (𝑢𝑛, 𝑣𝑛 , 𝑤𝑛) ≤ 𝛤((𝑢𝑛, 𝑣𝑛 , 𝑤𝑛) ⊕ (𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)), 

where  

𝛤 = (

1 − 𝛼(1 − ϒ1) 𝛼ϒ2 𝛼ϒ3
𝛽𝛹1 1 − 𝛽(1 − 𝛹2) 𝛽𝛹3
𝛾𝛺1 𝛾𝛺2 1 − 𝛾(1 − 𝛺3)

) 

By Definition 3.1 (i), we have  

𝑃(𝑢𝑛+1, 𝑣𝑛+1, 𝑤𝑛+1) ⊕ (𝑢𝑛, 𝑣𝑛 , 𝑤𝑛)𝑃 ≤ 𝛿𝐾𝑃𝛤𝑃𝑃(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛) ⊕ (𝑢𝑛−1, 𝑣𝑛−1, 𝑤𝑛−1)𝑃, 

where 𝑃𝛤𝑃 = 𝑚𝑎𝑥{ 1 − 𝛼(1 − ϒ1), 𝛼ϒ2, 𝛼ϒ3, 𝛽𝛹1, 1 − 𝛽(1 − 𝛹2), 𝛽𝛹3, 𝛾𝛺1, 𝛾𝛺2, 1 − 𝛾(1 − 𝛺3)} and 𝛿𝐾 is a normal 

constant of 𝐾. It follows from (4.14) and the assumption condition (4.8) that 𝛿𝐾𝑃𝛤𝑃 < 1 is true. Hence the sequence 

(𝑢𝑛, 𝑣𝑛, 𝑤𝑛)
𝑇 → (𝑢∗, 𝑣∗, 𝑤∗) is strongly converges. Since 𝑃𝑖 , 𝑄𝑖 , 𝑔𝑖 , 𝑓𝑖 , ℎ𝑖 and 𝐽𝑖 are ordered compressions, and they are 

comparisons of each other, so that  

(𝑃1(𝑓1(𝑢
∗), 𝑣∗, 𝑤∗) + 𝑄1(𝑢

∗, 𝑓2(𝑣
∗), 𝑓3(𝑤

∗)) − 𝜙1) ∧ 𝐽1(𝑢
∗) + 𝐼(𝑢∗) = 𝑢∗

(𝑃2(𝑢
∗, 𝑔2(𝑣

∗), 𝑤∗) ⊕ 𝑄2(𝑔1(𝑢
∗), 𝑣∗, 𝑔3(𝑤

∗)) − 𝜙2) ∧ 𝐽2(𝑣
∗) + 𝐼(𝑣∗) = 𝑣∗

(𝑃3(𝑢
∗, 𝑣∗, ℎ3(𝑤

∗))𝑒𝑄3(ℎ1(𝑢
∗), ℎ2(𝑣

∗), 𝑤∗) − 𝜙3) ∧ 𝐽3(𝑤
∗) + 𝐼(𝑤∗) = 𝑤∗

} (4.14) 
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hold. Therefore, (𝑢∗, 𝑣∗, 𝑤∗) is a fixed point of the vector-valued mapping  

(𝐹1, 𝐹2, 𝐹3)
𝑇 = ((𝑃1(𝑓1(. ), . , . ) + 𝑄1(. , 𝑓2(. ), 𝑓3(. )) − 𝜙1) ∧ 𝐽1(. ) + 𝐼(. ), 

(𝑃2(. , 𝑔2(. ), . ) ⊕ 𝑄2(𝑔1(. ), . , 𝑔3(. )) − 𝜙2) ∧ 𝐽2(. ) + 𝐼(. ), 

(𝑃3(. , . , ℎ3(. ))𝑒𝑄3(ℎ1(. ), ℎ2(. ), . ) − 𝜙3) ∧ 𝐽3(. ) + 𝐼(. ))
𝑇  

in an ordered product Banach space 𝐵 × 𝐵 × 𝐵, which is a solution for GSMOVIP (4.1) by Lemma 4.1. This 

completes the proof.  

The following numerical example gives the guarantee that all the proposed conditions of Theorem 4.1 are 

satisfied. 

Example 4.1. For each 𝑖 ∈ {1,2,3}, and let 𝐵 = 𝑅, with the usual inner product and norm and 𝐾 = {𝑥 ∈ 𝐻𝑝: 0 ≤ 𝑢 ≤

1} be a normal cone with normal constant 𝛿𝐾 = 1. Let 𝑔𝑖 , 𝑓𝑖 , ℎ𝑖 , 𝐽𝑖: 𝐵 → 𝐵 be the mappings defined by for all 𝑢, 𝑣, 𝑤 ∈ 𝐵  

𝑓1(𝑢) =
𝑢

30
, 𝑓2(𝑣) =

𝑣

20
, 𝑓3(𝑤) =

𝑤

40
, 𝑔1(𝑢) =

𝑢

40
, 𝑔2(𝑣) =

𝑣

30
, 𝑔3(𝑤) =

𝑤

40
, ℎ1(𝑢) =

𝑢

10
, 

ℎ2(𝑣) = −
𝑣

10
+
1

10
, ℎ3(𝑤) =

3𝑤

50
, 𝐽1(𝑢) =

𝑢

12
−
1

24
, 𝐽2(𝑣) =

3𝑣 − 1

45
, 𝐽3(𝑤) =

𝑤

20
−
1

10
. 

Suppose that the mappings 𝑃𝑖: 𝐵 × 𝐵 × 𝐵 → 𝐵 are defined by  

𝑃1(𝑓1(𝑢), 𝑣, 𝑤) =
3

4
𝑓1(𝑢) +

𝑣

20
+
𝑤

5
, 𝑃2(𝑢, 𝑔2(𝑣), 𝑤) =

𝑢

20
+
1

2
𝑔2(𝑣) +

𝑤

30
, 𝑎𝑛𝑑  

𝑃3(𝑢, 𝑣, ℎ3(𝑤)) =
𝑢 + 2𝑣

50
−
1

3
ℎ3(𝑤), ∀ 𝑢, 𝑣, 𝑤 ∈ 𝐵, 

and the mappings 𝑄𝑖 : 𝐵 × 𝐵 × 𝐵 → 𝐵 are defined by  

𝑄1(𝑢, 𝑓2(𝑣), 𝑓3(𝑤)) =
𝑢

40
− 𝑓2(𝑣) − 8𝑓3(𝑤), 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) = 2𝑔1(𝑢) +

𝑣

15
+
4

3
𝑔3(𝑤), 

   𝑎𝑛𝑑    𝑄3(ℎ1(𝑢), ℎ2(𝑣), 𝑤) =
1

5
ℎ1(𝑢) −

2

5
ℎ2(𝑣) +

𝑤

50
+
1

25
, ∀ 𝑢, 𝑣, 𝑤 ∈ 𝐵.                  

Now,  

𝐽1(𝑢1) ⊕ 𝐽1(𝑢2) = (
𝑢1
12
−
1

24
) ⊕ (

𝑢2
12
−
1

24
) ≤ (

𝑢1
12
⊕
𝑢2
12
) + (

1

24
⊕

1

24
) =

1

12
(𝑢1⊕𝑢2) ≤

1

10
(𝑢1⊕𝑢2), 

i.e.,  

𝐽1(𝑢1) ⊕ 𝐽1(𝑢2) ≤
1

10
(𝑢1⊕𝑢2). 

Hence, 𝐽1 is 
1

10
 -ordered compression mapping. In the similar way, it is easy to verify that 𝑓1 is 

1

25
 -ordered 

compression, 𝑓2 is 
1

10
- ordered compression, 𝑓3 is 

1

30
- ordered compression, 𝑔1 is 

1

30
- ordered compression, 𝑔2 is 

1

20
  

-ordered compression, 𝑔3 is 
1

35
 -ordered compression, ℎ1 is 

1

9
 -ordered compression, ℎ2 is 

1

8
 -ordered compression, ℎ3 

is 
2

25
 -ordered compression, 𝐽1 is 

1

10
 -ordered compression, 𝐽2 is 

1

9
 -ordered compression and 𝐽3 is 

1

10
 -ordered 

compression mappings, respectively. In particular for 𝜙1 =
1

40
, 𝜙2 =

1

60
, and 𝜙3 = −

1

125
, we obtain  

 𝐹1(𝑢, 𝑣, 𝑤) = (𝑃1(𝑓1(𝑢), 𝑣, 𝑤) + 𝑄1(𝑢, 𝑓2(𝑣), 𝑓3(𝑤)) − 𝜙1) ∧ 𝐽1(𝑢) + 𝐼(𝑢) 

 = ((
3

4
𝑓1(𝑢) +

𝑣

20
+

𝑤

5
) + (

𝑢

40
− 𝑓2(𝑣) − 8𝑓3(𝑤)) −

1

40
) ∧ (

𝑢

12
−

1

24
) + 𝑢 
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 = ((
𝑢

40
+

𝑣

20
+

𝑤

5
) + (

𝑢

40
−

𝑣

20
−

𝑤

5
) −

1

40
) ∧ (

𝑢

12
−

1

24
) + 𝑢 

 = ((
𝑢

20
−

1

40
) ∧ (

𝑢

12
−

1

24
)) + 𝑢 =

21

20
𝑢 −

1

40
, 

 𝐹2(𝑢, 𝑣, 𝑤) = (𝑃2(𝑢, 𝑔2(𝑣), 𝑤) ⊕ 𝑄2(𝑔1(𝑢), 𝑣, 𝑔3(𝑤)) − 𝜙2) ∧ 𝐽2(𝑣) + 𝐼(𝑣)            

 = ((
𝑢

20
+

1

2
𝑔2(𝑣) +

𝑤

30
) ⊕ (2𝑔1(𝑢) +

𝑣

15
+

4

3
𝑔3(𝑤))) ∧ (

3𝑣−1

45
) + 𝑣 

 = ((
𝑢

20
+

𝑣

60
+

𝑤

30
) ⊕ (

𝑢

20
+

𝑣

15
+

𝑤

30
) −

1

60
) ∧ (

3𝑣−1

45
) + 𝑣 

 = ((
𝑣

20
−

1

60
) ∧ (

3𝑣−1

45
)) + 𝑣 = (

21

20
𝑣 −

1

60
), 

 𝐹3(𝑢, 𝑣, 𝑤) = (𝑃3(𝑢, 𝑣, ℎ3(𝑤))𝑒𝑄3(ℎ1(𝑢), ℎ2(𝑣), 𝑤) − 𝜙3) ∧ 𝐽3(𝑤) + 𝐼(𝑤) 

 = ((
𝑢+2𝑣

50
−

𝑤

50
)𝑒(

𝑢

50
+

2𝑣

50
−

2

50
+

𝑤

50
+

1

25
) +

1

125
) ∧ (

𝑣

15
−

1

75
) + 𝑣 

 = ((−
𝑤

25
+

1

125
) ∧ (

𝑣

15
−

1

75
)) + 𝑤 

 =
24

25
𝑤 +

1

125
. 

Suppose 𝑢1, 𝑣1, 𝑤1, 𝑢2, 𝑣2, 𝑤2 ∈ 𝐵, 𝑢1 ∝ 𝑢2, 𝑣1 ∝ 𝑣2, and 𝑤1 ∝ 𝑤2, we calculate  

 𝑃1(𝑓1(𝑢1), 𝑣1, 𝑤1) ⊕ 𝑃1(𝑓1(𝑢2), 𝑣2, 𝑤2) = (
3

4
𝑓1(𝑢1) +

𝑣1

20
+

𝑤1

5
) ⊕ (

3

4
𝑓1(𝑢2) +

𝑣2

20
+

𝑤2

5
) 

 = (
𝑢1

40
+

𝑣1

20
+

𝑤1

5
) ⊕ (

𝑢2

40
+

𝑣2

20
+

𝑤2

5
) ≤ (

𝑢1

40
⊕

𝑢2

40
) + (

𝑣1

20
⊕

𝑣2

20
) + (

𝑤1

5
⊕

𝑤2

5
) 

 ≤
1

40
(𝑢1⊕𝑢2) +

1

10
(𝑣1⊕𝑣2) +

1

5
(𝑤1⊕𝑤2). 

Hence, 𝑃1 is (
1

40
,
1

10
,
1

5
) -ordered Lipschitz continuous mappings. 

In the similar way, it is easy to verify that 𝑃2 is (
1

10
,
1

30
,
1

15
) -ordered Lipschitz continuous mappings, 𝑃3 is (

1

40
,
1

20
,
1

45
) 

-ordered Lipschitz continuous mappings, 𝑄1 is (
1

30
,
1

15
,
1

4
) -ordered Lipschitz continuous mappings, 𝑄2 is (

1

15
,
1

10
,
1

4
) -

ordered Lipschitz continuous mappings, and 𝑄3 is (
1

45
,
1

20
,
1

40
) -ordered Lipschitz continuous mappings, respectively. 

Also, we can verify that 𝑃1 + 𝑄1 − 𝜙1 is 𝐽1-restricted-accretive mapping with constatnts (
1

2
,
3

5
), with respect to first 

argument, 𝑃2⊕𝑄2 − 𝜙2 is 𝐽2-restricted-accretive mapping with constatnts (
3

5
,
1

2
), with respect to second argument, 

and 𝑃3𝑒𝑄3 − 𝜙3 is 𝐽3-restricted-accretive mapping with constatnts (
1

2
,
1

2
), with respect to third argument, respectively. 

It is also confirmed that assumption (4.1) is satisfied. So, all the conditions of Theorem 4.1 are fulfilled. Therefore, 

(
1

2
,
1

3
,
1

5
) is a fixed point of the vector-valued mapping �⃗� = (𝐹1(. ), 𝐹2(. ), 𝐹3(. )).By Lemma 4.1, (

1

2
,
1

3
,
1

5
) is a solution of 

GSMOVIP (4.1). It is also verified that condition (4.8) is satisfied. Thus, all the assumptions of Theorem 4.2 are fulfilled. 

Let 𝛼 =
1

3
, 𝛽 =

1

2
 and 𝛾𝑛 =

2

3
. Now, we can estimate the sequence {(𝑢𝑛 , 𝑣𝑛, 𝑤𝑛)} by the following schemes:  

 𝑢𝑛+1 =
61

60
𝑢𝑛 −

1

120
 

 𝑣𝑛+1 =
41

40
𝑣𝑛 −

1

32
 

 𝑤𝑛+1 =
73

75
𝑤𝑛 −

2

375
 

It is also verified that condition (4.8) is satisfied. Thus, all the assumptions of Theorem 4.2 are fulfilled. Hence, 

the sequence {(𝑢𝑛, 𝑣𝑛, 𝑤𝑛)} converges strongly to the unique solution (
1

2
,
1

3
,
1

5
) of the GSMOVIP (4.1). 
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All codes are written in MATLAB version 𝑅2019𝑎, we have the following different initial values (𝑢0, 𝑣0, 𝑤0) =

(3.5,4.5,5.5) and (𝑢0, 𝑣0, 𝑤0) = (−4.5, −5.5, −6.5) which shows that the sequence {(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛)} converge to (
1

2
,
1

3
,
1

5
) 

(Table 1, Fig. 1-2). 

Table 1: The values of {(𝒖𝒏, 𝒗𝒏, 𝒘𝒏)} with initial values (𝒖𝟎, 𝒗𝟎, 𝒘𝟎) = (𝟑. 𝟓, 𝟒. 𝟓, 𝟓. 𝟓) and (𝒖𝟎, 𝒗𝟎, 𝒘𝟎) = (−𝟒. 𝟓,−𝟓. 𝟓, −𝟔. 𝟓). 

No. of Iteration (n)  For (𝒖𝟎, 𝒗𝟎, 𝒘𝟎) = (𝟑. 𝟓, 𝟒. 𝟓, 𝟓. 𝟓)  (𝒖𝟎, 𝒗𝟎, 𝒘𝟎) = (−𝟒. 𝟓, −𝟓. 𝟓, −𝟔. 𝟓)  

 𝑢𝑛 𝑣𝑛 𝑤𝑛 𝑢𝑛 𝑣𝑛 𝑤𝑛 

1 3.5000 4.5000 5.5000 -4.500 -5.5000 -6.5000 

2 2.0750 2.5200 2.9820 -2.1250 –2.7300 -3.3180 

3 1.3268 1.4805 1.6600 -0.8781 -1.2757 -1.6474 

4 0.9341 0.9347 0.9660 -0.2235 -0.5122 -0.7704 

5 0.7279 0.6482 0.6016 0.1201 -0.1114 -0.3099 

6 0.6196 0.4978 0.4103 0.3005 0.0989 -0.0682 

7 0.5628 0.4188 0.3099 0.3953 0.2094 0.0586 

8 0.5329 0.3774 0.2572 0.4450 0.2674 0.1253 

9 0.5173 0.3556 0.2295 0.4711 0.2979 0.1602 

10 0.5090 0.3442 0.2150 0.4848 0.3139 0.1786 

11 0.5047 0.3382 0.2073 0.4920 0.3223 0.1882 

12 0.5025 0.3350 0.2033 0.4958 0.3267 0.1933 

13 0.5013 0.3334 0.2012 0.4978 0.3290 0.1960 

15 0.5003 0.3320 0.2008 0.4993 0.3308 0.1981 

17 0.5009 0.3318 0.2005 0.4998 0.3313 0.1987 

20 0.5005 0.3323 0.2002 0.4997 0.3321 0.1989 

23 0.5001 0.3332 0.2001 0.5000 0.3329 0.1999 

25 0.5000 0.3333 0.2000 0.5000 0.3333 0.2000 

 

 

Figure 1: The convergence of {(𝑢𝑛, 𝑣𝑛, 𝑤𝑛)} with initial values (𝑢0, 𝑣0, 𝑤0) = (−4.5,−5.5, −6.5). 
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Figure 2: The convergence of {(𝑢𝑛, 𝑣𝑛 , 𝑤𝑛)} with initial values (𝑢0, 𝑣0, 𝑤0) = (−4.5, −5.5, −6.5). 

5. Conclusion 

In this article, we studied and analyzed a system of mixed ordered variational inequality problems involving XOR 

and XNOR operations in a real ordered product Banach space and discussed the existence of the solution of our 

proposed problem. We discussed the convergence criteria of the iterative sequences which assumes that the 

suggested algorithm converges to the solution of our considered problem. Finally, we demonstrate a numerical 

example that satisfies all the conditions and show the convergence of the proposed algorithm of our main result. 

We remark that our results may be solved by the forward-backward splitting method based on the inertial technique 

with XOR and XNOR operations techniques and other higher dimension spaces. 

Conflict of Interest 

The authors declare that they have no competing interests. 

Funding 

This research received no external funding. 

Acknowledgments 

The researchers would like to thank the associate editor and anonymous reviewers for their constructive 

comments to improve the manuscript. 

Availability of Data and Materials 

Not applicable 

References  

[1] Amann H. On the number of solutions of nonlinear equations in ordered Banch spaces. J Funct Anal. 1972; 11: 346-84. 

https://doi.org/10.1016/0022-1236(72)90074-2  

https://doi.org/10.1016/0022-1236(72)90074-2


Solving System of Mixed Ordered Variational Inequalities Ahmed et al. 

 

151 

[2] Ahmad I, Rahaman M, Ahmad R, Ali I. Convergence analysis and stability of perturbed three-step iterative algorithm for generalized mixed 

ordered quasi-variational inclusion involving XOR operation. Optimization. 2020; 69(4): 821-45. 

https://doi.org/10.1080/02331934.2019.1652910  

[3] Ahmad R, Ahmad I, Rather ZA, Wang Y. Generalized complementarity problems with three class of generalized variational inequalities 

involving ⊕ operation. J Math. 2021; 2021: Article ID 6629203. https://doi.org./10.1155/2021/6629203  

[4] Ahmad I. Three-step iterative algorithm with error terms of convergence and stability analysis for new NOMVIP in ordered Banach spaces. 

Stat Optim Inf Comput. 2022; 10(2): 439-56. https://doi.org/10.19139/soic-2310-5070-990  

[5] Ahmad I, Irfan SS, Farid M, Shukla P. Nonlinear ordered variational inclusion problem involving XOR operation with fuzzy mappings. J 

Inequal Appl. 2020; 36(01): 1-18. https://doi.org/10.1186/s13660-020-2308-z  

[6] Ahmad I, Pang CT, Ahmad R, Ishtyak M. System of Yosida inclusions involving XOR operator. J Nonlinear Math Phy. 2017; 18(5): 831-45. 

[7] Baiocchi C, Capelo A. Variational and quasi-variational inequalities: Applications to free boundary problems. New York: Wiley; 1984.  

[8] Balooee J. Resolvent algorithms for system of generalized nonlinear variational inclusions and fixed point problems. Afr Mat. 2014; 25: 

1023-45. https://doi.org/10.1007/s13370-013-0171-5  

[9] Bella BD. An existence theorem for a class of inclusions. Appl Math Lett. 2000; 13(3): 15-9. 

[10] Bnouhachem A, Noor MA, Rassias TM. Three-step iterative algorithms for mixed variational inequalities. Appl Math Comput. 2006; 183: 

436-46. https://doi.org/10.1016/j.amc.2006.05.086  

[11] Browder FE. Nonlinear variational inequalities and maximal monotone mapinggs in Banach spaces. Math Ann. 1969; 183: 213-31. 

[12] Ceng LC. A subgradient-extragradient method for bilevel equilibrium problems with the constraints of variational inclusion systems and 

fixed point problems. Commun Optim Theory. 2021; 2021: Article ID 4.  

[13] Noor MA. Three-step iterative algorithms for multivaled quasi-variational inclusions. J Math Anal Appl. 2001; 255: 589-604. 

https://doi.org/10.1006/jmaa.2000.7298  

[14] Rockafellar RT. Monotone operators and the proximal point algorithm. SIAM J Control Optim. 1976; 14: 877-98. 

https://doi.org/10.1137/0314056  

[15] Schaefer HH. Banach lattices and positive operators. In Chenciner A, Varadhan SRS, Eds., Grundlehren der mathematischen 

Wissenschaften. Berlin Heidelberg: Springer; 1974. https://doi.org/10.1007/978-3-642-65970-6  

[16] Simson S. From Hahn-Banach to monotonicity, Second Edition, Lecture Notes in Math. New York: Springer; 1693. 

[17] Tan NX. On the existence of solutions of quasivariational inclusion problem. J Optim Theory Appl. 2004; 123: 619-38. 

https://doi.org/10.1007/s10957-004-5726-z  

[18] Du YH. Fixed points of increasing operators in ordered Banach spaces and applications. Appl Anal. 2009; 38: 1-20. 

https://doi.org/10.1080/00036819008839957  

[19] Ding XP. Perturbed proximal point algorithms for generalized quasi variational inclusions. J Math Anal Appl. 1997; 210: 88-101. 

https://doi.org/10.1006/jmaa.1997.5370  

[20] Ding XP, Yao JC, Zeng LC. Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in 

Banach spaces. Comput Math Appl. 2008; 55(6): 669-79. https://doi.org/10.1016/j.camwa.2007.06.004  

[21] Farid M, Ali R, Cholamjiak W. An inertial iterative algorithm to find common solution of a split generalized equilibrium and a variational 

inequality problem in Hilber space. J Math. 2021; 2021: Article ID 3653807. https://doi.org/10.1155/2021/3653807  

[22] Farid M, Cholamjiak, W, Ali, R, Kazmi, KR. A new shrinking projection algorithm for a generalized mixed variational-like inequality problem 

and asymptotically quasi-𝜑 -nonexpansive mapping in a Banach space. Revista de la Real Academia de Ciencias Exactas, Fisicas y 

Naturales - Serie A: Matematicas. 2021; 115(3): Article 114. https://doi.org/10.1007/s13398-021-01049-9  

[23] Farid M, Irfan SS, Ahmad I. Iterative algorithm of split monotone variational inclusion problem for new mappings. Kragujevac J Math. 

2024; 48(4): 493-513. 

[24] Giannessi F, Maugeri A. Variational inequalities and network equilibrium problems. New York: Springer; 1995. 

https://doi.org/10.1007/978-1-4899-1358-6  

[25] Glowinski R, Lions J, Tremolieres R. Numerical analysis of variational inequalities. Amsterdam: North-Holland; 1981. 

[26] Glowinski R, Tallec PL. Augmented Lagrangian and operator spliting methods in nonlinear mechanics. Philadelphia: SIAM; 1989. 

[27] Gwinner J, Raciti F. Random variational inequalities with applications to equilibrium problems under uncertainty. In Cakaj S, Ed., Modeling 

Simulation and Optimization-Tolerance and Optimal Control. InTech; 2010. 

[28] Jeong JU. Generalized set-valued variational inclusions and resolvent equations in Banach spaces. Comput Math Appl. 2004; 47: 1241-7. 

https://doi.org/10.1016/S0898-1221(04)90118-6  

[29] Jung JS. A general iterative algorithm for split variational inclusion problems and fixed point problems of a pseudocontractive mapping. J 

Non Funct Anal. 2022; 2022: 1-13. 

[30] Hassouni A, Moudafi A. A perturbed algorithms for variational inequalities. J Math Anal Appl. 1994; 185(3): 706-12. 

https://doi.org/10.1006/jmaa.1994.1277  

[31] Hieu DV, Quy PK. An inertial modified algorithm for solving variational inequalities. RAIRO Oper Res. 2020; 54: 163-78. 

https://doi.org/10.1051/ro/2018115  

https://doi.org/10.1080/02331934.2019.1652910
https://doi.org./10.1155/2021/6629203
https://doi.org/10.19139/soic-2310-5070-990
https://doi.org/10.1186/s13660-020-2308-z
https://doi.org/10.1007/s13370-013-0171-5
https://doi.org/10.1016/j.amc.2006.05.086
https://doi.org/10.1006/jmaa.2000.7298
https://doi.org/10.1137/0314056
https://doi.org/10.1007/978-3-642-65970-6
https://doi.org/10.1007/s10957-004-5726-z
https://doi.org/10.1080/00036819008839957
https://doi.org/10.1006/jmaa.1997.5370
https://doi.org/10.1016/j.camwa.2007.06.004
https://doi.org/10.1155/2021/3653807
https://doi.org/10.1007/s13398-021-01049-9
https://doi.org/10.1007/978-1-4899-1358-6
https://doi.org/10.1016/S0898-1221(04)90118-6
https://doi.org/10.1006/jmaa.1994.1277
https://doi.org/10.1051/ro/2018115


Ahmed et al.  Journal of Advances in Applied & Computational Mathematics, 10, 2023 

 

152 

[32] Luc DT, Tan NX. Existence conditions in variational inclusions with constraints. Optimization. 2004; 53: 505-15. 

https://doi.org/10.1080/02331930412331327175  

[33] Noor MA. A predictor-corrector algorithm for general variational inequalities. Appl Math Lett. 2001; 14: 53-8. 

https://doi.org/10.1016/S0893-9659(00)00112-9  

[34] Park JY, Jeong JU. A perturbed algorithm of variational inclusions for fuzzy mappings, Fuzzy Sets Sys. 2000; 115(3): 419-24. 

https://doi.org/10.1016/S0165-0114(99)00116-5  

[35] Verma RU. 𝐴 -monotonicity and applications to nonlinear variational inclusion problems. J Appl Math Stoc Anal. 2004; 17(2): 193-95. 

https://doi.org/10.1155/S1048953304403013  

[36] Wang F. A new iterative method for the split common fixed point problem in Hilbert spaces. Optimization. 2017; 66: 407-15. 

https://doi.org/10.1080/02331934.2016.1274991  

[37] Zhu LJ, Yao Y. Algorithms for approximating solutions of split variational inclusion and fixed-point problems. Mathematics. 2023; 11(3): 

641. https://doi.org/10.3390/math11030641  

[38] Li HG. Approximation solution for a new class general nonlinear ordered variatinal inequalities and ordered equations in ordered Banach 

space. Nonlinear Anal Forum. 2009; 14: 89-97. 

[39] Li HG. Approximation solution for generalized nonlinear ordered variatinal inequality and ordered equations in ordered Banach space. 

Nonlinear Anal Forum. 2008; 13(2): 205-14. 

[40] Li HG. A nonlinear inclusion problem involving (𝛼, 𝜆) -NODM set-valued mappings in ordered Hilbert space. Appl Math Lett. 2013; 25(10): 

1384-8. https://doi.org/10.1016/j.aml.2011.12.007  

[41] Li HG, Yang Y, Jin MM, Zhang Q. Stability for a new class of GNOVI with (𝛾𝐺 , 𝜆) -weak-GRD mapping in positive Hilbert spaces. Math Probl 

Eng. 2016; Article ID 9217091. https://doi.org/10.1155/2016/9217091  

[42] Li HG, Qiu D, Jin MM. GNM ordered variational inequality system with ordered Lipschitz continuous mappings in an ordered Banach 

space. J Inequal Appl. 2013; 2013: 514. https://doi.org/10.1186/1029-242X-2013-514  

[43] Li HG, Qiu D, Zou Y. Characterizations of weak-ANODD set-valued mappings with applications to an approximate solution of GNMOQV 

inclusions involving ⊕ operator in ordered Banach spaces. Fixed Point Theory Appl. 2013; 241. https://doi.org/10.1186/1687-1812-2013-

241  

https://doi.org/10.1080/02331930412331327175
https://doi.org/10.1016/S0893-9659(00)00112-9
https://doi.org/10.1016/S0165-0114(99)00116-5
https://doi.org/10.1155/S1048953304403013
https://doi.org/10.1080/02331934.2016.1274991
https://doi.org/10.3390/math11030641
https://doi.org/10.1016/j.aml.2011.12.007
https://doi.org/10.1155/2016/9217091
https://doi.org/10.1186/1029-242X-2013-514
https://doi.org/10.1186/1687-1812-2013-241
https://doi.org/10.1186/1687-1812-2013-241

