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1. Introduction and Preliminaries

A metric space is a set-in mathematics and computer science that has a distance function (metric) that fulfils
specific criteria, like symmetry, non-negativity, and the triangle inequality. Some of these properties are relaxed in a
semi-metric space, usually the symmetry requirement. The distance between point a and point b may not equal the
distance between point b and point a in a semi-metric space. In today's world, uncertainty and fuzziness are
common in many applications. To capture the fuzziness and ambiguity of information, fuzzy sets (FSs) were first
presented by Zadeh [1]. In 1975, Kramosil and Michalek [2] established fuzzy metric spaces (FMSs) by utilizing the
concept of FSs. Then, George and Veeramani [3] modified the notion of FMSs by defining a Hausdorff topology on
a FMSs presented by [2]. Grabiec [4] defined the notions of convergence, Cauchyness and completeness on FMSs.
Further, he proved Banach and Edelstein contraction principal versions in the framework of FMSs. Hu [5] produced
some excellent work for various contraction types in FMSs. Deng [6] used the idea of point wise R-weak
commutativity to obtained common FP theorems in fuzzy pseudo-metric spaces for a pair of self-maps without
making any assumptions about the completeness of space or the continuity of the underlying mappings. Cho et al.
[7] provided definitions of compatible mappings of types (I) and (ll) in FMSs, and proved some common FP theorems
for four mappings under the assumption of compatible mappings of types (I) and (ll) in complete FMSs. Javed et al.
[8] introduced R -controlled FMSs and proved several fixed point results.

An IFS was established by Atanassove [9] as a generalization of FSs. In 2004, Park [10] developed the concept of
intuitionistic fuzzy metric space (IFMS) using continuous t-norms (CTNs) and continuous t-conorms (CTCNSs). Alaca
et al. [11] proposed IFMS with CTNs and CTCNs and demonstrated a number of FP theorems for contraction
mappings. Sharma et al. [12] proved several FP results for weakly compatible mappings in IFMSs structure. Davvaz
et al. [13] used IFSs and accomplished a nice work. Kumar et al. [14] developed the ideas of weak compatibility and
the E. A. property for mixed g-monotone mappings in the context of IFMS, and then used these ideas to derived a
coupled FP theorem for these nonlinear contractive mappings. Saadati and Park [15] defined pre compact sets and
demonstrated that any subset is only compact if and only if it is pre-compact and complete in IFMSs. In addition, he
established the definition of topologically complete fuzzy metrizable spaces that are intuitionistic and demonstrated
that any G§ set in a complete IFMSs is an intuitionistic fuzzy metrizable space that is topologically complete, and
vice versa. Furthermore, to relaxing the symmetric condition, Wilson et al. [16] on a set X with the function F and
without using the triangle inequality or relaxing the symmetric condition, he obtained some common FP theorems
for the recently introduced concept of PD-operators.

The notion of neutrosophic sets established by Smarandache [17] as a generalization of IFSs. Based on the idea
of NSs, Kirisci and Simsek [18] presented the notion of neutrosophic metric spaces (NMSs) and provided topological
structure of NMSs. Simsek and Kirisci [19] proved a number of FP theorems using the idea of NMS. The concept of
orthogonal NMSs was coined by Ishtiaq et al. [20] and demonstrated some FP results in the context of complete
orthogonal NMSs. Sowndrara et al. [21] derived several FP results for generalized contractions in NMSs. Uddin et al.
[22] developed the notion of controlled neutrosophic metric-like spaces, which generalized the concept of NMSs
and provided several fixed point results. Ali et al. [23] proved several new FP results for weakly compatible and
contractive mappings in the context of NMSs.

Aliouche [24] established a common FP theorem for weakly compatible mappings in symmetric spaces that
satisfied an integral contractive condition and property (E.A). Merghadi and Godet-Thobie [25] provided common
FP results for any family of maps that is not necessarily countable in the context of IFMSs. Sastry and Murthy [26]
established a common FP of two partially commuting tangential self-maps on a metric space that extended to
symmetric spaces. Aamri and El Moutawakil [27] used the idea of T-weakly and S-weakly commuting mappings
satisfying generalized contractive conditions to prove common FP theorems in symmetric spaces for two pairs of
hybrid mappings. Al-Thagafi, and Shahzad [28] introduced a new class of self-maps that fulfill the (E.A.) property
with respect to some g € M, where M is a g-star-shaped subset of a convex metric space, and established common
FP results for this new class of self-maps. Using the concept of a pair of mappings satisfying property (E.A), it was
discussed a general common FP theorem of integral @- type for two pairs of weakly compatible mappings satisfying
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specific integral type implicit relations in symmetric spaces by Pathak et al. [29]. The idea of weak compatibility was
used to demonstrate a common FP theorem of Gregus type for four mappings fulfilled an integral type contractive
condition established by Djodi and Aliouche [30]. Alioche and Popa [31] provided the idea of occasionally weakly
compatible mappings was used to prove common FP theorems for four mappings that satisfy implicit relations in
symmetric spaces. Godet-Thobie and Merghadi [32] proved common fixed point results in the context of
intuitionistic fuzzy semi-metric spaces (IFSMSs). Authors in [33-43] worked on different applications of fixed point
theory. Younas et al. [44-54] worked on different applications by using fixed point results including the vibrations of
a vertical heavy hanging cable, damped spring-mass system and deformation of an elastic beam. Authors in [55-63]
presented several fixed point and best proximity point results in a number of generalized spaces. Some interesting
fixed point results presented in the setting of Gauge spaces, Hausdorff Gauge spaces and some other generalized
spaces by [64-69]. By using dislocated b-metric spaces, FMSs and generalized metric spaces, authors [70-77] proved
fixed point theorems on closed ball, by using multivalued mappings and single valued mappings. Authors in [78-84]
presented fixed point results for interpolative contractions, multivalued contractions and single valued contraction
mappings in the settings of dislocated metric spaces and generalized FMSs. Authors in [85-92] provided several fixed
point results via probabilistic type contractions, Suzuki type contractions and non-linear contractions in the
framework of probabilistic metric spaces and generalized metric spaces. Several properties of k-FMSs, FMSs are
discussed in [93-96] with some applications. In [97-100] authors used C*-algebra valued metric spaces and some
other spaces to find out the fixed point via different single valued contraction mappings. Authors in [101-109]
presented several applications of fixed point theory.

In this paper, the authors defined the concept of neutrosophic semi-metric spaces (NSMSs) as a generalization
of IFSMSs and fuzzy semi-metric spaces (FSMSs). In FSMSs, just the membership function is employed, whereas in
IFSMSs, both membership and non-membership functions are used. The authors used membership, non-
membership, and neutral functions in NSMSs. Several common fixed-point theorems for countable and
uncountable families of mappings employing contractive and integral type implicit relations are presented in this
new framework, along with non-trivial examples.

Definition 1.1: [10] A binary operation *: [0,1] x [0,1] — [0,1] is a CTN if it satisfies the following conditions:

(1) = is associative and commutative,
(2) # is continuous
(3)a*1 = aforalla €[0,1],

(4)axb < c*dwhenevera < candb < d,foreacha,b,c,d € [0,1].
Definition 1.2: [10] A binary operation ¢: [0, 1] x [0, 1] — [0, 1] is a CTCN if it satisfies the following conditions:

(1) ¢ is associative and commutative,

(2) ¢ is continuous,

(3)a00=aforalla €[0,1],

(4)adb <codwhenevera<candb <d, foreacha,b,c,d € [0,11].

Definition 1.3: [18] A 6-tuple (2, B, D, £,%,0 ) is a NMS if Q is an arbitrary (non-empty) set, = isa CTN ¢ a CTCN, B, D
and g are NSs on Q% x]0, +oo[, fulfill the following conditions for each {,¢,X € Q and a,t > 0,

(NMS1) B (¢, 6,4) + D, 6,4) + £({,6,4) <3,

(NMS2) B ({,¢,4) > 0,

(NMS3) B ({,¢,a) = 1 ifand onlyif { = g,

(NMS54) B (¢, 6,8) =B (5,{, ),
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(NMS5) B (¢,6,4) *B(c,X,7) < B, XA + 1),
(NMS6) B(¢,6,7): 10, +00] = 10.1] is continuous,
(NMS7) ©(¢,¢,a) = 0ifand only if { =,
(NMS8) D(¢, 6,4) = D, 6,4),

(NMS9) D({,¢,4) 0 D(c,X,a) = D((, XA + 1),
(NMS10) D (¢,¢,7) : ]0, +0[ = ]0, 1] is continuous,
(NMS11) 8(¢,¢,a) =0ifand only if { =g,
(NMS12) £(¢,6,4) = £(4,6,4),

(NMS13) £(¢,¢,4) 0 (¢, ¥,4) = 2((, X, A + 1),
(NMS14) £ (¢,5,) : 10,400 = ]0, 1] is continuous.

Then, (B, D, 8) is called a neutrosophic metric on Q.

Kamran et al.

Definition 1.4: [32] A 6-tuple (Q, B, D,*,0 ) is an IFSMS if Q is an arbitrary (non-empty) set, xisa CTN, ¢ a CTCN, B

and D are FSs on Q2 x]0, +oo[, satisfying the following conditions for each {,¢,& € Q and a, 7 > 0,

(IFSM1) B (,¢,4) + D({,¢,4) <1,
(IFSM2) B (¢, ¢,4) > 0,

(IFSM3) 8B ({,¢,a) = lifand only if { =g,
(IFSM4) B (¢,6,4) = B (5,¢,),

(IFSM5) B ({,6,-): 10,4+ o[ = ]0, 1] is continuous,
(IFSM6) ©({,¢,a) = Oifand only if { = ¢,
(IFSM7) (¢, ¢, 8) = D(s,{,0),

(IFSM8) ©({,6,-): 10, + o[ — 10, 1] is continuous.

Then, (B, D) is called an intuitionistic fuzzy semi metric on Q.

2. Neutrosophic Semi-Metric Spaces

In this section, we define the notion of NSMSs. We study some topological properties and then we extend, some

classical properties which are usually used in generalized metric spaces to prove common FP theorems.

Definition 2.1: A 6-tuple (,%B,D,8,+,0), is a NSMS if xis a CTN, ¢ a CTCN, B,Dand are NSs

on Q% x]0, +oo], satisfying the following conditions for each {,¢,X € Qand a, 7 > 0,

(NSMS1) 8B ({,¢,4) + D({,6,8) +2({,¢,n) < 3,
(NSMS2) 8B (¢,5,4) > 0,

(NSMS3) B (¢,¢5,a) = lifand onlyif{ = g,
(NSMS34) B ({,6,4) = B (5, ¢,0),

(NSMS5) B (¢, ,): 10, + oo = 10, 1] is continuous,
(NSMS6) D(¢,¢,4) = Oifand onlyif { = g,
(NSMS7) D({,6,4) = D(s,,4),
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(NSMS8) D(¢,6,): 10, + oo =10, 1] is continuous.
(NSMS9) £(¢,¢,4) = Oifand onlyif{ = ¢,
(NSMS10) £(¢,6,4) = 2(¢,{,n),
(NSMS11) £(¢,6,): 10, 4+ oo = ]0, 1] is continuous.

Then, (B, D, L) is called a neutrosophic semi-metric (NSM) on Q.

Example 2.1: Let (Q, B, D,x,0 ) be as following: Q = [0,1], a * b = ab, a ¢ b = max{a, b},

1 if{=g,
B ({,6,4) = {max{%%} if ¢ # g,

0 if{ #g,

33(6,91\):{5 “l
|§_E if{ #¢
and

0 if{ #g,

B((! S A) = {mln {%,%} lf( * C

Then, (Q,B,D, £,%,0) is a NSMS.

We can easily check that all conditions of Definition 2.1 are satisfied and that conditions (NMS5) and (NMS9) of
Definition 1.3 are not satisfied. So (@, B, D, £,%,0) is a NSMS.

Example 2.2: Let (Q, B, D,,0 ) be as following: O = [0,1], a*b =ab,a ¢ b = min{l,a + b},

1 if{ =g,
B((,6,4) = {max{%,%} if{ #,
0 if{ =g,
D((,¢,n) = {min{%é}if( %,
and
0 if{=g,
2({,§,A)={< c .
F-3l oo

Then, (0, B, D, &,+,9) is a NSMS.
Following George and Veeramani [3], we can define a topology on Q by the family of open sets as follows.

Definition 2.2: Let (Q, B,D, £,%,0) ,be a NSMS. For a > 0, the open ball B({,r,) with center { € Q and radius 0 <
r < 1is defined by

B({,r,a) = {c € 1:B(,¢,4) > 1-1, D((,¢,A) <rand £({,¢,A) <71}

A subset A c Qs called an open set if, for each { € 4, there exista > 0and 0 < r < 1suchthat B({,r,a) c A.
Let 7 (m, n, 0) denote the family of all open subsets of Q. Then 7(m,n, o) is called the topology on Q induced by the

NSM (B, D, £). Itis easy to show that T(m, n, 0) is a topology on Q. This topology is generally not Hausdorff in context
to NSMSs.
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Definition 2.3: Let (Q, B, D, £,%,0) be a NSMS.

(I) A sequence ({,) in Q converges to ¢ if and only if B({,,{,4) = 1, D({n, {,4) > 0 and £({,,{,4) = 0 as n > oo, for
each A > 0.

(I) A sequence ({,,) in Q is called a Cauchy sequence if, for every 0 < & < 1 and every A > 0, there exists ny € D
such that, for alln = ngand m = ng, B(,, Gy s) > 1 — €, DG, Gnu ) < € and £(y, §nu A) < €.

Proposition 2.1: Let (Q, B, D, &,+,0 ) be a NSMS and 7 (m, n, 0) is topology on Q induced by the NSM (B, D, ). Then
the convergence in the topological space (Q, Timne)) coincides with that one of Definition 2.3.

Proof: The proof similar to that one of Theorem 3.11 (Park [10]) of given in the context of NSMS. If, according to
Definition 2.3

}lijg) B(n, ¢8) =1,
lim D¢, ¢,0) =0,
and
}lijg) L(¢n, ¢,8) =0,
for every a > 0, then for r € [0,1] there exist n, such that
Bl ¢,a) > 1 =7, D(n, ¢,a) <rand ({n,d,a) <T,
for alln > n,. So, §,, € B({, 1, ) for all n > n,, that is, ({,) converges to ¢ in (Q, Tign e ). Now let
A>0and{, - {.Forr €]0,1] there exist n, such that for every n = ny, {, € B({,r,A). That is
B((n, ¢,8) >1—7rand D({,, {,a) <r and £({,, {,a) < rforalln = n, and
lim B, 80) = 1,
lim D¢, ¢,0) =0,
and
11113; L(¢n, ¢, 8) = 0.

Proposition 2.2: Let (2,8, D, &,+,0) be a NSMS. The topology T on Qis independent of D and identical to
that one of the fuzzy semi-metric spaces (FSMS) (€, B,*).

Proof: It is sufficient to prove that open balls of two topologies are same.
Let
Bgo)(§,r,8) ={g € u:B(,6,4) >1—7},D(,¢,n) <r and &((,¢,a) <7},
the ball in the NSMS and
B(,r,a) ={c € u:B({,6,0) > 11},
that one in the FSMS (Q, ®B,%). It is clear that By p,¢)({,7,4) © B({,7,4). For opposite inclusion, if

¢ € B(Z;C;A);%(Z;C;A) >1 -,
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and from (NSMS1) of Definition 2.1,

b((’ CIA) <r, 8((’ CIA) <r and ¢ € B(%,:‘D,ﬁ)((‘ T’A)'

3. Some Properties of the NMS and NSMS

In the first part, we show that every NSMS satisfies classical properties which are usually used in generalized
metric spaces to prove common FP theorems. They are properties (W4), (W3) in Wilson [16], (H.E) in (Aamri and El
Moutawakil, [27]), (CE.1) and (CE.2) in (Pathak et al. [29]). In the second part, we extend in the context of NSMSs,
some properties of compatibility.

Now, we recall their definitions. The two next properties were introduced by Wilson (Wilson [16]). We give an
extension of them which is adapted to NSMSs.

Definition 3.1: A NSMS (Q, B, D, £,,0) satisfies the property (W3) if and only if, given ({;)nen, { and ¢ in Q. If for
each A > 0, on the one hand, lim B({,,{,a) = 1 and lim B({,,¢,a) = 1 and on the other hand lim ©({,,{,A) = 0 and
n—-oo n—-oo n—-oo

lim D({,,6,4) =0, lim 8({,,¢,4) = 0 and lim £({,,¢,4) =0 then{ =y.
n—-oo n—-oo n—oo

Definition 3.2: A NSMS (Q, 8,9, £,%,0) satisfies the property (W4) if and only if given {, ({)nen, and (¢;)nep iN Q,
if

lim B, (,0) = 1
lim B(G, Ga) = 1,
for eacha > 0,
lim D(y, £,4) = 0,
lim D¢, ¢ 8) = 0.
Similarly,
lim £(¢,,6,4) =0,
lim £(¢,,6,4) = 0.
For each a > 0, we have
lim B(gn, ¢,a) =1,
lim D(g,, ¢,0) =0,
and
lim £(¢y, 6,4) = 0.
Itis clear that (W4) implies (W3).

The three following definitions were introduced in (Aamri & El Moutawakil [27]) in the context of symmetric
spaces.
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Definition 3.3: A NSMS (Q, B, D, £,%,0) satisfies the property (H.E) if and only if given ({,)nep ,(Sn)nep @and {in Q,

if,
lim B(Gy,¢,0) = 1,
lim B(gn, ¢,a) =1,
lim D¢y, ¢,0) =0,
lim D(¢,¢,4) =0,
and

lim £(¢,,¢,4) =0,
lim £(¢, ¢, 4) = 0.

For every a > 0, then for every a > 0,
lim B(G, 6n0) = 1,
lim D(¢n,65,4) =0,

and

lim £(¢,,¢,4) = 0.

Definition 3.4: A NSMS (Q, B, D, £,*,0),satisfies the property (CE.1) if and only if given,{ and ¢ in Q for each a > 0,

llm %((nl (:A) = 1:
n—oo

implies that
lim B(Gn,6,4) =B, 6, 4),
and
lim D(8, ¢,4) =0,
rl),l—l;lgo DG 6,8) =D((,6,4),
similarly,

llm 2({71; {; A) = 0’
n—-oo
lim L(¢n,6,8) = L({, 6, 0).

Definition 3.5: A NSMS (Q, B, D, £,%,0) satisfies the property (CE.2) if and only if given({,)nen: (Sn)nep aNd (X)) neo
in Q if, for each a > 0,

lim B({,, ¢ n) = 1,
n—-oo

Implies
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lim inf B(X,,, ¢,,, A) = lim infB (X,,, ¢, A).

n—oo
and
rlli_f?o D(n $non) =0,
implies
lim sup D(Ry, ¢n, 4) = lim sup DRy, G, ).
In the same manner, we have
lim £(¢,, 6n,8) =0,
implies
lim sup £(Xy, ¢p,4) = lim sup LRy, o, 4).

For NMS and NSMS, we give an extension of property (E.A) which was defined in (Sastry and Murphy [26]) as the
Tangential Property and in (Aamri and El Moutawakil [27]) as Property (E.A).

Definition 3.6: Let S,T: Q — Y. The pair (S, T) satisfies property (E.A) if there exist sequence ({,) in Q such that

lim S¢, = gim TS, =ue€q,

N0
that is for every a > 0,
rlll_{r.}o B(SCn,u,0) = Tlll_{go BT u,n) =1,
71113310 D(SC,u,A) = Tll% D(Te,, u,0) =0,
and
1133;) 2%, u,n) = 7;1_{210 2(Te,,u,a) =0.

Proposition 3.7: Every NSMS satisfies (W4), (W3), (H.E), (CE.1) and (CE.2).

Proof: It is sufficient to prove (W4), (H.E), (CE.1) and (CE.2). Since (W4) implies (W3). We remark that (W3) is
satisfied because the topology T(g ) of every NSMS is Hausdorff (see Theorem 3.5 of (Park [10]). Let (2,8, D, £,+,0)
be a NSMS. To show that (W4) and (H.E) are satisfied, we use properties (5) and (9) of Definition 1.4 as following:

() Since B(E,, {,w) » 1 and B({,, s, u) — 1 for each u, by (2) and (3) of Definition 1.1,
A A
B (40, 0,5) * B (G5 5) < B 6.

We obtain that B(¢,, {,a) — 1, for every a €]0, o[. By similar manner, utilizing (2) and (3) of Definition 1.2, we
obtain ©(¢,, {,a) » 0 and £(¢,, {,a) — 0. Then (W4) is satisfied.

(1) If we suppose that, for every u, B((,,,{,u) —» 1 and B(g,, {,u) — 1 from the inequality
A A
B ((n: (' E) * B ((: Cns E) < %(qn: Cns A):

we obtain B({,,, ¢, a) = 1. For every u, D({,,{,u) - 0and D(g,, {,u) — 0 from the inequality
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A A
D (Zn' Z' E) 0D (Z' S E) =< E(Zn: S A)!

we obtain D({,, ¢,, a) = 0. Similarly, for every u, 2({,,¢{,u) —» 0 and 2(¢,, {,u) = 0 from the inequality

A A
g2 ((n' (' E) 0L ((' Sno E) < 2((1‘“ S A)'
we obtain £({,, ¢, A) = 0. So, (H.E) is satisfied.

() Now we supposeB({,, {,u) > 1for eachu€]0,o[.For eacha €]0,0[and every 0 < & < a,from
B (4n,60) =B((n,¢,6) * B({,6,a — &), we obtain

il_{rolo infB({,,¢,4) = B ({,5,a—¢),and by property (6) of Definition 2.1,
1111_)1’1; infB(¢,,, ¢, 4) = B({, ¢, A). )
From
B, 6,8+ €) =B, ¢, €) * B(Gn, 6, 0),
for every a > 0 and ¢ > 0, we obtain
B 6,8 +¢) 2 lim supB(Gy, 6, 4),
and
B(¢,5,4) 2 lim Sup B (¢, 6,4). 2)
By using (1) and (2), we have
B (¢,6,4) = lim Sup B(Gy, 6,0),
and suppose D({,,¢{,u) - 0for each u €10, [. For each a €]0,00[ and every 0 < ¢ < a, from

:D( (n ,C,A) S :D((n, (' ‘9) 0 D ({! C'A_ 8):

we obtain,
lim sup (&, 6,0) < D (G, 6,4 — &),
and by property (6) of Definition 2.1, we have
Tlll_r& sup D({n, 6,4) < D({,6,4). (3
From

D6 a+€) <D((n,{,€) 0 D(Gn,6,0),
for every a > 0 and ¢ > 0, we obtain

D, 5,8+ €) < lim inf D({,,, ¢, A),
n—-oo

and

B¢ 6,a) < lim infD (G, 6,4) - (4)
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By applying (3) and (4), we have
D ({,¢,a) = lim inf D({,, ¢, A).
n—-oo
Similarly, suppose £(¢,,, {,u) — 0 for each u €0, [. For each A €0, o[ and every 0 < ¢ < a, from

B( {n vch) S ‘Q’({nr{! 8) 0 B({! C,A— g):

we obtain
lim sup £(¢n,6,4) < £({, 6,4 — ),
and by property (6) of Definition 2.1,
lim sup £(¢n,6,4) < £(¢,6,4). (5)
From
L, 6,8+ ¢€) < L(Gn, 0, 8) 0 L(n, 6 0),
for every A > 0 and ¢ > 0, we obtain
2, c,a+¢) < rlll_I)lgo inf (¢, ¢, 0),
and
£(6,6,4) < lim inf £(¢, 6,4) - (6)
By utilizing (5) and (6), we have
2, 6,0) = lim inf 2y, ,4).
Hence, property (CE.1) is satisfied.
(IV) If we suppose B({,, ¢n, u) — 1 for each u > 0, by (6) of Definition 1.4, (2) of Definition 1.1, and from
By, 6n, 2+ €) = B(Ryy, G, ) * B(n, 6y €),
we obtain for every aand e,
1112130 infB(R,, ¢p,a+¢) = 1111_)1130 inf B(R,,, ¢, A),
then,
Tlll_r& infB(R,,, ¢, 0) = rlll_r)g inf B(R,,, ¢n, A),
for every a. We get
By, Gy s+ &) = B(R, 6, 8) * B(Gy Gy ),
then,

lim inf B(R,, ¢p,4) = lim inf B(R,,, {y, A).
n—oo n—-oo

In the same manner, we obtain
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lim sup D(N,,, ¢, A) = lim sup DN, ¢, ),
n—-oo n-oo
and
lim sup 8(R,,, ¢p, A) = lim sup (R, §,, A).
n—-oo n—»oo
Hence, Property (CE. 2) is satisfied.

We extend some classical compatibility properties to the context of NSMSs. The study of common FP theorems
calls for various compatibility properties. Recently, several authors (Aliouche et al. [24]; Cho [7]; Grabiec [4]; Kumar
et al. [14]; Sharma and Deshpande [12]) proved common FP theorems by extending them to FMS. For the reader’s
convenience, we recall the following definitions.

Two mappings f and g of a FMS (€, B,*) into itself are said to be
(I) Weekly commuting: if B(fg{,gf{,a) = B(f{,g{,a),V{ € Q.
(Il) Compatible: if for each a > 0,
lim B(fg¢n, 9fGna) = 1,
whenever ({,) is a sequence in Q such that lim £, = lim g{,, = p for some p in Q.

() R —weekly commuting: if there exist R > 0 such that, for every { € Q,

A
B(f9¢,9f¢.0) = B(f4,9¢,7)
In following definitions, we extend these notions to NSMSs.

Definition 3.8: Two mappings S and T of a NSMS (Q, B, D, £,%,0) into itself are said to be R -weakly commuting if
there exists an R > 0such that, for every { € Q,

A
B(STY, TSC,8) 2 B (T4, 8¢, E)'

A
D(STY, TS, 4) < D (T4, 8¢, E)'
and
o(S7¢,75¢,a) < 2 (72,5 ﬁ).
) ) —_— ) ’R
Definition 3.9: Two mappings S and T are said to be compatible if
lim B(ST ¢, TS, A) = 1,
n—oo
lim D(STY,, TSE,, A) = 0,
n—-oo
and
lim £(ST¢,, TS, ) = 0.
n—oo
Whenever () is a sequence in Q such that lim S, = limT{,, = p for somep in Q.

Definition 3.10: Two mappings S and T are said weakly compatible if they commute at their coincidence points
i.e.
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{ € Q:5¢ =TJ} € {¢ € Q: ST = TS¢).

Definition 3.11: Let S and T be self maps of a metric space. Then S and T are said to be occasionally weakly
compatible if

{C€Q:S¢ =THN{ € Q:ST¢ =TS} # 0.
Remarks 3.12
i)  With the help of numerous examples from the literature, it is simple to demonstrate that weakly commutativity
implies compatibility and that compatibility implies weak compatibility.

i) Itis proved that R-weakly commutativity is equivalent to commutativity at coincidence points; i.e.,, Sand T are
point-wise R -weakly commuting if and only if they are weakly compatible.

iii) The set of all occasionally weakly compatible self-maps, which is known to be a proper subclass of the set of
all nontrivially weakly compatible self-maps (See Al-Thagafi and Shahzad [33]).

iv) Property (E.A) and properties of weak compatibility or compatibility are independent as it is shown by
Examples 1 and 2 of (Merghadi and Thobie [17]).

4. Main Results

We start by defining implicit relations, which will be used in the following result. In the following, @: R, — R, isa
locally integrable function which fulfills f;@(A)dA > 0, for every 0 < § < . We denote by @ (resp. ?) the set of all
continuous functions ¢ (resp.i): R¢ - R such that, if

0,) ¢ (qu(A) dA,jv@(A)dA,Ju@(A) dA,jVQ(A) dA,Ju@(A)dAJUQ(A)dA> >0,
0 0 0 0 0 0

or

©,) ¢ ( | “odn | ‘o) dn | 0@ da, [ “ow)da, I "0()da, [ “o(n) dA> >0,
or

©;) ¢ ( | “oda, | “oda, | "oy da, [ "0 da, [ "o, | u@(A)dA) >0

Then,
I “o(n)da > | “o(wda.

W) ¥ ( | “oda, | 0@ da, | “o(a) da, | "0 d, | “o(w)da, | v@(A)dA) <0,
or

W) ¥ ( | "ot dn, | “o(dn | "0, | “o(w)da, | "o da, | ”@(A>dA> <o,
or
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Ws) ¢ (J;HO(A) da, J;HQ(A) da, J:@(A)dA, J: O(a)da, fouG(A)dA, J;uO(A)dA> <0.

Then,

qu(A)dA < fUQ(A)dA.

0

Respectively, if

&) ¢ ( | “odn | ‘o dn | “00) d, | "0 dn, [ “o(n)da, | ”@(A)dA) <o,
or
&) f( [Towan [ owan, [ own [ owas, [ o dn, [ ”@(A)dA> <o,
or
&) ¢ ( | "o da, | "ot da, | "oy, [ “0(wda, | “o()da, | u@(A)dA> <.
Then,
fo "o (a)da < jo “o(a)dn.

We give some examples of ¢ € ® and ¢, & € ¥.

Example 4.1: Let

1
¢(A1'A2'A3,A4’A5'A6) = Y(A1, Az, A3, Mg, A5, Ag) = E(A1, Mg, A3, Ay, As, Ag) = Ag — E(AZ + A3+ a4 + A5+ Ag).

We, have to prove (¢p;) fori=1to3.Fori =1,

¢ (fou@(A)dA, J: O(a)da, fou@(A)dA, J: O(a)da, fouO(A)dA, j:@(A)dA) = g(fouO(A)dA - fov@(A)dA>

which is > 0 if and only if [*0(a)da > f; 6(a)da.So (¢,) is satisfied for each 6. For i = 2,

¢ (fu@(A)dA,fv @(A)dA,fv@(A)dA,fu@(A)dA,fv@(A)dA,fu@(A)dA> = %(J-u@(A)dA — fv@(A)dA>

which is > 0if and only if [*@(a)da > [J @(a)da.So (,) is satisfied for each @. For i = 3,

¢ (fu@(A)dA,fu @(A)dA,fv@(A)dA,fv@(A)dA,fu@(A)dA,fu@(A)dA> = ;(fu@(A)dA — fv@(A)dA>

which is > 0if and only if [*@(a)da > [ @(a)da.So (¢5) is satisfied for each 6 and ¢ € ®.

Similarly, we can show that ¢ and € € ¥.
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Example 4.2: I
¢(A1,A2,A3'A4,A5,A6) =A — min{Az,A3‘A4,A5,A6},
1!)(A1,A2,A3‘A4,A5,A6) =A — maX{AZ,A3‘A4,A5,A6},
and
f(Al,Az,A3'A4,A5,A6) =A — max{Az,A3_A4,A5,A6}.

We have to prove (¢;) fori =1to3.Fori =1,
O(a)da, | 0()da, | 0(a)da, | O(a)da, | O(a)da, | 6(a)da | = 0(a)da — mi O(a)da, | 0(a)day,
¢< J; (aA)da fo (a)da J; (A)da fo (a)da J; (A)da fo (a) A) fo (A)da — min { fo (a)da fo (a) A}

which is = 0if and only if fOuO(A)dA > foy@(A)dA. It is easy to verify (¢,), (¢p3) are satisfied. So ¢ € &. We have to
prove (y;) fori=1to3.Fori=1,

Y (fuQ(A)dA,J-v@(A)dA,fu@(A)dA,fv@(A)dA,fu@(A)dA,fUQ(A)dA) = fu@(A)dA— max {fu@(A)dA,J—U@(A)dA},
0 0 0 0 0 0 0 0 0

which is< 0if and only if fOuQ(A)dA < fov@(A)dA. It is easy to verify (y,) and (i) are satisfied. Soy € W. For (§;) and
i=1to3.Fori=1,

& (fu@(A)dA,fvQ(A)dA,fu@(A)dA,jv@(A)dA,fuQ(A)dA,jv@(A)dA) = fu@(A)dA — max {JuQ(A)dA,fv@(A)dA},
0 0 0 0 0 0 0 0 0

which is < 0 if and only if fou@(A)dA < fov@(A)dA. It is easy to verify (§,) and (&3) are satisfied. Soy, & € .

Now firstly, we present two theorems for infinity (not necessarily countable) of mappings in NSMS and NMS with
hypothesis of Property (E.A) and weak compatibility.

Theorem 4.3: Let (Q,B,D, £,%,0) be a NSMS for Q which satisfies (W4), (H.E), (CE.1) and (CE.2) and 4, (4,);¢;, S and
T be self mappings of Q satisfying AQ c TQ and 4;Q c SQ foralli € I and

B(AT,Ai6,0) B(S¢,Tg,n) B(AL,S5¢,n)
f O(t) dt, f o(1), f O(t)dr,
0 0 0

¢ B(A;6,Tg,n) B(A{,T¢,n) B(ST,Ai6,0) = 0, (7)
f 0(1) dr, J 0(1), J 0(v)dr,
0 0 0
D(AG.Aig.0) D(S¢,T6.n) D(AL,S3,)
f 0(v) dr, f 0(x), f 0(r)dr,
0 0 o
Y D(4;6,T6.n) D(AL,T6n) D(S,Ai6.0) <0, (8)
f 0(7) dr, f 0 (1), f 0(t)dr,
0 0 0
L(AS,Ai5,8) 2(S¢,T,n) 2(47,5¢,4)
f 0(7) dr, f 0(1), f 0(t)dr,
£l y : <o. ©)

L(Ai6,Tg,n) L(AL,T¢,n) L(S¢,Ai6,0)
f o(1) d‘r,f @(‘L’),f 0 (t)dr,
0 0 0

For every ¢ and every ¢ € Q,for everyi € I, where ¢ € ®,and ), € ¥. @:R, — R, is locally integrable function
which satisfies f;@(A)dA > 0, for every 0 < § < &. Suppose that:
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() (4,5) satisfies property (E.A);
(1) (4,5) and (4, T) are weekly compatible for some k.

If one of the subspaces AS,5Q,4;Q and TQ of Q is closed, then 4, 4; for every i € I,S and T have a unique common
FPin Q.

Proof: Since (4, S) satisfies Property (E.A), there exists a sequence ({,)nep in Q such that, for some X in Q.

lim B(A,, R, A) = lim B(SE, R,A) =1,
n—-oo n—»oo
lim D(A,, X, A) = lim D(5¢,, 8,A) =0,
n—-oo n—»oo
lim 8(A{,, X, a) = lim £(S{,, X, a) = 0.
n—-oo n—-oo

By property (H.E), we have

ii_r& B(AL,, ST, 0) =1, (10)
rllm D(AL,,5¢,,8) =0, (11
%m (4L, S, n) = 0. (12)

Since AQ c TQ, there exists a sequence (¢,)nep iN Q such that Ag, = Tg, for alln € D and for all i. Furthermore,
we get

lim BAG,, Ten ) = 1, (13)
lim D(AG,, Ty, 4) = 0, (14)
11113310 (AL, Tc,,A) = 0. (15)

By (CE.2),(10,) (11), and (12), we obtain
lim infB(AGy, A6, 4) = lim infB(S, A, 8) = lim inf BTy, A, ),
7111_{{}0 sup D(AGy, AiSn, A) = Tlll_{{}o sup D(S¢n, AiSn, A) = rllljg sup D(T¢y, AiGn, 1),
lim sup £(AGy, Aign, 4) = lim sup £(5¢,, Aign,4) = lim sup L(T¢n, AiGn, 1) -

Now we have to show that lim inf4;¢, = X. Let be a; = lim inf B(AJ,, 4;¢,,, o) and a; = lim Sup D(AJ,, A;¢p, A).
n—-oo n-co

n-oo

From (7), (8) and (9) with { = ¢,, and ¢ = ¢, we get

B(A{nAiSn.A)
f o(r)dr,
0

B(S¢nTsn,a) B(A{n,S{n.n)
o(r) dt, f o(1), f
0 0

¢) B(A{n,TSn.0) %(S{nvAiCnvA)
o, [
0

B(Ai5n.TSn.n)
f O(t)dr,
0

O0(1) dt, f

D(Aln,AiSna)
f 0 (t)dr,
0

D(S¢n,Tsn,n) D(A¢n,S¢nn)
o(r) dt, f O(T),J-
0

0

l/) D(Aln,Tsn,a) D(S¢n,AiSn.A)
o, [
0

D(Aisn,TSn.A)
f O (t)dr,
0

O0(1) dt, f

0
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and

2(Aln,AiSnn)
f O(t)dr,
0

(8¢, Tsn,n) L8(A¢n,SCn.n)
o(r) d‘r.f O(T),f
0 0

L(Ain,Tsn.n) L(Aln,Ten,a) L(STn,AiSn.n) = 0.
\f o(1) d'[,J. 0(’[),f @(’L’)d‘[,/
0 0 0

§

Letting n — oo, we find

o) (J-aiO(r) dT,J-lO(T)dT,J-IO(T)dT,J-aiQ(T)dr,flQ(T)dr,faiQ(r)dT> >0,
0 0 0 0 0 0

Y <f0Ai0(r) dz, 0,0, J;AiO(T) dr, 0, J;AiQ(T) d’L’) <0,

and
Af Af Af
E<j O(7) dt, 0,0,f o (1) dt, 0,] o(1) d‘L’) <0.
0 0 0
Then
a; = lim infB(Af,, Aicn,A) =1,
n—-oo

A

= lim SupD(A,, 4;¢A) = 0,
n-oo

D, = lim Sup 8(A{,, Ai¢n, A) =0,
n—-oo

Z

~

by (¢,), (¥,) and &,.Then, we have

rly,l—r}t;lo %(A(TUAI:CTU A) = 1’ (1 6)
Tlliarrgob(A(nlAignl A) = 0' (17)
lim (AL, AiGpyn) = 0. (18)

By (W4), (16),(17),and (18), we deduce

lim B(Aigp, R, 0) =1,
7111_{210 D(Aign, R,0) =0,
rlll_r& 2(A;6n, X, ) = 0.
Jim A, = im 4G, = Jim 55, = Jim T, = K.ve

If, we suppose that the T(Q) is closed, X € T(Q) and there exist u € Q such that & = Tu. By (7),(8),and (9 ) with { =
¢, and ¢ = u, we get

B(An,Aju,n) B(Sn,Tu,a) B(ALn,STn.0)
f o(1) dr,f @(‘L’),f O(t)dr,
0 0 0 > O

¢ B(A;u,Tu,n) B(A{n,Tu,a) B(STn,Aju,n) -
\j o(1) d‘r,j 9(‘[),J Q(T)d‘[,/
0 0 0
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D(An,Aju,n) D(S{n,Tu,a) D(ALn,STn,A)
f o(1) d'[,J. @(‘L’),J- O (t)dr,
0 0 0
¥ D(A;u,Tu,n) D(ALn,Tu,n) D(STn,Aju,n) <0,
f o(1) d‘r,f 0(1’),] O (t)dr,
0 0 0
2(An,Aju,n) 2(S%n,Tu,n) (AR, Sqn,n)
f o (1) dr, f (1), f o(1r)dr,
0 0 0 <0.

f 2(Aju,Tu,a) L(Aln,Tu,n) 2(S¢n,Aju,n)
f o(1) d‘r.f @(T),f O(t)dr,
0 0 0

When n — oo, using (CE.1), we obtain

BR,Au,0) 1 1
f 0(7) dt, f 0 (1)dr, f 0 (1)dr,
0 0 0 >0

¢ B(NR,A;u,4) 1 B(X,A;u,n)
\f O (t)dr, f O (t)dr, f @(‘L’)d‘[/
0 0 0

D(R,A4;u,a) D(R,A;u,n)
f 0(1)dr,0,0 f O(t) dt,
0 0

lp fD(N,Aiu,A)
0 j o(1) dt,
0

<0,

E(fg(x,Aiu,A) 0(1) dr, 0,0 foﬁ(N,Aiu,A) 0(1) dr,0 foﬁ.(N,Aiu,A) 0(7) d‘L’,) <0.

0

Which implies by (CE.1) by (¢,), (¥,) and (&)
Auw)=Tu=R, Vi (19)

Since X € 4;Q c SQ, there exists v € Q such thatX = A;u = Sv = Tu and applying (7), (8),and (9) with { = vand

¢ =u,we get
B(AV, XA, B(Av,R,A
Js WX 6(1) dr, fol@(‘r)dr, Js @ g0 .
fol 0(1) dr, fo%(Av'N'A) 0 (1)dr, fol 0(1) h
D(AV,X,A) D(Sv,X,A)
f 0(t)dr,0, f O(t)dr,0,
0 0

D(AV,X,A)
f 0(1)dr, 0
0

<0,

1%

L(Av,X,A) L(Sv,X,A) L(Av,X,a)
f(f o(1) dr, 0,[ O0(t) dt, O,J- o(1) dr, 0) <0.
0 0 0

So, by (¢1), ) and (&;), X = Av = Sv. Since the couple (4, S) is weekly compatible, ASv = SAv i.e.

AR = SX. Now (7), (8),and (9) with { = Xand ¢ = u gives
B(SK,Tu,n) @(‘L’)dT, J-%(AK,SN,A) @(‘L’)d‘[

B(A N,Ai ,A)

Js “Yeo(r)dr, | o o
B(A;u,Tu,n) B(AR,Tu,n) B(SK,A;u,n)

Js 0(r)dr, |, 0(r)dr, f, o (7)dr
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J-E(AN,Aiu,A) D(SK,Tu,n) D(AR,SK,A)
0
w J-QD(Aiu,Tu,A)

0

(1) dr, [

. 0(1)dr, [
0(7)dr, [

o O(t)dr
0(7)dr, [

D(AR,Tu,n) 0 (‘L’) dr

0

D(SK,A;u,n)
0

2(AR,Aju,A) L(SX,Tu,n) L(AR,SX,a)
Js o(r) dr, J, 0(r)dz, |, o (r)dr

2(Aju,Tu,a) L(AR,Tu,n) L(SX,A;u,A)
N o(r)dr, |, 0(r)dz, [, o(1)dr

§

That is

B(AR,R,0) B(ARKR,A) 1
f (1) dr, J- o(1) dr, f o(1) dr,
0 0 0

¢ 1 B(AR,X,A) B(AR,X,A) = 0’
f O (1) dt, f o(1) dt, f o(t)dr
0 0 0
D(AN,K,A) DARK,4)
f o(1) d‘r,f 0(1)dr, 0,0,
0 0
¥ D(AN,X,n) D(SK,Aj1,8) =0,
j o(1) dt, j O(r)dr
0 0
L(AR,R,A) L(AR,R,A)
f O(t)dt, f O0(t)dr, 0,0,
0 0
$ 2(ARK,A) 2SN, Aju,0) =0
j o(7) dt, j o(r)dr
0 0
So by (¢3), (¥3),and (&3), AR = X. By weak compatibility of A, and T, we have
ArTu = AR =TAu =TK,
and applying (¢5), (3),and (&;) with { = ¢ = K, we obtain
BRAERA) B(R,AK,A) 1
f O(7) dr, f O(t) dt, f O(t) dt,
0 0 0
¢ 1 BX,ARX,0) BX,ARX,a) 20,
J O(7) dt, J o(1) dt, j O(r)dr
0 0 0
DX,AK,A) DX, ARK,A)
f O(7) dt, f O0(t)dr, 0,0
0 0
¥ DX, ALK, DX, ARR,A) =0,
, J 0(7) dt, J- O(r)dr
0 0
(R, ARN,A) L(R,AgN,A)
f O(7) dt, f 0(1)dr,0,0
f 0 0 < 0.

8(R,ARR,4) 8(R,AgR,4) -
, f o(1) dt, j O(r)dr
0 0

From (¢3), (W3), (é3), (16, (17) and (18), it follows A, X = TR = SX = X.So, X is a common FP of 4,5, T and Ag. But, for
every i, we have

J‘% (AX,A i N,A)
0
f%(Ai N,TX,A)
0

@(T) dT, fﬁ(SR,TN,A)

B(AR,SK,A)
o 0(7)dr, [
0(7)dr, [

o O(t)dr
0(1)dr, |,

B(AR,TR,A) 0 (‘L’) dr

0

B(SK,A i N,A)
0
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O(t)dr
o(t)dr

D(AR,A;X¥,A) D(SN,TR,A) D(AN,SX,A)
Jo () dr, [ 0(v)dr, f

D(A;NTR,A) D(ARTR,A) D(SKA;X0)
fo 0(1t)dr, fo 0(7)dr, fo

L(AR,A;R,A) L(SK,TN,) L(AR,S¥,0)
Js o(r) dr, J, o(r)dz, |,

L(ANTR,) L(AR,TX ) L(SK,4;%,0)
N o(r)dr, |, 0(r)dz, |,

o(t)dr
o(1)dr

That is

BR,A;8,4) 1 1 B(X,A4;8,4) 1 B(X,A4;8,4)
¢ (f o(1) d‘r.f @(‘L’)d‘[,f @(T)d‘[f Q(T)d‘[,f Q(T)d‘[,f @(‘r)d‘r> >0,
0 0 0 0 0 0
Q(N,AiR,A) Q(R,AiR,A) @(N,AiN,A)
Y (f 0 (1) dt, 0,0,] o(1) dt, 0,] 0(7) dr) <0,
0 0 0

Q(N,AiN,A) Q(N,AiN,A) Q(N,AiN,A)
E(f O(t) dt, 0,0,[ 0(1) dr, O,f o(1) d‘r) <0.
0 0 0

Then from (¢,), (;) and (&3), 8 = A4;X for each i and X is a common FP of 4, S, T and A; for every i. Now we show
the uniqueness of the common FP. If X is another common FP, from (7), (8) and (9) with { = Rand y = X, we get

B(R,R,A) B(R,R,A) 1
f O(7) dt, f O(7) dt, f O(7) dt,
0 0 0

1 B(R,X,A) B(R,X,A) =0,
j 0 (1) dr, j 0(1) dr, j 0(r) dr
0 0 0
D(REK,A) D(R,R,0)
f o(r) dr, f 0(7) dr, 0,0,
0 0
¥ DR D(RRA) <0
J O (1) dt, J O(r)dr
0 0
L(R,R,A) L(R,R,A)
f O(t) dt, f 0(7) dr, 0,0,
gl 0 <O0.

Q(R,K,A) 2(R,R,0)
j 0(0) dr, J 0(c) dr
0 0

So, by (¢3) and (¥53), we obtain X = R. Then, & is unique common FP of 4,5, T and 4, for every i.

Theorem 4.4: Let (Q, B, D, £,%,0) be a NSMS for Q which satisfies (W4), (H.E), (CE.1), (CE.2)and 4,(4,);e;, S and T be
self mappings satisfying AQ c TQ and 4;Q c SQ foralli € I and

fSB(A(rAiCrA) 9 (T) dT, f%(S(rTC'A) 9 (T) dT, J‘%(szsfrf\) 9 (T) dT,

0 0 0 (20)
B(A;¢Ton) B(AL,T¢,n) B(ST,Ai6.0)
J, o(r) dr, 0(r) dr, 0 (v)dr
foD(A{'AiC'A) 0(1)dr, fob(S{'Tc'A) 0(r)dr, fob(A{'S{'A) 0(r)dr,
D(Ai5.TGA) D(AL,TG.n) D(SC,A6.4) @0
Jy 0(r) dr, o) dr, 0(t)de
2(AZ,Ar60) (ST 2(A¢,5¢,n)
Jy 0(r)dr, |, 0(r)dz, f, 0(v)dr, (22)

0

fﬁ(AiC'TC'A) 0(r) dr, fﬂ(A(.Tc.A) 0(z) dz, fﬁ(SZ,AiC,A) 0(r)dt

0 0
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For every ¢ and every ¢ € Q, for every i € I,where ¢p € ®,9 € ¥ and ¢: R, — R, is locally integrable function which
satisfies [; @(a)da > 0, for every 0 < § < &. Suppose that:

() (4;,T) satisfies property (E.A) for every i € [;

(1) (4,5) and (A, T) are weekly compatible for some k. If one of the subspaces AQ, SQ, 4;Q and TQ of Qs closed
then 4, A;, for every i € I,S and T have a unique common FP in Q.

Proof: Since (4;, T) satisfies property (E.A),
lim B(Alh Ry, n) = lim B(TGh N, 8) = 1,
lim D(A, Ry, 4) = lim D(TEr, K;,4) = 0,
,15?0 LA Ry, ) = Tllijg(T(fu Ri,4).

for some X; in Q. By property (H.E), we have

lim B(ACL, T, A) =1, (23)
lim D(Ailr, Téra) = 0, (24)
lim £(A;3%, TEh,A) = 0. (25)

Since 4;Q c 5O, there exist a sequence (¢),, in Q such that 4;% = S¢!, for all n € D and for all i.

lim B(A; L, Sch,a) =1, (26)
lim D(A4ih,, Sena) = 0, (27)
lim £(A,55,, S¢qa) = 0. (28)

By (CE.2),(23), (24), and (25), we obtain
rlli_{go infB(A¢h, AL, A) = }liggo infB(A¢h, T, A),
lim sup D(Agn, 4;8, ) = lim sup D(Agn, T3y, 4),
lim sup 2(Agy, 4,4y, 4) = lim sup 2(Agy, Ty, ).
Now, we show that lim Agh = R; Let be
o= lim inf B(Agk, A;CL, ),
and
a; = lim sup D(Agy, Aily, 4.

Using (20), (21),and (22) with ¢ = ¢} and ¢ = {i. We get

ff(ACh:AinA) 0(r)dr, fo%(AChrTGvA) 0(r)dr, f?(AC;vSGvA) 0(1)dr,

i i oo i i >0,
) Om(Algn’Tgn’A) (1) dr, [ 0%('4("'””'/\) o(r) dr, foq}(scn’A’("’A) o(t)dr

¢
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fOD(AChrAifrlvA) 0(r)dr, fO:D(AChrTfth) 0(1)dr, f(;D(AC;us(rlvA) 0(z)dr,

Al i i i i i <0,
Jent ) o) dr, [P0 o(x) dr, [7EA0 0 (2)de

Y

) (;Q (AgnAiénn) 0(7)dr, f(f (AnTén) 0(1)dr, [ Oﬁ (AnSThn) 0(7)dr,

f 7l i i i i g.70
‘Q(AlfanCn‘A) ) (T) dT, Q(ACan(nr/‘) I} (T) dT, Q(SCn'Azzn'A) 0(_[) dt
0 0 0

Letting n — oo, we deduce

] (J:iO(T)dT, f(};@(r)d‘[, Lii@(r)d‘[,\ o
\jo Q(T)dr,jo Q(T)dT'jO @(‘[)d‘[,/

Y <j0/‘i@(‘l')d‘[, 0, L"i@(r)dr, 0, LA"Q(T)dr, 0) <0,

Aj Aj Af
E<j 0(7)dr, 0,] 0(1)dr, 0,] o(1)dr, O) <0.
0 0 0
By (¢1), (¥1),and (§;), ;= 1and a; = 0; i.e,,

lim inf B(A¢h, 4;¢ha) = 1,
n-oo
lim sup D(Ag, A;¢5, ) = 0,
n—-oo
lim sup 8(Ack, A4;¢E, ) = 0.
n—-oo

Thus, we have

lim B(Agk, A;38,A) =1,
n—-oo
lim D(Ac¢h, A;¢E, ) =0,
n—-oo

and

lim 2(Agp, AiGn, ) = 0.
By (W4), since

lim B(AL, R, ) =1,

lim D(A; 7L, R, ) =0,

lim LA 5, R;,8) = 0.

and

lim Q}(Ag,il,AiZ,il,A) =1,
n—-oo
lim D(Ag¢, A;¢%,a) = 0,
n—-oo

lim L(Agk, A;¢L,A) = 0.
n—-oo
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we have
lim B(Agh, R;,a) =1,
lim D(Agp, Ry, ) = 0,
lim L(Agh, R;,A) = 0.
That is

lim 4;¢% = lim T¢. = lim A¢} = lim S¢} =X;,  Vi.
n—oo n—oo n—oo n—-oo

Suppose that S(Q) is closed. Then, X; € S(Q) and there exist u; € Q such that X; = Su;. By (20), (21), and (22) with
{=u;and ¢ = &, we get

J BlAupAilna) o (v)dr, fo% (suatne) g (v)dr, fO%(Aui'Sui'A) 0(7)dr,

0
0] i i i i =0,
) 023 (4idnTEnn) () dr, [ 0% (4T 0) 0 (1) dr, fO%(Su“AL{”'A) o(t)dr
fg)(Aui'Ai(;‘l'A) Q(T)d‘[, fofb(sui'TchA) Q(T)d‘[, fOD(Aui'Sui'A) Q(T)d‘[,
Y i . A <0,
f(;D(Alzn'Tzn'A) @(T) dT, fOE(Aul-TszA) 9(‘[) dT, fOD(SuerL{n'A) Q(T)d‘[
2(AuyA;lha) 2(SuyTdha) 8(Au;,Sug,a)
Js 0(r)dz, J, 0(r)dz, J, 0 (7)dr,
<0.

f(;Q(Ai(rLL,T(rLL,A) o(1) dr, fos(Aui.Tzh.A) 0(7) dr, fgz(sm.Aizh.A) 0(1)dr

When n — oo using (CE. 1), we get

Q}(Aui,?‘(i,A) 1 m(Aui,Ni,A)
J 0(r)dr, [, 6(r)dz, | 0(7)dr,
1 B(Au;,R;,n) 1
Jy 0@ dz, | 0(r)dr, f, 6(r)dr,

D(Au,R;jn) D(Sui,R;ja)
N 0(r)dz,0 |, 0(17)dr,

Y N
0, [ (1) dr, 0

2(Au,R;,0) 2(Suy,Ria)
Js 0(r)dz, 0 [/ 6(1)dr,

0, [ 9(7) dr, 0

Which implies, by (CE.1), (¢1), (1), and (&;), Au; = Su;=X;, Vi. As AQ c TQ,3 v; € Q such that

R; = Au; = Tv;. Applying again (20), (21), and (22) with { = u; and ¢ = v;, we have

SB(Ni,AiviA)
¢ ( f 0(0)dr, 1,1, f
0

0

Q}(Ni,AiviA)

%(Ni,AiviA)
0(1)dr, 1,J- @(‘r)dr) >0,
0
‘r) <

@(Ni,AiviA) @(Ni,AiUiA) D(Ni,AiUiA)
P (f o (t)dr, 0,0,f 0(1)dr, 0,.[ o(t)d 0,
0 0 0
LR Avin) LRyAv0) 8(Ry,Aivi0)
& (f e (1)dr, 0,0,f 0 (r)dr, O,J- 9(T)d‘[> <0.
0 0 0
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Which implies A;v; = Tyv; = X; by using the conditions (¢,), (¥,),and (§,). Since the pair (4,5) is weakly
compatible, AR; = SX;. Using (20), (21), and (22) with { = ¥; and ¢ = v;, we get
fo% “@ReXe) g (1) dr, foﬁ(AN"'N"'A) 0(r)dr, fola(‘[)dr,
f01@(‘r) dr, fo%(ARi'Ri'A) Q(T)d‘[,ff(“i'xi'/‘) o(t)dr

D(AR;R;,0) D(AR;,K;,0)
Jo 0(v)dz, [ 0(1)dx,0,

e . <0,
0, [N o), [PANNN g (1) dr
L(ARR;,0) L(AR},R ;)
Jo 0(r)dz, | 0(1)dr, 0,
N N <0
0, [£4NNN o (1) dr, [TANNN (1) dr
So, by (¢3), (¥5),and (&), we have

for every i € 1. By weak compatibility of 4, and T, we have 4, X, = TX,. And with { = ¢ = X;, we obtain

, foq;(xk,Akxk,A) 0(r)dr, J‘Om(xk,.Aka’A) 0(1)dr, fol o(1)dr,
Jy 0@ dr, [ grydr, [P AN 0 (1) de

DRy, ApRpn) D(Rp, A Rj,A)
Js 0()dz, [ 0(7)dx,0,

<0
0' fOD(Rk,Aka,A) @(T)dl_'foﬁ(xk,Aka,A) Q(T)d‘[

]

Iy CeAied) g (7) dx, fog(xk'Akxk'A) 0()dz, 0,

) . <0.
0, [N (1) g, (LA ()
From (¢3), (3), (§3) and (4.3), it follows AR, = TR, = SR, = R . SO X, is a common FP of 4,S,T and 4. But, for
every i, we have
fo%(xk,AiNk,A) 0(0)dr, J-O%(Nk.AiNk'A) 0(1)dr, fol 0 (1)dr,
¢ iR et
fol @(‘[) d‘[, J-O%(Nk,AlNk, )@(T)d‘[, J'O%(Nk.ALNk‘ )@(T)df

D(Rp, AiRpe) D(Rp,AiRpe,0)
Js 0(r)dz, [ 0(1)dx,0,

. : <0
0’ foﬁ(?‘(k,ALNk,A) Q(T)dr'fom(xk,AlNk,A) O(T)d‘[

Y

)

LRk, AiR,0) LR, AiR,0)
Jo 0 (z)dz, J; 0(7)dz,0,

§ N et
0, fOB(Nk,ALNk. )@(T)d_[’foﬂ(xk.ALNk‘ )Q(T)dr

Then, from (¢3), (3), and (&3), 4;X;, = K, for each i and X, is a common FP of 4, S, T and 4;, for every i. The unicity
of common FP is shown as in previous theorem .Then, X, is the unique common FP of 4,5, T and 4,, for every i.

Remark 4.5: When TQ is assumed to be a closed subspace of Q, then proof is similar. On the other hand the case
in which AQ or 4;Q is a closed subspace of Q are similar to the case in which TQ or SQ is closed.

Theorem 4.6: Let (Q, B, D, £,%,0) be a NSMS and 4, (4));;, S and T be self mappings of Q satisfying 40 < TQ and
A;Q c SQforallieland(20), (21),and (22) forall {,¢c e Qand everya > 0,where ¢ € ®,p e¥and @:R, - R, isa
locally integrable function which satisfies f;@(A)dA > 0, forevery 0 < § < &.Suppose that:
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() (4,5) or (A;, T)for every i € I satisfies property (E.A);

(1) (4,5) and (4, T) are weakly compatible for some k. If one of the subspaces AQ, SQ, A;Q and TQ of Q is closed,
then A,4; for every i € 1,5 and T have a unique common FP in Q.

Proof: By the Proposition 3.7, the result follows immediately from the previous Theorems 4.3 or 4.4. In the
following results, the condition of compatibility is a slightly enhanced occasionally weak compatibility. And
hypotheses on the ranges are removed.

Theorem 4.7: Let (O, B, D, 8,%,9) be a NSMS and 4, (4));¢;, S and T be self mappings of Q satisfying the following
conditions:

i) the pair (4, S) is occasionally weakly compatible,

ii) there exists v € N;¢; C(4;,T) such that A;Tv = TA;v for all i € I, where C(4;,T) is the set coincidence point of 4;
and T,

iii) A, A; for every i € I,S and T satisfies (20), (21) and (22) for every ¢ and ¢ € Q where

¢,¥: RS - R Satisfies the equation (20), (21) and (22) and 6:R, - R, is a locally integrable function which
satisfies f;@(A)dA > 0 for every 0 < § < e.Then 4, 4; for every

i € 1,5 and T have a unique common FP in Q.
Proof: By (i) and (ii), there exists u and v € Q such that for everyi € I
Au = Su ASu = SAu Aiv=Tv A;Tv =TA;v. (30)

Using (20), (21), and (22) with { = u and ¢ = v, we have

B(Au,A;v,n) B(Su, Tv,a) B(Au,Su,n)
Js 0(r)dr, f, 0(r)dr, f, 0(1)dr,

o(r)dr, [ BlawTv.a) o(r)dr, [ BlSwAwa) o(t)dr

fQ}(A iV, Tv,A)
0 0

0

D(Au,4;v,n) D(Su,Tv,a) D(Au,Su,a)
Js 0(r)dr, |, 0(r)dr, f, 0(1)dr,

D(A;v,Tv,A) D(Au,Tv,A) D(Su,A;v,n)
! o(r) dr, | 0(r) dr, |, o(7)dr

2(Au,Ajv,A) 2(Su,,Tv,a) L(Au,Su,n)
Js o(r)d, |, 0(r)dr, f, 0 (7)dr,

fOQ(Aiv,,Tv,A) 9(‘[) d‘[, fOQ(Au,Tv,A) 0(_[) d‘L’, J-OSZ(Su,Aiv,A) Q(T)d‘[
Then by (¢3), (¥3) and (&3), Au = Tv we have for every i,
Au = Su=A;vy =Tv. 3M
From (30), we can write for every i
AiAu = AiTU = TA,:U = TAu (32)
Using (20), (21) and (22) again with { = u and ¢ = Tu, we obtain with (32)
foﬂ}(Au,TAv,A) @(T)d‘[, J-O%(Au,TAu,A) @(T)d‘[, fol Q(T)d‘[,
1 @(T) d‘L’, B(Au,TAu,n) 9(_[) dT, B(Au,TAu,n) @(T)d‘[
0 0 0
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D(Au,TAv,n) D(Au,TAu,n)
Js o(r)dr, f, 0(1)dr, 0,

0 J-OQD(Au,TAu.A) 0(r) dr, fOE(A”'TA“"‘) o(t)dr

L2(Au,TAv,n) L(Au,TAu,n)
fo 0 (7)dr, fo 0(1)dr, 0,

§
0, foﬁ(Au,TAu,A) 0('[) d’l,', fOiZ(Au,TAu,A) @(‘[)d’[

So, by (¢3), (3),and (&3), Au = TAu . Therefore, we have by (30), (31),and (32), for every i € I.

A;(Au) = T(Au) = Au, (33)
and
A(Au) = A(Su) = S(Au). (34)

Using (20), (21),and (22) again with { = ¢ = Au, we get

f‘B(AAu,Au.A) 0(0)dr, f?("““”"*”"‘) 0(r)dr, |, 01 0(r)dr,

0
B(AAU,Au,n) B(AAu,Au,n)

f01 o(7) dr, fo O0(1) dr, fo O(t)dr

fiD(AAu,Au,A)
0

D(AAu,Au,n)
0, dr, fo

0(7)dr, [ (;D (“Aduaun) g (t)dr, 0,

0(7) dr, ff (Adu,Aun) 0 (7)dr

fQ(AAu,Au,A)
0

L(AAU,Au,A)
0, dr, fo

0(r)dr, [ 053 (Adu.aun) o (t)dr, 0,

0(r)dr, [ (:3 (adu.dun) g (t)dr

Hence by (¢53), (¥3), (&5),(33), and (34) for all i, we have
A(Au) = S(Au) = A;(Au) = T(Au) = Au.

So, Auis a FP of 4, S, T, and A; for every i. The unicity of the common FP is shown as in the previous theorem. And
the proof is finished.

As a particular case, we get the following theorem which generalizes Theorem 4.1 of (Pathak et al. [29]), Theorem
2.3 of (Merghadi and Godet-Thobie [25]) and Theorem 3.1 of (Aliouche and Popa [31]) among others.

Theorem 4.8: Let 4,B,S and T be self-mappings of a NSMS (Q, B, D, &,+,0), which satisfies

JRUAES 9 (gyar, [P 0 (rdr, [PH 0 (x)d,

0 0 0
>0, (35)
fm(Bg,Tg,A) 0(0) dr, fi?(Ai,Tc.A) o()dr, J&B(S(.Bc/\) o(t)dr

0 0 0

¢

D(AJ,Bg,n) D(S¢,Ts,a) D(AL,53.0)
N o(r)dz, f, 0(r)dr, |, 0 (17)dr,

<0, (36)
D(BG,Tg,n) D(AL,Tg,n) D(S¢,Bg,n)
N 0(r) dz, 0(r)dr, o(1)dr
) OE(A('BC'A) 0(7)dr, [ OQ(S{'TC'A) o(t)dr, foﬁ (A6sem g (r)dr,
<O0. (37)
(B¢, Tg,n) (AL, Tg,n) 2(S¢,Bg,n)
Js 0(r) dr, | 0(r)dr, o(7)dr

for every ¢ and every ¢ € Q, where ¢,y : RS — R satisfy the conditions (¢5) and (¥3) and

®:R, — R, is a locally integrable function which satisfies f;@(A)dA >0, for every 0 < § < e. If the pairs (4,5)
and (B, T) are occasionally weakly compatible, then 4,B,S and T have a unique common FP.
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5. Examples and Applications

We provide some examples that illustrate our theorems before explaining a number of previously published
results that can be obtained as special cases of our earlier theorems.

Example 5.1: Let (Q, B, D,*,9) be as following: Q = [0, 4],

A
B ({,¢4) = m,
oen =
L(¢,¢,n) =@-

a*b=abanda ¢ b= min{l,a + b}. Let
(T4, T2, T3, Ty Ts, T) = Ty — Min{7,, T3, Ty, Ts, T},
WY(Ty, T2, T3, Tsy Ts, Tg) = Ty — Max{ty,, T3, T4, Ts, T},
(11,72, T3, T4y Ts, Te) = Ty — Max{T,, T3, T4, Ts, Te },
and 4, A;¢;, S, and T be self-mapping of Q such that

(giff € [0,2] 3if¢ € [0,2]

AT =12if{ €[23], S¢ = gif{ € [2,3[
Eif{ € [34]

;if(e[3,4[

foralli e D,
2if¢ € [0,3[ 4—cifce[03]
Aig:{z +zif ¢ € [3,4] Tc:{ Zif¢ € [3,4]

Note that there exists X + 2inQsuchthat 42 = 4;2 = §2 = T2 = 2,Vi.ltis clear with the sequence {,, = 2 + 11—1 that
(4,5) satisfies the property (E.A).C(4,S) = {2},AS2 = SA2; (4,S) are weakly compatible.C(A,,T) = {2} and A,T2 =
TA,2 = 2, then hypotheses (I) and (II) of Theorem 4.3 are satisfied.

AQ—327 TQ—3U14
—{z' '§}C —{z} 11.4],

and

a0 ={22+3 csa=23u{l}

Now, we verify the condition (7), (8) and (9) of Theorem 4.3. Let @(7) = 1

B&em 1¢—l
O(t)dtr =———,
fo © A+ 1{—=¢])

D) gl
JO O(r)dr = Trie—cn T}

L2(¢,60) —
f O(t)dr = u
0 A
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If we define R,L,J,P Q and U by

fo%(A(,Aig,A) 0(r)dr, fO%(sz.Tc.A) 0(0)dx, f(;B(A(.S(,A) o(r)dr,
R, ¢,0)=¢ ; '
f%(Alg‘,TC,A) 0('[) dT, J‘Oﬂ}(A(.Tq.A) Q(T)d'[, f(;B(SZ.ALC.A) G(T)df

0

D(ASAi6.0) D(S¢,T¢,n) D(A{,S¢.0)
N o(r)ds, |, 0(r)dz, f, 0(7)dr,

L& 60) =¥ pueren

D(ASTGn) D(S¢,Ai6.0) ’
N 0(r) dr, 0(r)dr, |, 0 (7)dr

L(A,Ai50) L(S3,T6,n) L(A3,S¢,0)
Js 0(r)dz, [, 0(r)dr, |, 0 (7)dr,

JG68) = u ' '
fﬁ(Alg,Tg,A) 0(1) dr, fOﬁ(A(.TC.A) o(t)dr, foﬁ(sf.ALC.A) 0(t)dr

0

A A A
P({,¢,4) = min A+|S(‘T¢|'AA+|A5—S(I’[1\\+|Aic—Tc|’ '
AT AT —Tg]' A 415 — Ag
IS¢ ~Tel 14 —S¢l 1A —Ts|
Q({,5,4) = max A+|55_|7:<| _A;C:Af—li? —Af:cllAic_Td ,

A+ AT =Tgl a+ IS¢ — A

IS¢ —Tgl| |A{ =S¢

U(l,¢,A) = max A A A
©5n) A — Tg| 15¢ — Al

|A;¢ — Tg|

1]

A A
Then
R(¢,¢,4) =m—P((,CJA),
and
_ AT - Al
L, a) —m—Q(CC,A)

AT — A
]((; C,A) = |(A—C| - U(Z, ng)'

We have to prove that R({,¢,a) = 0,L({,¢,a) < 0and J({,¢,a) < 0, for every { and every ¢. It is clear that R({,¢,A) =
0,L(¢,¢,a) < 0andJ({,¢,A) < 0 when { € [2,3[ and ¢ € [0, 3[. Since, in this case,

|AS — Al = 0.
We have to study the other cases. For this, it is easy to see that R({,¢,a) = 0,L({,¢,a) < 0and J({,¢,a) < 0, if

_ (IS¢ = Tgl|A{ = 5¢], |4y — T, o
V@0 = g Ui isg Al 140 st

See Tables (1-8) 5.1 and 5.2 for required values of this example.
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Table 1: Some values connected with Example 5.1.
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Cel0,2] zefo2[ 7el02] 7e02] e [z,z +7[
selolf sel12] ¢e23[ ce34l ce34]
1 1 1 1 1 1
A{ — A, Z Z Z Z_z z
14¢ = 4] 3 3 3 3 i i
9
IS¢ —Tg] 1-¢ ¢—1 ¢—1 y {—7
2 2 2 2
AL —-S - - Z Z -2
|Ag —S¢] 3 3 3 3 ¢
5 1 5 1
A, —T 2 - 2- -2 4z 24z
|4; — T¢] ¢ ¢ ¢ a3 YR
5 5 5 19 5
A —T Z_ - _Z i z
148 =Tl 37°¢ |g 3| £73 12 4
1 1
IS¢ — Ag] 1 1 1 1-- 2+5-¢
9 5 1
v, 2 - 1 -1 z 24
€9 ¢ Y y 2t3
1 1 1 1 1 1
>= >= >= >--= ==
3 3 3 3 i i
Table 2: Some values connected with Example 5.1.
1
(E[2+?3[ 56[3,1[ ce[f.z;[ ce[53.4[ ¢ e 34l
- i z €34
ce[34] CE[O'Z[ ge[z'z ge[2'3[ s €34l
1 1 1 1 1 1
AC — A, - - Z - i
14¢ = 4] i 2 2 2 2 i|
3 1 1 1 11
S¢—T _Z Z_ _Z _Z =
IS¢ —Tg] (-2 57§ $—3 $=3
|AC — S¢| (-2 2 2 2 2
5 1 5 1
|4is — Tg| -+ 2-g¢ ls — 2] ¢—2 — 4=
4 i 4 i
5 5 5 5 3
Al —T 2 > 2 _2 2
|[AC 5] Z 2 ¢ 2 ¢ ¢ 2 2
1 3 3 3 3 1
S¢— A g z = = e
I5¢ = Ais] 2+i ¢ 2 2 2 2 i
5 5 1 11
V(, 4z Z_ 2 _Z =
(49 yRir 57¢ £72
1 1 1 1 11
g >= >= == >|-—=
i 2 2 2 2 z|

So, for every {, every¢ and every a,R({,¢,a) = 0,L({,5,a) < 0 andJ({,¢,a) < 0. Then, all conditions of Theorem
4.3 are satisfied. We give now an example which illustrates Theorem 4.7.

Example 5.2: Let (Q, B, D, £,%,0), be the NSMS in Example 2.5, 6(a) = 1,
O (T4, T2, T3, T, Ts, Tg) = Ty — MiN{ty, T3, Ty, Ts, Te ),
Y (Ty, Ty, T3, Ty, Ts, Tg) = Ty — MaAx{Ty, T3, Ty, Ts, Te ),
§(T1, T2, T3, T4, Ts, Tg) = Ty — Max{Ty, T3, Ty, Ts, Te}-
Let 4, A;ep+, S, and T be self mapping of Q such that
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1 if ¢ 0'1
o omeep [
el YT M
pircefn]
for all i € D7,
. if(;E[O,%[ . ifge[ol[
2 ircefta ; ifeelz]

If, we define R,L,P,J,U and Q as in the previous example, we have, except when the values are equal in which
case, as indicated by *, B takes the value 1 and D, 8 are 0,

max{S¢, T¢}, max{A{, S}, }

2P(¢,6,4) = min {maX{Aig, T¢}, max{A(, T¢}, max{S{, A;c}

min{S{, T¢}, min{A{, S{}, min{A;¢, Tg},}

2Q0(¢,6,8) = max{ min{AJ, T¢}, min{S{, A;¢}

min{S¢, T¢}, min{A{, S{}, min{4;c, Tc},}

20, 6,4) = max{ min{A{, T¢}, min{S{, A;¢}

1

R((! S A) = EmaX{A{!Aic} - P({: ¢ A),
1

L((! ¢ A) = Emln{A(IAlg} - Q((: ¢ A),

1
]({! S A) = Emln{A(!Alg} - U({! S A)-

We have to prove that R({,¢,a) = 0,L({,¢,a) < 0andJ({,¢,a) < 0,for every{ and every ¢. It is evident that
R((,¢,n) = 0L({,¢,A) <0andj({,¢c,a) < Owhen{ =g =§Since,

1

AQ=Ag=S5(=Tg=1

We represent the other cases in following Tables 3-8.

Table 3: Some values connected with Example 5.2.

oL oL ol 1
cefog] cefog] cefoz ‘=3
€0 L = ! € 1 € [0 L
¢ [ '2[ £=2 ¢ ]2 ] SE172
max{Af, Ac) : > > :
4 1 1 4
max{S{, T¢} g 5 5 g
max{A¢, S¢} 2 Z 2 .
4 1 4
max{4;, T¢} = * > z
4
max{A{, T¢} 2 2 2 :
3 1 1 3
max{S{, A;s} z 3 -+ % z
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Table 3 (contd....)

efo] efo] efo] =
ceo; ceo; [ ‘=5
efos] = 3] efog]
¢ ) C—Z 9 2’ S '3
3 1 1 1 3
P(¢,6,n) E Z ; E g
5 3 5 1 5 1 1 3 3
R(, ¢, A —_——> ———> —_—— > ———=>0
€50 12 8_0 12 4-_0 12 7 4i_0 8 87

Table 4: Some values connected with Example 5.2.

_ el T el 1
(=3 ‘€l ce 1] ce 1]
1 1 1
selz] o] €=2 £=2
1 3 1
max{Ad{, A; — — * —
{AS, Aic} 5 2 >
4 1 1
max{S{, T * - — —
{5¢,T¢} z 5 5
1 1 1
max{A{,S * — — —
43,50} = = =
1 4 1
A, T = z =
max(;s,T) ; g : .
4
max{A{, T¢} * = * *
1 3 1 1
max{S{, A; — Z — i
{5¢, A6} 2 2 2 772
1 1 1 1
P((, ¢ A — _ Z a4
©50) y y y + 0
1 1 3 1 1 1 1
R, ¢a ——=> S—=> 1--> ——o——>
©,5.8) 77220 g 220 220 177 52"

Table 5: Some values connected with Example 5.2.

e|0 ! e |0 ! € |0 ! -1
e o] celog] celog] ‘=
e|0 L ! € ! 1 € |0 !
¢ [2[ ) ¢ ]2’ ] ¢ [2[
3 1 2 1 1
max{A{, A;¢} ) 3 ; + 2_1 2
1 1 1 1
max{S{, T¢} 3 3 3 3
1 1 1
max{A{, S¢} T 5 5 *
3 1 3
max{A;s, T¢} 2 * S+ 2
4 1 1 1
max{A{, T¢} T 3 3 3
1 1 1 1
max{S¢, A;c} < ! c -
2 1 1 3
Q¢ 60 = 2 2 =
3.1 1 1 1 1 3
L({, ¢ a -—=<0 -<0 -—+—=—--<0 -—-=-<0
©5.n) 8 57 4~ +4i 4 4 87
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Table 6: Some values connected with Example 5.2.

Kamran et al.

-1 € L 1 ! 1 € ! 1
¢=3 ¢ ]z] 56]5’] ¢ ]2]
e o 1 e
R PR ¢ [2[ ) ¢ ]2]
2 1 1 1
AL A; 4+ Z 24
max{A¢, 46} 7+ 5 2 * AT
1 1 1
S¢, T Z z Z
max{S¢, T¢} * 7 2 7
1 1 1
max{A{, S * Z Z Z
{A¢, ¢} 2 2 y
1 3 1
A, T 4= z 24
max{A:s, T¢} 772 4 * 772
1
max{A{, T¢} * > * *
1 1 1 1
ST, A; 4= Z z z
max{S¢, 46} 772 4 4 4
1 3 1 1 1
Q. 6,n) ;‘f‘a § § __E
11 1 1 1 3 1 1 1 1 1
L({, ¢ A —t——— ———< ——< ———_———
€50 7 4 7 4i 2 8~0 0-7=0 7ta 7m0
Table 7: Some values connected with Example 5.2.
o] o o] _
¢ 5 ¢ ['E[ { 5 (==
€ 01 ! € ! 1 € 01
¢ [2[ §=2 ¢ ]2’ ] ¢ [2[
3 1 1 1
AL A; 2 z £ 2
max{A¢, Aic) 4 2 772 2
1 1 1 1
max{S{, T — — Z -
{S¢, Ts} s z z 5
1 1 1
max{A{, S — Z Z ¥
{A, 5S¢} z z z
3 1 3
max{4;¢, T — R e
x{A;5, Ts} y * +5 2
4 1 1 1
max{A{, T - — Z —
x{A{, T¢} = 5 5 5
1 1 1 1
max{S{, A; — — — —
X{( lc} 5 5 5 2
2 1 1 3
U, ¢ A - _ Z -
¢, 6,4) z 4 8
3 1 1 1 1 1 3
L6, A ——=< -< —4——=-< ——=<
JACH AN g 5=0 750 +37750 7-g=0
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Table 8: Some values connected with Example 5.2.

! el Ly el
(=3 el ¢elz] cel;
e]l 1 elo2 -1 el:a
LAY ¢ [2[ =2 ¢ ]2]
2 1 1 2 1
max{A{, A; — 4 — Z * .-
{AC, Asc} =+ 5 =+ o
max{S¢, T} . % % %
max{A¢, S¢} . % % %
2 1 3 1
max{A4;¢, T — 4 — z * .-
{4;5, T} =+ y +5
1
max{A{, T¢} * 3 * *
2 1 1 1 1
max{S{, 4; -+ — - - -
x{(5¢, Ais} 7% 2 2 )
1 1 3 1 1 1
U@ 6a S 2 - o=
6.0 7 % 8 8 7 4
11 1 1 1 3 1 11 1 1
LG A 4t —————< < —--< S —
JG6n) AT TR 2 8=" 0-7=0 AT TR

Theorem 4.7 is explained by this example because other theorem’s assumptions are met. As specific examples
of our earlier theorems, we now mention a few results that have already been published. The subsequent theorem
enhances Theorem 3 of (Djoudi and Aliouche [30]). Since this result only applies to symmetric spaces, no restrictions
on the ranges of 4,B,S, and T are made.

Additionally, the upper semi continuity and non-decrease of i hypotheses are dropped, and the weak
compatibility of the pairs (4,5) and (B, T) is replaced by the occasionally weak computability.

Theorem 5.3: Suppose (0, B, D, &,+,0 ) be a NSMS and 4, B, S and T be self- mappings of Q which fulfil the following

axioms, for every { and every¢ € Qanda > 0
B(SE.TG.n) P B(ST,T6.0) P
a <f qb(r)d‘r) + <f (l)(r)d‘[) ,
0 0

B(AL,ST,0) p B( B¢, TG,n) p
( | cp(r)dr) ( | ¢>(r)dr> ,
0 0

B(AL,Bg,A) 4
(f ¢(T)df> =¢|(1=a) min B(4Z,5¢.0) BAZ Tg) 5 ’
, e e
( | o ¢>(r)dr> ,
0 0

BAL o) B(57,Be.n) :
< j o ¢>(r)dr)
0 0

D(S,TG,) P D(SY,TG,) 4
a (J- q.’)(‘r)dr) + <j ¢(T)d‘r> ,
0 0
D(AL,ST ) p D( Bg,TG,A) p
( | ¢(r)dr) < | ¢(r)dr> ,
0 0

D(AL,Bg,n) p
(f ¢(T)dr> < | -a)] max, D(AZ,5¢,0) DAL Tgn) z ‘
< | oo ¢(r)dr> ,
0 0

DAL T6.) D(SBe) f
( J- ¢(t)dr f ¢(‘r)d‘r>
0 0
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2(S3,T.n) p 2(S7,Tg.n) p
a<f0 ¢(‘L’)d‘r> + <f0 qS(‘r)dr) ,
2(AZ,S¢,0) p 2(Bg,TG.) p
( | ¢(r)dr) (f ¢>(r)dr) ,

0 0
b

L(AL,ST,n) L(AL,T¢,n) g
( f $(2)dr f ¢(r)dr) ,
0 0

AL, Ten) 9(S¢,Be,n) z
( | P | ¢(r>dr)
0 0

Where ¢,¢,é: R, — R, satisfy ¢(a) > a,1(a) < aand é(a) < aforeverya>0,a € [0,1[ and ¢: R, — R, is integrable
function locally which accomplish f;@(A)dA > 0, for each 0 < § <€. A4,B,S and T have a unique common FP in Q, if
pairs (4,5) and (B, T) are occasionally weakly compatible.

2(4¢,Bg.) p
(f ¢(T)d‘r) <t¢|(1-a)| max

Proof: We define F, G, H: RS — R, respectively by
v )
F (A1, Mg, A3, Ag, A5, Ag) = A — ¢ (aAf + (1 — a) min {AZZJ,AI;,AZ, (A3, A5)2, (AS,AG)Z})’

p p
G (A1, Ay, A, Ay, A, Ag) = Af -y (aAf + (1 — a) max {A?,A?,AZ, (a3, n5)2, (A5,A6)2}),

p p
H(Aq, Mg, Az, Ay, As, Ag) = Af —-¢ (aAll’ + (1 — a) max {AZZJ,AZ;,AZ, (a3,n5)2, (AS,AG)Z}),

F (qu(A) da, fu@(A) da, fv@(A) da, IUO (a) da, fu@(A) da, qu (a) dA) >0,
0 0 0 0 0 0

is written
u 14 v 14
v v <f o(n) dA) ,<f 10N dA)
u u 0 0
(f 0(A)dA> —¢ a<j @(A)dA) + (1 — a) min P >0,
0 0 u v 2
0(a)d o0(a)d
<fo (a) A-fo (a) A>
that is

" v . v <fu@(A) dA) f 10N dA
(f o(n) dA) > ¢ a<f e(n) dA) + (1 — a) min
0 0

Since ®(a) > aand a € [0,1], we obtain

Nl'ﬁ

(J- 0(a) da J-@(A)dA

u p u P <J-u9(1\) dA) J- 6(n) dA
(f 0(n) dA) > a<f 6(n) dA) + (1 - a) min
0 ’ <f @(A)dAf @(A)dA

and

p

(fou@(A) dA)p > min {(LMO(A) dA) ,<J:@(A) dA)p , (J;uG(A) dA)p , <LV0(A) dA)g}.
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Which implies

fu@ (A)da = fv@ (a) da.

0

So, F satisfies (¢3) similarly, since ¥(a) < a, we show that

G (fu@(A) da, fu@(A) da, J-VQ(A) da, fv@(A) da, fHO(A) da, qu(A) dA) <0

this implies that
[} 0(a) da < [} 0(a) da.

Then G satisfies (¢§5) and since ¥ (a) < a, we show that

H (fouO (a) da, LHQ(A) da, jov@(A) da, fOUG (a) da, LuG(A) da, LHQ(A) dA> <0,

this implies that
fou@(A) da < f;@(A) da.
Then H satisfies (¢5) and by Theorem 4.8, proof is finished.

If we put p = 1, we can give the suitable theorem which derived Theorems 3.1 and 3.2 of (Kumar et al. [14])
Theorem 2 of (Aliouche [24]), Theorem 5 of (Popa, 1999), Theorem 3.1 of (Aliouche and Popa [31]) and is an improved
variant of Theorem 1 of (Aliouche [24]) since, in it, about the range of the maps 4, B,S and T there is no hypotheses
of inclusion and also not required the property (E.A). If in the following theorem, we put &(t) = 1 for every 7, we
obtain an improvement of Theorem 2 of (Aamri & El Moutawakil 2002).

Theorem 5.4: Assume the NSMS (Q,%B,D, £,%,0) and 4, B, S and T be self- mappings of Q which fulfil the following
axioms, for every { and every¢ € Q, and everya > 0,

B(S¢,T¢,n) B(AL,SC,n) B(B¢,T¢,A)
J’ ¢(r)dr,j' ¢(r)dr,j' $()dr,
0 0 0

B(AL,T¢,A) B(S{,Bg,)
j ¢@wj ()d7)
0 0

D(SY,Tg,n) D(AL,S.a) D(Bg,Tg,n)
j‘ ¢(r)dr,j‘ ¢<r)dr,j‘ $()dr,
0 0 0

D(AJ,T¢,A) D(S¢,Bg,n)
f ¢mmj $(2)dr)
0 0

B(AG,Bg,)
f ¢(t)dt = ¢ | min
0

D(AJ,Bg,A)
f ¢(t)dt < | max
0

and

2(S¢,T¢,n) L(AL,ST,n) 2(B¢,T¢,n)
j' ¢(r)dr,j' ¢(r)dr,j’ $()dr,
0 0 0

(AL, Tg,n) 2(S¢,Bg,A)
f ¢mwj $()dr)
0 0

where ¢, : R, - R, satisfy ¢(a) > aand p(a) < aforevery a> 0and ¢: R, —» R, is locally integrable function, which
satisfies f;@(A)dA > 0, for each 0 < § <€.4,B,S and T have a specific common FP in @, if pairs (4,5) and (B,T) are
occasionally weakly compatible.

2(AZ,Bg,n)
f ¢(t)dt < &| max
0
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Proof: Same as to the preceding theorem by defining mappings F,G,H : R® - R as
F(Aq, Az, A3, 0q, 85, 86) = A1 — P(min{ay, A3, 44, A5, 86}),
G (A1, Az, Az, Ay, A5, Ag) = Ay — P(max{ay, Ag, Ay, A5, A6}),
and

H(Aq, Az, A3, Mg, 85, 06) = Ay — §(Max{ay, Az, Ag, As, Ag)).

Kamran et al.

As before, we show that F and G satisfy respectively (¢5), (5)and (&3). And Theorem 4.8 allows us to conclude

and to finish the proof.

Now we select @(t) = 1 for every 7 > 0 in the preceding theorems and we express by individually F and G are

the sets of all continuous functions F, G: R® — R satisfying the following axioms:
F(u,v,u,v,u,v) = 0,
or
F(u,v,v,u,v,u) = 0,
or
F(u,u,v,v,u,u) = 0.
Implies u = v, and respectively,
G (u,vu,v,uv) <0,
or
G(u,v,v,u,v,u) <0,
or
G (w,u,v,v,u,u) < 0.
Implies u < v and
H(u,v,u,v,uv) <0,
or
H(u,v,v,u,v,u) < 0,
or
H (u,u,v,v,u,u) < 0.
Implies u < v.

Then, we give following theorems.

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Theorem 5.5: Let (Q, B, D, £,%,0) be a NSMS for Q which satisfies (W4), (H.E), (CE.1), (CE.2) and A4, (4));e;, S and T be

self mappings of Q satisfying AQ c TQ and 4;Q < SQ for every i € I and
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SB(A('AL'C' A)'SB(S(' TC: A)'SB(AL S{, A)
<§B(ALC! TC' A) ) Q}(A{’ TC' A)! SB(S(!ALC! A)> = 0, (47)
D(AS, Ai6,4),D(S¢, Tg, 4), D(AL, S¢, 1)
(Q(ALC! TC' A) ) Q(A{’ TC' A)! b(S{!ALC! A)) = 0’ (48)
E(A(' Aic' A), 8(5(, TC: A), ﬂ(A(, S(, A)
H <3(ALC, TC' A) ) /Q(A{' TC' A)!’Q(S(!Aic’ A)> = 0 (49)

for every {, every ¢in Q and every o > 0, where F € F,G € $and H € H. Suppose:
() (4,5) or, for all i, (A4;,T) satisfies assumptions (E.A),
(1) (4,5) and for some k € I, (4, T) are weakly compatible.

Whenever one of the subspaces AQ, SQ, 4;Q and TQ of Q is closed, then 4,S,T and 4;, for alli €I, have a unique
common FP in Q.

Theorem 5.6: Suppose (2,8, D, £,%0) be a NSMS. Let F,G,H: RS — R satisfying (40), (43), and (46) respectively
and (4,);e;, the self-mappings of Qis S and T which satisfy (47), (48), and (49) respectively and fulfill the conditions
which are given below:

() for some k € I, (A, S) is pair which is sometimes weakly compatible,
(I) there exists v € Ni € I C(A4;,T) suchthat A;Tv = TA;vforalli # k,

where C(4;,T) is the set of points of coincidence of 4;and T. Then 4,S,T and 4; , for all i € I, have a unique common
FPin Q.

For four applications with its specific case, the consecutive theorems, we have improved Theorems 2.1 and 2.2
of (Aamri and El Moutawakil [27]), Theorem 2.8 of (Merghadi and Godet-Thobie [25]) and Theorem 4.1 of (Pathak et
al. [29]) among others.

Theorem 5.7: Suppose (9,8, D, £,%,0) be a NSMS and 4, B, S and T be sel-mappings of Q satisfying, for all { and ¢
in Q and everya> 0,

F (%(AC, Bc,A),%(S(,TC,A),%(ALS(,A)) >0
B(Bg, Ts,A) ,B(AL, Ts, 1), B(S¢,Bg,a)) —
(CD(A(,BG,A),@(SC, Tc,A),CD(Ai,Si,A)) <0
D(Bg,Tg,n), D(AL, Tg,8),D(S¢, Bg,a)) ~
<R(A(,BC.A).>3(S(,TC,A).B(Ai.Si.A)) <0
L(Bg,Ts, ) ,8(AL, Tg, ), 8(S¢, Bg,a)) —

where F,G,H: RS —» R satisfies (40), (43),and (46) respectively. 4,B,5S and T have a unique common FP in case of
(4,5) and (B, T) are occasionally weakly compatible.

6. Conclusion

In this manuscript, the authors introduced the concept of NSMSs and proved several common fixed point results
for four mappings by utilizing the locally integrable function and occasionally weakly compatible mappings. These
results generalized several fixed point results presented in [4, 7, 12, 14, 17, 24-27, 29-31, 33]. To show the validity of
these results, the authors provided some non-trivial examples. This work can be extended in the framework of more
generalized spaces and by increasing the number of mappings.
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