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1. Introduction

The theory of time scale is a relatively new branch of mathematics which was initiated in 1988, the German
mathematician Stefan Hilger [1] proposed a time scale as a unifier between the discrete and continuous calculus.
Since then, it has gained a lot of interest from mathematicians working in various fields of the mathematical
sciences, which among those for instance we can refer to [2-5] that are devoted to develop various results
concerning fractional calculus on time scales.

In the present article, motivated by the methods in [6-9], we attempt to prove some upper bounds for the delta-
Riemann-Liouville fractional integral of functions which are n -times rd -continuously 4 -differentiable with
exponentially s -convexity property in the second sense, on an interval in some time scales. In the next section, we
give some basic results and well-known inequalities which are useful in proving our main results. In Section 3, the
main results are framed and justified anchored on the referred results, especially the notion of exponentially s -
convexity in the second sense, fractional Taylor formula and the technical lemma which have the main role among
the others.

2. Preliminaries

Suppose that T is an unbounded time scale with forward jump operator and delta differentiation operator ¢ and
4 -respectively. Let also, a,b € T, a < b and an interval [a, b] in T means as an intersection of a real interval with the
supposed time scale.

For a = 0, with h,: T x T - R we will denote the generalized polynomials on time scales defined as follows
ho(t,s) =1,
ha(t,s) = [} he_1(t,o(D)AT, t,sET.
Furthermore, it is established in [7] that for a, 8 = 1 we have
t
faha_l(t,o(u))hﬁ_l(u, a)Au = hg,p_4(t,a), tE€E][ab] 2.1
For a = 1 and f € C,4(T), with D& we denote the delta-Riemann-Liouville fractional operator defined by
DEF(E) = [, ha-a (£, 5 (D)f (DDA,
Df(t) = f(t), teT.
We note that C,4(T) is the set of all rd -continuous functions f:T — R.
We will start with the following useful auxiliary results.
Lemma 2.1 [11] Let a, 8 > 1, f € C,4([a, b]). Then
DIDLf(8) = D5 P £()
+ [ F QR g1 (8, 0 (W)hg—1 (u, 0 (W),
where t € [a,b] and p is the graininess function, i.e., u(t) = a(t) — t.
Definition 2.2 [11] Let @, 8 > 1, f € C,4([a, b]). The integral

E(f,a,8,t) = [} fF)pn(Whg-y(t,0(u))hg_1(u,0w))du, t € [a,b],
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is called the forward graininess deviation functional of f.
By Lemma 2.1, we have
DEDLf(D) =D f(O +E(f,Bt), ¢ € [a,b].
Definition 2.3[10] Leta>2and m—1<a <m, m € N, v = m — a. For a function f € CI';([a, b]), define
AT =Dy AT ()
= [L hy(to)f*" WAy, t € [a,b].
Lemma 2.4 [10] Suppose all as in Definition 2.3. Then
[y bma (6, 0@ (AT = = [ fA" W he-2(t, 0 W)y (1, 0 (w)) Au
+ [ Roea(t, o)A f (DAL,  t € [a,b].
According to the Taylor formula on time scales and Lemma 2.4, we have the following identity.
Lemma 2.5 (Fractional Taylor Formula) [10] Under the conditions of Definition 2.3, we have
£ = T et ) 2 (@)
— [} AT W@ ey (8, 0 (W), (1, 0/(w)) Au
+ [ Rz (t, 0(D)AEf(DAT,  t € [a,b].

Definition 2.6 [10] For the same assumptions as above, i.e,fora >2andm—-1<a<m,meN,v=m—q, and
for a function f € C7([a, b]), define

B(t)=f() +E(f*",a -1, v+1,t), tE€[ab]
By the fractional Taylor formula the following result is established.

Lemma 2.7 [11] Let all as in Definition 2.5. In addition, let fAk(a) =0,k €{0,..,m—1}. Then

B(t) = jtha_z(t,a(r))Ag‘lf(r)AT, t € [a, b].

Applying the fractional Taylor formula we has proved the following equality earlier, which has the main role in
deriving our results. For the readers’ convenience we bring the proof.

Lemma 2.8 [9] Let f € C" Y ([a,b]),a >2,m—1<a<m,v=m—a.Then
[ fo)as = B hi(t, ) f (@)
= [ £ W s (t, (W) hy (u, 0 (1)) Au
+ [ Baa(t,0(0) (J by (2,0 @) 2™ (w)du) AT,
t € [a,b].

Proof. Let
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t
git) = f f(s)As, te€]a,b].
Then
Ak _ pAk—1

W=7, kef(d,..,m,

MG (0) = [, b (o @)™ Wb, ¢ € [a,b]
We apply the fractional Taylor formula for the function g and we get the desired result. This completes the proof.
The following newly concept was introduced in [8].

Definition 2.9 Let s € (0,1], x, € [a, b]. Afunction f:[a, b] — Ris called exponentially s -convex in the second sense

6y f@) (t—a>5 f(b) (2.2)

f(t)s(b_ ) +
b—al eg(a,xg) \b—a/ eg(bh,xp)

for any t € [a,b] and for some B € R,. If (3.1) holds in the reverse sense, then we say that f is exponentially s -
concave in the second sense.

Throughout this paper, without loss of generality, suppose that s € (0,1).
We need the following technical lemma.

Lemma 2.10 [8] We have
[; (b = ©)%At < (b — )"~ (hz(a, b))*,
[2(t = @At < (b — )" (hy(b, @) .

Proof. Using Holder's inequality on time scales, we get:

1-s

[P -orac< ([P -var) (J7ac)

= (b - ) 5(f - b)Ar)

= (b — a)'*(hy(a, b))*

and
b b s b 1-s
J,(t—a) At < (fa(t— a)At) (fa At)
= (b — a)'*(hy(b,a))".

This completes the proof.
We recall here the following well-known inequality.
Theorem 2.11 [8] (H6lder's inequality) Let a,b € T, a < b. For rd -continuous functions f, g: [a, b] = R we have

1/q

b b 1/p b
| |f(t>g(t>|Ars<f If(t)l”Af> (f |g<t)|qAr) ,

wherep>1and1/p+1/q =1.
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3. Main Results

Theorem 3.1 Let a>2 m—-1<a<m, v=m—a, f€C%(ab]), f2@) =0, ke{01,..,

exponentially s -convex in the second sense function on [a, b]. Then

A" @1 12" )
IB(t)| < <eﬁ(a,x0) eﬁ(b,xo))h“+V(t' a), te€lab],
and
Am
IB®)| < hgpvr(ta)(b—a)” 25("; @ ())'(hz( a,b))*
IFA™ ()] .
+e[;(b, 0)(h2(b a))®), te€][ab].

Proof. Since |f4™| is exponentially s -convex in the second sense on [a, b], we have

) ol (‘1)|+(t_a)s FA" B t € [a, b].

|fA (t)l < ( _ eﬁ(avxﬂ) b—a eﬁ(b,xo) ’

1. Firstly, we will prove (3.1). We have

|B()| =

@ hamy (6,0 @) (J) by (2, 0w)) F4™ (W AU) A |
< [} haey (6,0(D) [ by (.0 @) F2™ ()| Audt

< hass (60 [ hy (mo@)((22) L

ep(axo)
u-a\* [FA" )] (b)|
+( a) eB(bxo)
< (@i 1) [ hass (&, [h, AuA
= \eparn T epioner) o M- 2 (t,0(7)) (t,0(w)Ault
A" @ M) (t
= (L 20 [t (6 oo 00
1A (@) IfAm(b))
(eﬁ e ) her(t. @), € [ab].

2. Now, we will prove (3.2). Using Lemma 2.10, we have
IBOI < [ haea (t,0(D) [ hy (7, "(”))((b a) e,;(az,))l
(52) aymuae
< ([ hama (6, 0@y (r )87 (1 (222! 1A @)l

ep(axo)
A" @)
+(b—a) eﬁ(bxo))Au)

—+
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< Rgir-1(t, a)('[ﬁ(aﬁf))' (b — a)' "% (hz(a, b))

b -2s s
L0

= harvos (6 ) (b — )2 (L@ (g, b))®

epg(axo)

+|; (bib))l (hy(b,a))*), t€ [a,b].

This completes the proof.
The next result can be stated as follows.

Theorem3.2letg>1,a=>2,m—-1<a<mv=m-a,f €Ch(a, b]) If2™| = 1 0on[a,b], |f2™|7 is exponentially
s -convex in the second sense function on [a, b], fA (a) =0,k€{01,..,m—1}. Then

I @1 12" )1
[B(t)| < < ey@xo) | (b xo) )ha+v(t, a), te€lab) (3.4)
and
A™ q

IBOI < heyya(ta)(b—a)'” Zs(lf @ @ )l) (ha2(a, b))?

(3.5)
Am q
+ o (b)), te fab]
Proof. Since |f4™|? is exponentially s -convex in the second sense function on [a, b], we have
_ S | FA™ _\S | £A™

A < G- If" @7  t—a)|f* b)) t € [a,b]. (3.6)

T (b—a)s eg(a,xy) (b—a)s eg(hb,xp)’

1. Firstly, we will prove (3.4). We have

+ hama (0@ (] hy (1,0 FA" Wb At|

|B(®)| =
< [} hamz (6,0(D) J by (. 0@)IFA™ (w) | BudT

< Jy hamz (6,0(D) [ by (0 )If 2" (W)|“Audt

< J hama (6,0 [ by (1,0 ) (s “;'fﬁ(i()')q

(u-a)s |fAm(b>|q) A
(b—a) ep(bxo)

A" @1 | 1A w)1e
5<eﬁ L ) I haca (6, 0@ [y (2 o))t

I OOk
< (Lol O [ (6 0y (7 AT

_ (1A @) IfAm(b)lq)
- ( eg(a.xo) T ep(bxo) hawv(t,a), tE€][a,b].
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2. Now, we will prove (3.5). Using Lemma 2.10, we find

b-w* 1FA" @)1
(b—a)* epg(axo)

BOI < [, ha—z (t,0(D) [} hy (1, 0(W) (s

w-a) |FA™" )| V2O nag
(b—a)s eg(bxo)

" (@)

s
(b-a)Seg(axg) “a u) Au

< (I haea (6, 0@y (T )T (2 INCE

1A ()1

v\ _ S
(b-ayep(bio) a)” Au)

[

1FA™ @) (b -

eg(axo)

< hgay-1(t Q) =~ (b — ) 7% (hz(a, b))°

A" e
epg(b.xo) (b

a)' 7 (hy (b, @))*)

=L@ g, by)s

eg(axop)

= hgsy-1(t, 0)(b —

Tl O
HE o (b)), e

[a, b].
This completes the proof.

Theorem 33 leta>2, m—-1<a<m v=m-—-a, p,q =1, —+—

convex in the second sense function on [a, b], fA (@) =0,k € {0,1,

f
B < (b= a)=2V12196 (a,v, p, t, )1 (t, a)((e'(—)l,q

AT
If (b)| (hz(b, a))s/q)’

(epbron/a t € [ab],

where

Georgiev and Darvish

1, f € C™([a, b]), |f2™| is exponentially s -

—1}. Then

17 (ha(a, )/

t 1/p
G(a,v,p, t,a) = <f (h, (t,a(u)))”Au) , tE€][a,b]

Proof. Since |f4™|7 is exponentially s -convex in the second sense function on [a, b], we have the inequality (3.6).

Then

sy (0@ (] hy (1,0 A" W)b)At|

B(t)| =
< [ haa (6,0(0) [ by (.0 @) |27 (u) | Audt

< [F hams & o @) ([ Chy (o ))P )7 (71 £2™ @) 8u)
= [{ hama (6, 0@)G (@ v,p, 7 @) ([ | 27 @) 20s)

< G(@v,p @) [ hy (6 0@ | FA" W)178u) o

(b-w* 1FA" @)1
(b-a)5 eg(axo)

< G(av,p,t,a) [ hay (0 (s
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w-a)° |2 (b)|4

1/q
(- et )W) AT

<G(a,v,pt ) fat he—s (t,0(1)AT

( IFA™ (@)1

1
f (b- u)sAu+¢f (u— a)SAu) X
eplaxg)(b-ay Ja

ep(bxo)(b—a)s “a

< G(a,v,p,t,a)((b — a)i-2s L@ O (hy(a, b))*

epg(axp)

H(b — ) O (;,’?') (h2(b, @))*)"/hg_y (t, @)

< (0= @) V26 (@, p, 6 Whe1(6.0) (e L (0,5

1F2™ )] s/a
s o)/ (h2(b,@))*?), t€[a,b],
where the last inequality results from (x + y)* < 2¥(x* + y*), x,y = 0, k > 0. This completes the proof.

Theorem 34 leta>2, m—1<a<m,v=m—a, f € C%([a,b]), |f2"]| is exponentially s -convex in the second
sense function on [a, b]. Then

A" @1 12" )
eg(a,xo)  ep(b,xo)

[AZHf ()] < < )hm(t, a), te€]la,b].

Proof. Since |f4™| is exponentially s -convex in the second sense on [a, b], we have the inequality (3.3). Then

1AGT (O] =

A" by
< [ hy (t,s@)If2" (w)|Au

12" @) A7 )
<f hy, (t,a(w)) ((b a) eg(axo) + (b a) eﬁ(bxo)>Au

AM m
< <|f @i, It )
ep(axo) ep(b.xo)

) [£hy (8, 0(u))bu

_ (1A @I, A" o)l
_ (e,,,(a,m + ey v (ta), L€ [ab]

This completes the proof.

Theorem3.5letg>1,a>2,m—-1<a<mv=m—a,f€Ch(ab]), |f*"|=10n][ab], |f>"|?is exponentially
s -convex in the second sense function on [a, b]. Then

IFA" @17 A" )
eg(a, xo) eg(b, xo)

|[AZIF ()] < < )hv+1(t, a), tE€]a,b].

Proof. Since |f4™|9 is exponentially s -convex in the second sense on [a, b], we have the inequality (3.6). Then

1AGT (O =

iRy (6 o) fA" (u)Au|
< [1hy (6, o@)IF" @)lAu
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< [Fhy, (6 o)A (W)]|9Au

t b-u\S A" @19 | (u-a)\S A" b))
= fa hv (t' J(u)) ((E) eg(axo) + (b—a) eg(bxo) Au

IFA™ (@)1 IfAm(b)Iq) t
< ( o) + P fa h, (t,0(uw))Au

_ (1A @I 1A e
—(e,,,(a,xo) e )t a), t€ab]

This completes the proof.
Theorem 3.6 Let p,q =1, %+$= lLLa>2,m—1<a<m,v=m-—a, f €CY(a, b)), |fAm|q is exponentially s -

convex in the second sense function on [a, b]. Then

_ - A" @l
GO < (b = ) 2V29G (@, v,p, 6, 0) G = i (ha(@ )

A"l s/q
 eptmopira (20, ), t € a,b],

where G(a,v,p,t,a), t € [a, b], is defined as in Theorem 3.3.

Proof. Because |f4™]4 is exponentially s -convex in the second sense function on [a, b], the inequality (3.6) holds.
Then

881 F @) = | [ by (6,0 @)™ (Wl

< [ hy (& o@D (W)]Au
< (Fichoe oayrsu) (51 £ aroou)

=G v ([ 172" wie) "

te b=y s A" @)
< G(av,pta)([,(G)* Cepane)

u-a\5 IFA" B9 \1/q
+ (b—a) eB(b,xO) )Au)

ATTL
< G(@v,p,ta)((b — ) LD i, (g, b))s

epao)

a5 IFA" )1
(b — ) L (hy (b, )

Am
< (b — @)1-2Y/421/9G (q, v, p, t, @) (—L—

Cplamoprra 2(® b))/

Ao s/a
+ (eg(bxo)/4 (ha(b,@))*?), te€la,b]

This completes the proof.
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Conclusion

In this study, we established new integral inequalities for exponentially sss-convex functions in the second sense
within the framework of time scales. Utilizing the delta Riemann-Liouville fractional integral and fractional Taylor
formula, we derived meaningful upper bounds for nnn-times rdrdrd-continuously A\DeltaA-differentiable functions.
Our findings advance the understanding of time scale calculus by unifying discrete and continuous cases and
provide a robust foundation for future investigations in fractional dynamic systems. These results not only enrich
the theory of time scales but also open avenues for applications in various domains of mathematical analysis and
its interdisciplinary connections.

Conflict of Interest

There is no conflict of interest.

Funding

No financial support received for the study.

Acknowledgments

None.

References

[1] Hilger S. Ein MaBkettenkalkul mit Anwendung Zentrumsmannigfaltigkeiten (PhD thesis). Universitat Wurzburg; 1988.

[2] Agarwal RP, Bohner M. Basic calculus on time scales and some of its applications. Results Math. 1999; 35(1): 3-22.
https://doi.org/10.1007/BF03322019

[3] Agarwal R, Bohner M, Peterson A. Inequalities on time scales: A survey. Math Inequal Appl. 2001; 4(3): 535-57.
https://doi.org/10.7153/mia-04-48

[4] Anastassiou GA. Principles of delta fractional calculus on time scales and inequalities. Math Comput Model. 2010; 52(5-6): 556-66.
https://doi.org/10.1016/j.mcm.2010.03.055

[5] Georgiev S. Fractional dynamic calculus and fractional dynamic equations on time scales. Springer; 2018. https://doi.org/10.1007/978-3-
319-73954-0

[6] Awan M, Noor M, Noor K. Hermite-Hadamard inequalities for exponential convex functions. Appl Math Inf Sci. 2018; 12(3): 405-9.
https://doi.org/10.18576/amis/120215

[71 Bohner M, Peterson A. Dynamic equations on time scales: an introduction with applications. Birkhduser; 2001.
https://doi.org/10.1007/978-1-4612-0201-1

[8] Georgiev S, Darvish V, Nwaeze ER. Ostrowski type inequalities on time scales. Adv Theory Nonlinear Anal Appl. 2022; 6(4): 502-12.
https://doi.org/10.31197/atnaa.1021333

[9] Mehreen N, Anwar M. Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in
the second sense with applications. J Inequal Appl. 2019; 2019(1): 92. https://doi.org/10.1186/s13660-019-2047-1

[10]  Georgiev S. Integral inequalities on time scales. De Gryuter; 2020. https://doi.org/10.1515/9783110705553

128


https://doi.org/10.1186/s13660-019-2047-1

