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ABSTRACT 

This study investigates the concepts of 𝑃-statistical continuity (statistical continuity with 

respect to power series method) and 𝑃-statistical ward continuity (statistical ward 

continuity with respect to power series method) within the framework of power series 

methods, which extend the scope of statistical convergence beyond classical matrix 

methods. In the background, the limitations of traditional methods in capturing 

generalized continuity behaviors are explored and the use of power series as a versatile 

tool is motivated. Connections between these specialized forms of continuity and 

standard continuity are established, providing proofs and detailed properties. The 

results include several foundational theorems characterizing 𝑃-statistical continuity and 

ward continuity under various settings. These findings contribute to a more profound 

comprehension of continuity concepts within the context of regular summability 

methods.  
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1. Introduction 

Continuity is a fundamental concept extending across mathematical analysis, real analysis, functional analysis, 

and topology. At its core, continuity for a function 𝑓: 𝑅 → 𝑅 at a point 𝑥0
′ ∈ 𝑅 is classically equivalent to sequential 

continuity at that point. The study of functional continuity has a rich history, beginning with a pivotal problem posed 

by Robbins in 1946 [1]: 

"A function 𝑓: 𝑅 → 𝑅 which satisfies the property has to be linear". 

𝑙𝑖𝑚
𝑛

1

𝑛
∑ 𝑓(𝑥𝑘) = 𝑓(𝑥0

′ ) whenever

𝑛

𝑘=1

 𝑙𝑖𝑚
𝑛

1

𝑛
∑ 𝑥𝑘 = 𝑥0

′ , 𝑥0
′ ∈ R,

𝑛

𝑘=1

 

In 1948, Buck published a solution to this problem [2], followed by solutions from five other researchers. This 

line of inquiry led to similar explorations involving various types of continuity concepts by several authors [3-10]. 

These studies often concluded that such continuous functions exhibit either linearity or continuity in the 

conventional sense. 

Furthermore, continuity can be characterized by the criterion that the sequence {𝑓(𝑥𝑛)} is a statistical Cauchy 

sequence whenever {𝑥𝑛} is statistically Cauchy. This perspective has motivated the study of continuity through 

sequences, where a function’s continuity corresponds to its preservation of certain sequence types. Among the 

significant contributions in this area, Connor and Grosse-Erdmann [11] demonstrated that specific conditions 

imposed on sequence convergence can reinforce continuity. However, they also identified cases where this 

dichotomy does not necessarily apply [12-16]. 

The investigation of various types of continuities has constituted a central focus in mathematical analysis, 

resulting in a multitude of generalisations and extensions of the classical continuity concept. Among these 

generalisations, statistical convergence has emerged as a particularly efficacious tool for studying different modes 

of continuity. This concept, which extends the notion of ordinary convergence, provides a more refined methodology 

for analysing the behaviour of sequences and functions [17-22]. 

Although statistical convergence has been extensively studied, its application through power series methods 

remains underexplored. This paper addresses this gap by introducing and analyzing the concepts of 𝑃-statistical 

continuity (statistical continuity with respect to power series method) and 𝑃-statistical ward continuity (statistical 

ward continuity with respect to power series method) within the framework of power series methods, which extend 

the scope of statistical convergence beyond classical matrix methods [23-29]. In the background, the limitations of 

traditional methods in capturing generalized continuity behaviors are explored and the use of power series as a 

versatile tool is motivated. Connections between these specialized forms of continuity and standard continuity are 

established, providing proofs and detailed properties. The results include several foundational theorems 

characterizing 𝑃-statistical continuity and ward continuity under various settings. These findings contribute to a 

more profound comprehension of continuity concepts within the context of regular summability methods. 

2. Preliminaries 

Before presenting the main results, the foundational concepts and notation are introduced. 

2.1. Statistical Convergence 

Definition 2.1 [30] Let N be the set of natural numbers and 𝐸 ⊆ N, then the natural density of 𝐸, denoted by 𝛿(𝐸), 

is given by 

 Enkn
k

E
k


→

:
1

lim:=)(
 

whenever the limit exists, where |. | denotes the cardinality of the set.  
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Definition 2.2 [31, 32] A sequence 𝑥 = {𝑥𝑛} of numbers is statistically convergent to 𝑙 provided that, for every 

𝜀 > 0, 

  0=:
1

lim −
→

lxkn
k

n
k  

that is, 

𝐸: = 𝐸𝑘(𝜀): = {𝑛 ≤ 𝑘: |𝑥𝑛 − 𝑙| ≥ 𝜀} 

has natural density zero. This is denoted by .=lim lxst nn−   

It is noteworthy that every convergent sequence (in the classical sense) is also statistically convergent to the 

same limit. However, a statistically convergent sequence does not necessarily converge in the conventional sense. 

2.2. Power Series Methods 

Methods based on power series, such as the Abel and Borel techniques, offer more extensive convergence 

criteria than those associated with standard convergence. The main principles of these methods are as follows. 

Definition 2.3 [33, 34] Let {𝑝𝑛} be a non-negative real sequence such that 𝑝0 > 0 and such that the corresponding 

power series 

𝑝(𝑢): = ∑ 𝑝𝑛𝑢𝑛

∞

𝑛=0

 

has radius of convergence 𝑅 with 0 < 𝑅 ≤ ∞. If the limit 

( )
lxup

up
n

n

n

nRu

=
1

lim
0=<0




−→  

exists then it is said that 𝑥 = {𝑥𝑛} is convergent in the sense of power series method to 𝑙.  

Remark 2.4 The power series method is considered regular if and only if 
( )

0=lim
<0 up

up n

n

Ru −→

 holds for each 𝑛 ( for 

example Ref. [35]).  

Remark 2.5 First, observe that when 𝑅 = 1, it is straightforward to see that if 𝑝𝑛 = 1 and 𝑝𝑛 =
1

𝑛+1
, the power 

series methods coincide with Abel summability method and logarithmic summability method, respectively. 

Furthermore, when 𝑅 = ∞ and 𝑝𝑛 =
1

𝑛!
, the power series method coincides with Borel summability method.  

It is assumed throughout that the power series method is regular. 

Definition 2.6 A sequence {𝑥𝑛} is quasi Cauchy with respect to power series methods if {Δ𝑥𝑛} is convergent in 

the sense of power series method to 0, i.e.  

( )
0=

1
lim

0=<0
n

n

n

nRu

xup
up




−→  

where Δ𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛 for every 𝑛 ∈ N0.  

2.3. 𝑷-Statistical Convergence 

Recently, Ünver and Orhan [36] introduced the notion of 𝑃-statistical convergence (see also Ünver’s earlier work 

for additional context [37]): 
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Definition 2.7 [36] Let 𝐸 ⊂ N0. If the limit 

( )
( )

n

n

EnRu
P up

up
E


−→


1

lim:=
<0


 

exists, then 𝛿𝑃(𝐸) is said to be 𝑃-density of 𝐸.  

It is worth noting that, from the definition of a power series method and 𝑃-density it is easy to verify that 0 ≤

𝛿𝑃(𝐸) ≤ 1 whenever it exists. 

Definition 2.8 [36] A sequence 𝑥 = {𝑥𝑛} is statistically convergent with respect to power series method (𝑃-

statistically convergent) to 𝑙 provided that, for any 𝜀 > 0 

( )
0=

1
lim

<0

n

n

EnRu

up
up


−→


 

where 𝐸𝜀 = {𝑛 ∈ N0: |𝑥𝑛 − 𝑙| ≥ 𝜀}, that is 𝛿𝑃(𝐸𝜀) = 0 for any 𝜀 > 0. In this case, it is denoted by 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑥𝑛 = 𝑙.  

Example 2.9 Consider the power series method defined by 

𝑝𝑛 = {
0, 𝑛 = 2𝑘,
1, otherwise,

𝑘 = 0,1,2, . . . ., 

and let 𝑥 = {𝑥𝑛} be given by 

𝑥𝑛 = {
𝑛, 𝑛 = 2𝑘,
0, otherwise,

𝑘 = 0,1,2, . . .. 

It is straightforward to verify that 𝑥 is 𝑃-statistically convergent to 0.  

Definition 2.10 [25] A sequence 𝑥 = {𝑥𝑛} is statistically Cauchy with respect to power series method (𝑃-

statistically Cauchy) provided that, for any 𝜀 > 0 there exists a number 𝑁 such that 

( )
 ( ) 0.=:

1
lim 0

0=<0

 −


−→
Nn

n

n

nRu

xxnup
up

N

 

3. Main Results 

3.1. 𝑷-Statistical Continuity 

In this section, a novel continuity concept based on 𝑃-statistical convergence is introduced. This concept 

establishes a continuity framework that utilises 𝑃-statistically convergent sequences. It is demonstrated that this 

approach offers an alternative perspective for analysing the continuity characteristics of functions. 

Definition 3.1 Let {𝑥𝑛} be a sequence. The function 𝑓: R → R is 𝑃-statistical continuous at a point 𝑥0
′ ∈ R if  𝑠𝑡𝑃 −

𝑙𝑖𝑚 𝑓 (𝑥𝑛) = 𝑓(𝑥0
′ ) whenever 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑥𝑛 = 𝑥0

′ .  

It is important to note that this continuity definition cannot be derived from 𝐴-continuity for any regular 

summability matrix 𝐴 as considered in [11]. 

Now, the examples are provided to show that the notion of 𝑃-statistical continuity is much weaker than classical 

continuity. 

Example 3.2 Let {𝑥𝑛}and {𝑝𝑛} be as in Example 2.9 and 𝑓: [0,1] → R given with  
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𝑓(𝑥) = {
1

𝑥
, 𝑥 ≠ 0

0, 𝑥 = 0
. 

Since 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑥𝑛 = 0 and 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑓 (𝑥𝑛) = 𝑓(0) = 0, 𝑓 is 𝑃-statistically continuous at a point 0. However 𝑓 is not 

continuous at a point 0.  

Example 3.3 Let {𝑝𝑛} be as in Example 2.9 and 𝑓: [−2,0] → R given with 𝑓(𝑥) = [𝑥] where [𝑥] denotes the greatest 

integer not exceeding 𝑥. It can be easily seen that 𝑓 is not continuous at a point 0. Now, let {𝑥𝑛} given with  

𝑥𝑛 = {
−2 +

1

𝑛
, 𝑛 = 2𝑘,

0, otherwise,
. 

Note that, 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑥𝑛 = 0 and {𝑥𝑛} is neither statistically convergent nor convergent to 0. Also, observe that 

𝑓(𝑥𝑛) = {
−2, 𝑛 = 2𝑘,
0, otherwise,

 

and {𝑓(𝑥𝑛)} is 𝑃-statistically convergent to 𝑓(0) = 0. Thus, 𝑓 is 𝑃-statistically continuous at a point 0.  

Lemma 3.4 If 𝑓 and 𝑔 are 𝑃-statistical continuous at a point 𝑥0
′ ∈ R, then 𝑓 + 𝑔 is 𝑃-statistical continuous there.  

Note that if 𝑓 is 𝑃-statistical continuous, then 𝑐𝑓 is 𝑃-statistical continuous for any 𝑐 ∈ 𝑅. Thus the set of 𝑃-

statistical continuous functions forms a vector space. 

Theorem 3.5 Every linear function 𝑓: R → R is 𝑃-statistical continuous.  

Proof. If the function 𝑓 is linear then, it has the form 𝑓(𝑥) = 𝑎𝑥 + 𝑏 where 𝑎, 𝑏 are constants. Let {𝑥𝑛} be a 𝑃-

statistical convergent sequence at 𝑥0
′ ∈ 𝑅. Thus, it is obtained that 

𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑓 (𝑥𝑛) = 𝑠𝑡𝑃 − 𝑙𝑖𝑚(𝑎𝑥𝑛 + 𝑏) = 𝑎𝑥0
′ + 𝑏 = 𝑓(𝑥0

′ ) 

which was to be shown.  

Nevertheless, it is possible to construct an example that demonstrates that the converse of the previous 

proposition does not universally hold true. The following example provides a clear illustration of this. 

Example 3.6 Define the function 𝑓: R → R by 𝑓(𝑥) = 𝑥2. Since  

𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑥𝑛 = 𝑥0
′ ⇒ 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑓 (𝑥𝑛) = 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑥𝑛

2 = (𝑥0
′ )2 = 𝑓(𝑥0

′ ) 

then, 𝑓 is 𝑃-statistical continuous. However, 𝑓 is not linear.  

The following four types of continuity for functions 𝑓: 𝑅 → 𝑅 at a point 𝑥0
′ ∈ 𝑅 are encountered in relation to 𝑃-

statistically convergent sequences and convergent sequences: 

1. ( ) ( )'

nn
'

nn xfxfxx 00 =lim=lim   (the obvious continuity) 

2. 𝑠𝑡𝑃 − lim 𝑥𝑛 = 𝑥0
′ ⇒ 𝑠𝑡𝑃 − lim 𝑓 (𝑥𝑛) = 𝑓(𝑥0

′ ) (the 𝑃-statistical continuity) 

3. ( ) ( )'

nP

'

nn xfxfstxx 00 =lim=lim −  

4. ( ) ( )'

nn
'

nP xfxfxxst 00 =lim=lim −   

It can be easily seen that (1) implies (3), (2) implies (3) and (4) implies (2). Now, the implication that (4) implies 

(1) is given. 
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Theorem 3.7 Let {𝑥𝑛} be a sequence and the function 𝑓: R → R has the following property: there exists such a 

point 𝑥0
′ ∈ R that 

( ) ( )'

n
n

'

nP xfxfxxst 00 =lim=lim −
 

(3.1) 

is valid. Then, 𝑓 is a continuous function. 

Proof. In light of the fact that the power series method is regular, 

.=lim=lim 00

'

nP

'

n
n

xxstxx −
 

Hence, it is obtained from (3.1) that 

( ) ( ).=lim=lim 00

'

n
n

'

n
n

xfxfxx 
 

Theorem 3.8 If a function 𝑓: R → R is 𝑃-statistical continuous at a point 𝑥0
′ ∈ R, then it is continuous there. 

Proof. Suppose that 𝑓 is discontinuous at 𝑥0
′ ∈ 𝑅 then, there exists a sequence {𝑥𝑛} with 

'

nn xx 0=lim  such that 

{𝑓(𝑥𝑛)} is not convergent to 𝑓(𝑥0
′ ). If {𝑓(𝑥𝑛)} exists and ( )nn xflim  is different from 𝑓(𝑥0

′ ) then, it can be written that 

{𝑓(𝑥𝑛)} has two subsequences such that  

( ) ( ) ( )( ).1,2=,,=lim,=lim 021 txfltlxflxf '

t
m

k
mk

n
k


 

Since {𝑥𝑛𝑘
} and {𝑥𝑘𝑚

} are subsequences of {𝑥𝑛}, the subsequences {𝑥𝑛𝑘
} and {𝑥𝑘𝑚

} are convergent and, they are 

𝑃-statistical convergent to 𝑥0
′ ∈ 𝑅. So, it is obtained by hypothesis that  

𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑓 (𝑥𝑛𝑘
) = 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑓 (𝑥𝑘𝑚

) = 𝑓(𝑥0
′ ). 

This leads to a contradiction. If {𝑓(𝑥𝑛)} is unbounded above, then it can be found that an 𝑛1 such that 𝑓(𝑥𝑛1
) >

𝑓(𝑥0
′ ) + 21. There exists a positive integer 𝑛2 > 𝑛1 such that 𝑓(𝑥𝑛2

) > 𝑓(𝑥0
′ ) + 22. Then it can be chosen that 𝑛𝑘 > 𝑛𝑘−1 

such that 𝑓(𝑥𝑛𝑘
) > 𝑓(𝑥0

′ ) + 2𝑘 . Inductively, a subsequence {𝑓(𝑥𝑛𝑘
)} of {𝑓(𝑥𝑛)} can be constructed such that 𝑓(𝑥𝑛𝑘

) >

𝑓(𝑥0
′ ) + 2𝑘 . Hence,  

( )
( ) ( ) 0.1=

2

1
:

1
lim 00

0=<0


















−


−→

'

k
n

n

n

nRu

xfxfnup
up

N

 

On the other hand, since the sequence {𝑥𝑛𝑘
}  is a subsequence of {𝑥𝑛}, the subsequence {𝑥𝑛𝑘

} is convergent so it 

is 𝑃-statistical convergent. Thus, by hypothesis, 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑓 (𝑥𝑛𝑘
) = 𝑓(𝑥0

′ ). This leads to a contradiction.  

Theorem 3.9 A function 𝑓: R → R is 𝑃-statistical continuous at 𝑥0
′ ∈ R if and only if it is continuous there. 

Proof. In view of the Theorem 3.8 it is enough to show that if a function 𝑓: 𝑅 → 𝑅 is continuous at 𝑥0
′ ∈ 𝑅 then, it is 

𝑃-statistical continuous at this point. Thus, let 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑥𝑛 = 𝑥0
′ , and 𝜀 > 0. By continuity of 𝑓 at 𝑥0

′  there is a 𝛿 > 0 

such that |𝑥 − 𝑥0
′ | < 𝛿 implies that |𝑓(𝑥) − 𝑓(𝑥0

′ )| < 𝜀. Hence, by the definition of 𝑃-statistical convergence, it is 

obtained that 

𝛿𝑃({𝑛 ∈ N0: |𝑓(𝑥𝑛) − 𝑓(𝑥0
′ )| ≥ 𝜀}) ≤ 𝛿𝑃({𝑛 ∈ N0: |𝑥𝑛 − 𝑥0

′ | ≥ 𝛿}) = 0, 

so that 𝑠𝑡𝑃 − 𝑙𝑖𝑚 𝑓 (𝑥𝑛) = 𝑓(𝑥0
′ ), and 𝑓 is 𝑃-statistical continuous at 𝑥0

′ .  

It is a well-established result in the field of analysis that the uniform limit of a sequence of continuous functions 

remains continuous. This property similarly extends to 𝑃-statistical continuity. 
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Theorem 3.10 If {𝑓𝑛} is a sequence of 𝑃-statistical continuous functions defined on a subset 𝑆 of R and {𝑓𝑛} is 

uniformly convergent to a function 𝑓, then 𝑓 is 𝑃-statistical continuous on 𝑆. 

Proof. Let {𝑥𝑛} be a 𝑃-statistical convergent sequence and 𝜀 > 0. Since {𝑓𝑛} is uniformly convergent, then there 

exists a positive integer 𝑁 such that |𝑓𝑁(𝑥) − 𝑓(𝑥)| <
𝜀

3
 for all 𝑥 ∈ 𝑆, whenever 𝑛 ≥ 𝑁. As 𝑓𝑁 is 𝑃-statistical continuous 

on 𝑆, it is given that 

( )
( ) ( ) 0.=

3
:

1
lim 00

0=<0

















−


−→


 '

NnN

n

n

nRu

xfxfnup
up

N

 

Also, it is given that  

{𝑛 ∈ N0: |𝑓(𝑥𝑛) − 𝑓(𝑥0
′ )| ≥ 𝜀} ⊂ {𝑛 ∈ N0: |𝑓(𝑥𝑛) − 𝑓𝑁(𝑥𝑛)| ≥

𝜀

3
} 

         ∪ {𝑛 ∈ N0: |𝑓𝑁(𝑥𝑛) − 𝑓𝑁(𝑥0
′ )| ≥

𝜀

3
} 

         ∪ {𝑛 ∈ N0: |𝑓𝑁(𝑥0
′ ) − 𝑓(𝑥0

′ )| ≥
𝜀

3
}, 

now, from the above inclusion it follows that 

( )
( ) ( ) ( ) −



−→

'

n

n

n

nRu

xfxfnup
up

00

0=<0

:
1

lim N

 

( )
( ) ( ) 

















− 
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This completes the proof.  

3.2. 𝑷-Statistical Ward Continuity 

Definition 3.11 A sequence 𝑥 = {𝑥𝑛} is statistical quasi Cauchy with respect to power series method (𝑃-statistical 

quasi Cauchy) if 𝑠𝑡𝑃 − 𝑙𝑖𝑚 Δ 𝑥𝑛 = 0, i.e., for any 𝜀 > 0,  
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where Δ𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛 for every 𝑛 ∈ N0.  
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Let 𝑎 be a fixed constant in 𝑅. If {𝑥𝑛} is 𝑃-statistical quasi Cauchy, then so is the sequence {𝑎𝑥𝑛}. Furthermore, if 

{𝑥𝑛} and {𝑦𝑛} are 𝑃-statistical quasi Cauchy sequences, then {𝑥𝑛 + 𝑦𝑛} is also 𝑃-statistical quasi Cauchy. It can thus 

be concluded that the set of all 𝑃-statistical quasi-Cauchy sequences constitutes a vector space within the larger 

space of all sequences. Furthermore, any 𝑃-statistical convergent sequence is also 𝑃-statistical quasi-Cauchy. 

Theorem 3.12 Any convergent sequence is 𝑃-statistical quasi Cauchy. 

Proof. Let 𝑥 = {𝑥𝑛} be a convergent sequence with limit 𝑙. Then, for every 𝜀 > 0 there exists an 𝑛0 ∈ 𝑁 such that 

|𝑥𝑛 − 𝑙| <
𝜀

2
 for 𝑛 ≥ 𝑛0. Thus, for every 𝜀 > 0,  

{𝑛 ∈ N0: |𝑥𝑛 − 𝑙| ≥
𝜀

2
} ⊆ {0,1,2, . . . , 𝑛0}. 

Hence  
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Then, thanks to regularity of power series method, it is obtained that 
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The proof is finished.  

Definition 3.13 A subset 𝑆 of R is called 𝑃-statistically ward compact if any sequence of points in 𝑆 has an 𝑃-

statistical quasi Cauchy subsequence, i.e. whenever 𝑥 = {𝑥𝑛} is a sequence of points in 𝑆, there is an 𝑃-statistical 

quasi Cauchy subsequence 𝛼 = {𝛼𝑘} = {𝑥𝑛𝑘
} of 𝑥.  

Theorem 3.14 A subset of R is 𝑃-statistically ward compact iff it is bounded. 

Proof. Since power series method is regular, it is clear that any bounded subset of 𝑅 is 𝑃-statistically ward 

compact . Suppose now that 𝑆 is unbounded. First pick an element 𝑥0 of 𝑆 so that 𝑥0 > 1. Then choose an element 

𝑥1 of 𝑆 so that 𝑥1 > 𝑥0 + 1. Similarly choose an element 𝑥2 of 𝑆 so that 𝑥2 > 𝑥1 + 21. Inductively, elements of 𝑆 can be 

chosen such that 𝑥𝑘+1 > 𝑥𝑘 + 2𝑘 for each 𝑘 ∈ 𝑁0. Take any subsequence {𝑥𝑛𝑘
} of the sequence {𝑥𝑛}. Thus 

1

𝑝(𝑢)
∑ 𝑝𝑛𝑢𝑛𝜒

∞

𝑛=0

({𝑛 ∈ N0: |Δ𝑥𝑛| ≥ 1}) = 1 ≠ 0. 

Thus the sequence {𝑥𝑛} has no 𝑃-statistical quasi Cauchy subsequence as well. If it is unbounded below, then 

similarly, a sequence of points in 𝑆 can be constructed that has no 𝑃-statistical quasi Cauchy subsequence. This 

completes the proof of the theorem.  
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Now, a new type of continuity is introduced, defined through 𝑃-statistical quasi-Cauchy sequences. This form of 

continuity can be seen as an extension of the classical concept, enabling the examination of the behavior of 

sequences under specific statistical conditions within a broader framework. 

Definition 3.15 A function 𝑓: 𝑅 → 𝑅 is called 𝑃-statistical ward continuous on a subset 𝑆 of 𝑅 if it preserves 𝑃-

statistical quasi Cauchy sequences of points in 𝑆, i.e. {𝑓(𝑥𝑛)} is 𝑃-statistical quasi Cauchy whenever {𝑥𝑛} is a 𝑃-

statistical quasi Cauchy sequence of points in 𝑆.  

We note that this definition of continuity cannot be obtained through 𝐴-continuity for any regular summability 

matrix 𝐴 considered in [11]. Also note that, this continuity is not subsequential method. 

Lemma 3.16 If 𝑓 and 𝑔 are 𝑃-statistical ward continuous on a subset 𝑆 of 𝑅, then 𝑓 + 𝑔 is 𝑃-statistical ward 

continuous there. 

Proof. Let 𝑓 and 𝑔 be 𝑃-statistical ward continuous on a subset 𝑆 of 𝑅. Suppose that {𝑥𝑛} is a 𝑃-statistical quasi 

Cauchy sequence of points in 𝑆 and 𝜀 > 0. Since 𝑓 and 𝑔 are 𝑃-statistical ward continuous on 𝑆, 
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Also, since  

|(𝑓 + 𝑔)(𝑥𝑛+1) − (𝑓 + 𝑔)(𝑥𝑛)| ≤ |𝛥𝑓(𝑥𝑛)| + |𝛥𝑔(𝑥𝑛)|, 

it can be easily obtained  
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This completes the proof.  

Let 𝑎 be a fixed constant in 𝑅. If 𝑓 is 𝑃-statistical ward continuous, then 𝑎𝑓 is also 𝑃-statistical ward continuous. 

However, the product of two 𝑃-statistical ward continuous functions is not necessarily 𝑃-statistical ward continuous. 

This can be illustrated by considering the product of the 𝑃-statistical ward continuous function 𝑓(𝑦) = 𝑦 with itself, 

together with a 𝑃-statistical quasi-Cauchy sequence {√𝑛}. 

The proofs of the following theorems are omitted as they are similar to the proofs of Theorem 3.8 and Theorem 

3.10, respectively. 

Theorem 3.17 If a function 𝑓: 𝑅 → 𝑅 is 𝑃-statistical ward continuous on a subset 𝑆 of 𝑅, then it is continuous on 

𝑆.  

Theorem 3.18 If {𝑓𝑛} is a sequence of 𝑃-statistical ward continuous functions defined on a subset 𝑆 of 𝑅 and {𝑓𝑛} 

is uniformly convergent to a function 𝑓, then 𝑓 is 𝑃-statistical ward continuous on 𝑆.  

4. Conclusion 

In this paper, the concepts of 𝑃-statistical continuity and 𝑃-statistical ward continuity were explored within the 

framework of power series methods, extending the classical notions of continuity and statistical convergence. By 

analyzing these specialized forms of continuity, their foundational properties were established and their 

relationships with traditional continuity concepts were examined. 
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The results demonstrated that 𝑃-statistical continuity and ward continuity provide a richer framework for 

understanding generalized forms of convergence, offering a natural extension to existing theories. Furthermore, 

the incorporation of power series methods highlighted the flexibility and depth of these approaches in surpassing 

the limitations of classical matrix-based methods. 

It is suggested that future research directions may include the exploration of analogous continuity concepts in 

other summability methods, with the subsequent extension of these results to more complex spaces [38-41]. 

Furthermore, the present framework may be subjected to further investigation in the context of double sequences 

[42, 43], as well as extending it to the fuzzy case [44, 45], which promises to yield a wealth of applications and insights 

in related mathematical fields. 
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