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Abstract: In the present paper matrix transforms of summability domains cs
A

 of normal series-to-series matrices A  are 
investigated. Let M  be a matrix and B  a triangular series-to-series matrix. Necessary and sufficient conditions for M  
to be a transform from cs

A
 into cs

B
 are found. For application the special case, when A  is a series-to-series Riesz 

matrix, are studied. 
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1. INTRODUCTION 

In this paper matrix transforms of summability 
domains of normal series-to-series matrices are 
investigated. Let !  be the set of all sequences with 
real or complex entries, c!"  the set of all convergent 
sequences and c

0
! c  the set of all null sequences. For 

every x = x
k( )!"  we denote  

Sx = X
n( ),Xn

:= x
k

k=0

n

! , lim S x := lim
n

X
n
. 

Throughout this paper, we assume that indices and 
summation indices run from 0 to ! unless otherwise 
specified. Let  

cs := x !" Sx !c{ }, cs0 := x !cs Sx !c
0{ }.  

Let A = a
nk( ) be a matrix with real or complex entries. 

We say that a sequence x  is Aser -Asummable if the 
series  

A
n
x := a

nk

k

! x
k
 

are convergent and Ax := A
n
x( )!cs.  If the series A

n
x  

are convergent and Ax !c , then we say that x is Aseq -
summable. The sets of all A

ser - and Aseq -summable 
sequences we denote correspondingly by cs

A
and c

A
. 

A matrix A = a
nk( )  is said to be normal if A = a

nk( )  is 
lower triangular and a

nn
! 0 . A matrix A  is called 

series-to-series conservative (shortly, Sr-Sr 
conservative) if cs! cs

A
, and series-to-series regular 

(shortly, Sr-Sr regular) if 
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lim S Ax( ) = lim S x  

for every x !cs .Similarly, if for every x !cs  (for every 
x !c ) we have Ax !c , then A  is called series-to-
sequence conservative or Sr-Sq conservative 
(correspondingly sequence-to-sequence conservative 
or Sq-Sq conservative). If  

lim
n

A
n
x = limS x  

for every x !cs , then A  is called series-to-sequence 
regular or Sr-Sq regular. If  

lim
n

A
n
x = lim

n

x
n

 

for every x !c , then A  is called sequence-to-sequence 
regular or Sq-Sq regular. Let M = m

nk( ) be a matrix with 

real or complex entries and B = b
nk( )  a triangular matrix 

with real or complex entries. We say that A  and B  are 
M

ser  -consistent on cs
A

 if  

limS B Mx( )!" #$ = limS Ax( ) , 

and M seq -consistent on c
A

 if  

lim
n

B
n
Mx( ) = lim

n

A
n
x . 

If M = !
nk( ) , where !

nk
= 1  for n = k  and !

nk
= 0  

otherwise, M ser  -consistency and M seq  -consistency of 
A  and B  coincide with ordinary consistency of A  and 
B .  

The matrix transforms from c
A

 into c
B

 are studied in 
several works. First results for such transforms are 
obtained by Alpa′r (see [8], [9]), who found necessary 
and sufficient conditions for M  to be transform from c

A
 

into c
B

 if A = C
!  and B = C

!  are series-to-sequence 
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Cesa′ro matrices with orders a > 0  and ! > 0 . In 1986 

Thorpe (see [13]) generalized the result of Alp a′r, taking 
instead of C

!  arbitrary normal matrix B . Further 
generalization is presented in [7], where the author of 
the present paper considered this transform in the case 
where A  is a reversible series-to-sequence matrix and 
B  arbitrary triangular (series-to-sequence or 
sequence-to-sequence) matrix. In [6] this problem is 
studied for non-triangular B  and in [6] also necessary 
and sufficient conditions for M seq -consistency of A  and 
B  are found. Later in 1994 (see [5]) above-mentioned 
results are generalized for the case where A  is a Sr-Sq 
regular or Sq-Sq regular perfect matrix and B  is a 
triangular matrix. In 2009 (see [4]) the transform from 
c
A

 into cs
B

 are investigated in the case, where the 
elements of normal A , triangular B  and arbitrary M  
are continuous linear operators from a Banach space 
X  into a Banach space Y .  In [1-3] some classes of 
matrices M ,  transforming c

A
 into cs

B
, are 

characterized.  

In this paper in Section 2 necessary and sufficient 
conditions for M  (with real or complex entries) to be 
transform from cs

A
 into cs

B
 for a normal series-to-

series matrix A  (with real or complex entries) and a 
triangular series-to-series matrix B  (with real or 
complex entries) are established. Also in Section 2 
the M ser consistency of A  and B  on cs

A
are 

investigated. In Section 3 for application the special 
case, when A  is a series-to-series Riesz matrix, are 
studied.  

2. MAIN RESULTS 

Let throughout this Section A = a
nk( )  be a normal 

series-to-series matrix with its inverse A
!1
= "

nk( ) , 

B = b
nk( )  a triangular series-to-series matrix and 

M = m
nk( )  an arbitrary matrix. Throughout this paper, 

we use the following notations:  

C
sl

n
:= m

nk

k=l

s

! "
kl
,#

l
C
sl

n
:= C

sl

n $C
s,l+1

n . 

Theorem 2.1. For all n  the series M
n
x  are convergent 

for every x !cs
A

 if and only if  

 
there exist finite limits lim

s
csl
n
:= cnl ,          (1) 

!
l
c
sl

n

l

" =O
n
(1) .           (2) 

Moreover, for every x !cs
A

 hold the equalities 

M
n
x = !c

n0
+ "

l
c
nl

l

# Y
l
$!( )           (3) 

with 

Yl := yk
k=0

l

! ,            (4) 

where yk := Akx  and ! := lim
l

Y
l
.  

Proof. Necessity. Let all series M
n
x  be convergent 

for every x !cs
A

. Then for every x !cs
A

 we have  

k = mnkxk
k=l

s

! = csl
n

l=o

s

! yl = C
n( )

s
y , 

where y = yl( )!cs andCn
:= c

sl

n( ) . As by the normality of 

A  for every y!cs  there exists x !cs
A

 so that Ax = y , 
then the matrix Cn  for every n  transforms cs  into c . In 
addition to it,  

lim
s
C

n( )
s
y = Mnx            (5) 

for every x !cs
A

, where y = Ax . Consequently 
conditions (1) and (2) are fulfilled and equality (3) holds 
for each n  by Theorem 1.3 of [10] (see also [11], p. 
50).  

Sufficiency. Let conditions (1) and (2) be fulfilled. 
Then by Theorem 1.3 of [10] the matrix Cn  for every n  
transforms cs  into c . As equalities (5) hold, then 
equalities (3) for every n  also are satisfied by Theorem 
1.3 of [10].  

Now we prove the main result of this paper.  

Theorem 2.2. A matrix M  transforms cs
A

 into cs
B

 
if and only if conditions (1) and (2) are satisfied and 

the series ! tl

t

" are convergent for all l,          (6) 

!
l
"
tl

t=0

s

#
l

# = 0(1) ,          (7) 

where 

!
tl
:= b

tk
c
kl

k=o

t

" . 

Proof. Necessity. Assume that M  transforms cs
A

 
into cs

B
. Then all series M

n
x  are convergent for every 

x !cs
A

. Hence conditions (1) and (2) are fulfilled and 
equalities (3) (where Y

l
 presented by (4)), hold for 

every x !cs
A

 by Theorem 2.1. It follows from equalities 
(3) that  
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B
t
Mx( ) = !"

t0
+ #

l

l

$ "
tl
Y
l
%!( )           (8) 

for every x !cs
A

. By the normality of A  for the 
sequence e0 := 1.0,0,...( )!cs  there exists the sequence 

 
!x !cs

A
 so that  A!x = e

0 . This implies due to 

 

!x = A
!1( )ke

0

( )  that  

 

B
t
M!x( ) = B

t
M A

!1
e
0( )"# $% = & t0

. 

Hence  

the series ! t0

t

" is convergent .         (9) 

As every Y = Y
l( )!c  can be presented in the form (4), 

where y = yk( )!cs  and by the normality of A  for this y  
there exists x !cs

A
 so that Ax = y , then from (8) and 

(9) we get that the series  

t

! "
l
#
tl

l

! Y
l
$%( )         (10) 

is convergent for everyY = Y
l( )!c  with lim

l

Y
l
= ! . It’s 

well-known (see, for example [11]) that every 
Y = Y

l( )!c  with lim
l

Y
l
= !  can be presented in the form  

Y = Y
0
+!e;Y 0

= Y
k

0( )"c0,e = 1,1,...( ) . 

Thus, the series (10) is convergent for each 
Y
0
= Y

k
!"( ) , i.e. the matrix ! := "

l
#
ti( )  transforms c

0
 

into cs . Therefore condition (7) is satisfied and the 
series  

!
l
"
tl

l

#  

are convergent for all l  by Proposition 43 of [12]. 
Consequently, condition (6) is fulfilled by (9).  

Sufficiency. Let conditions (1), (2), (6) and (7) be 
fulfilled. Then all series M

n
x  are convergent and 

equalities (3) are valid for every x !cs
A

 by Theorem 
2.1. The validity of (3) implies also the validity of (8). It 
follows from conditions (6) and (7) that the matrix 
! := "

l
#
ti( )  transforms c

0
 into cs . Therefore from (8) 

we get by condition (6) that M  transforms cs
A

 into cs
B

. 

From Theorem 2.2 we get the following result.  

Corollary 2.3. Matrices A and B are M
ser -

consistent if and only if conditions (1), (2) and (7) are 
satisfied and 

! tl =

t

" 1 for all l.          (11) 

Proof. Necessity. Let A  and B  are M
ser -

consistent. Then conditions (1), (2) and (7) are fulfilled 
by Theorem 2.2 and equalities (8) are satisfied for 
every x !cs

A
, where  

limS Ax( ) = ! .          (12) 

Hence  

limS B Mx( )!" #$ = %          (13) 

for every x !cs
A

. Let 
 
!x !cs

A
 be a sequence, for which 

 A!x = e
0 . As in this case 

 
limS A!x( ) = 1 , then 

 

limS B M!x( )!" #$ = %
t0
= 1

t

& .       (14) 

Therefore, it follows from (8) and (13) that 
! := "

l
#
ti( ) transforms c

0
 into cs

0
. Hence  

!
l
"
tl
=

t

# 0  

for all l  by Proposition 54 of [12]. Consequently, with 
the help of (14) we have that condition (11) is satisfied.  

Sufficiency. Let conditions (1), (2), (7) and (11) be 
satisfied. Them M  transforms cs

A
 into cs

B
 by 

Theorem 2.2 and equalities (8) hold for every x !cs
A

. 
From conditions (7) and (11) it follows with the help of 
Proposition 54 of [12] that ! := "

l
#
ti( )  transforms c

0
 

into cs
0
. Consequently from (8) we get with the help of 

condition (7) that equality (13) holds for each x !cs
A

 
satisfying equality (12), i.e. A  and B  are M

ser -
consistent.  

For a Sr-Sr-conservative matrix A  we get the 
following necessary condition for M  to be transform 
from cs

A
 to cs

B
. 

Corollary 2.4. Let A  be a Sr-Sr-conservative. If M  
transforms cs

A
 into cs

B
, then 

gtk
t

! = gk gk is a finitenumber( ),        (15) 

where 

gtk := btnmnk

n=0

t

! .  

Proof. Let ek = 0,...,0,1,0,...( )  with number 1 in k -th 
position. Taking ek !cs

A
,  we get  



38     Journal of Advances in Applied & Computational Mathematics, 2014, Vol. 1, No. 2 Ants Aasma 

limS B Me
k( )!

"
#
$ = gtk

t

% .  

This implies the validity of the assertion of Corollary 
2.4. 

For a Sr-Sr-regular matrix A  we get the following 
necessary condition for M ser -consistency of A  and B .  

Corollary 2.5. Let A  be a Sr-Sr-regular. If A  and 
B  are M ser  -consistent on cs

P
, then condition (15) is 

fulfilled with gk = 1 . 

Proof follows from the fact that limS Ae
k( ) = 1  for a 

Sr-Sr-regular matrix A . 

3. MATRIX TRANSFORMS OF SUMMABILITY 
DOMAINS OF RIESZ MATRICES  

In this section we consider the case when A  is a 
Riesz matrix. Let p

n( )  be a sequence of nonzero 
complex numbers, P

n
= p

0
+ ...+ p

n
! 0  and 

let P = R, pn( ) = ank( )  be the series-to-series Riesz 

matrix generated by p
n( ) , i.e. P  is the normal matrix 

with  

ank =
Pk!1pn

PnPn!1
 

(see [10], p. 113). Throughout this section, we assume 
that terms with negative indices are equal 0. The matrix 
P  has the inverse matrix P!1

= "
nk( ),  where (see [10], 

p. 116)  

!nk :=

Pn

pn
k = n( ),

Pn"2

pn"1
k = n "1( ),

0 k < n "1or k > n( ).

#

$

%
%
%

&

%
%
%

      (16) 

Theorem 3.1. Let P be a Sr-Sr-conservative matrix. 
Then M  transforms cs

P
into cs

B
 if and only if condition 

(15) is fulfilled and 

Ps

ps
mns =On (1) ,          (17) 

Ps!2

ps!1
mns =On (1) ,         (18) 

!
s

l=0

"l

Pl

pl
"lmnl

#
$%

&
'(
+ "lmn,l+1 =On (1) ,       (19) 

!
l

"l

Pl

pl
"lgtl

t=0

s

!#
$%

&
'(
+ "lgt ,l+1

t=0

s

! =O(1) .       (20) 

Proof. Necessity. Assume that M  transforms cs
P

 
into cs

B
. Then for A = P  conditions (1), (2), (6) and (7) 

are satisfied by Theorem 2.2 and condition (15) is 
fulfilled by Corollary 2.4. With the help of (16), we get 
that  

cnl =
Pl

pl
mnl !

Pl!1

pl
mn,l+1,         (21) 

csl
n
=

cnl l ! s "1( ),

Ps

ps
mns l = s( ),

0 l > s( ).

#

$

%
%

&

%
%

 

Hence  

!lcsl
n

l"s#2( ) = csl
n
# cs,l+1

n
=
Pl

pl
mnl #

Pl#1

pl
mn,l+1 #

Pl+1

pl+1
mn,l+1 +

Pl

pl+1
mn,l+2

 

=
Pl

pl
mnl !

Pl+1

pl+1
mn,l+1 !

Pl ! pl

pl
mn,l+1 +

Pl+1 ! pl+1

pl+1
mn,l+2  

=
Pl

pl
!lmnl "

Pl+1

pl+1
!lmn,l+1 + !lmn,l+1.  

This implies  

!lcsl
n

l"S#2( ) = !l

Pl

pl
!lmnl

$
%&

'
()
+ !lmn,l+1 .       (22) 

It is easy to see that  

!lcsl
n

l=S"1( ) =
Ps"1

ps"1
mn,s"1 "

Ps

ps
mn,s "

Ps"2

ps"1
mn,s ,       (23) 

!lcsl
n

l=S( ) =
Ps

ps
mn,s          (24) 

and  

!
l
c
sl

n

l>s( ) = 0.          (25) 

Therefore conditions (17) and (19) are fulfilled by (2) 
and  

Ps!1

ps!1
mn,s!1 !

Ps

ps
mn,s !

Ps!2

ps!1
mn,s =On (1).  

Consequently, condition (18) is satisfied by (17).  
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Using (21), we get  

! tl =
Pl

pl
gtl "

Pl"1

pl
gn,l+1.         (26) 

Therefore, similarly to relation (22) it is possible to 
show that  

!l" tl = !l

Pl

pl
!lgtl

#
$%

&
'(
+ !lgt ,l+1.        (27) 

Thus, condition (20) is fulfilled by condition (7).  

Sufficiency. Assume that conditions (15) and (17) - 
(20) are fulfilled and show that M  transforms cs

P
 into 

cs
B

. For this purpose it is sufficient to show that all 
conditions of Theorem 2.2 are satisfied for A = P . First 
we see that conditions (1) and (6) are fulfilled 
correspondingly by (21) and (26). As relations (22) - 
(25) hold, then condition (2) is fulfilled by (17) - (19). 
From relation (27) we get by (20) that condition (7) is 
also satisfied. Thus M  transforms cs

P
 into cs

B
 by 

Theorem 2.2.  

From Theorem 3.1 we get the following corollary.  

Corollary 3.2. Let P  be a Sr-Sr-regular matrix. 
Then P  and B  are M ser -consistent on cs

P
 if and only 

if condition (15) with gk = 1  and conditions (17) - (20) 
are fulfilled. 

Proof. Conditions (15) and (17) - (20) are 
necessary and sufficient for M  to be transform from 
cs

P
 into cs

B
. Therefore conditions (1), (2), (6) and (7) 

are satisfied by Theorem 2.2. By the Sr-Sr-regularity of 
P  we have that the relation gk = 1  is necessary for M -
consistency of P  and B  on cs

P
. This relation implies 

by (26) that condition (11) is fulfilled. Consequently by 
Corollary 2.3 P  and B  are M ser -consistent on cs

P
. 

It is well-known (see [10], p. 114 or [11]) that the 
existence of lim

n
P
n
! 0  is necessary for P  to be Sr-Sr-

conservative and lim
n
P
n

 is necessary for P  to be Sr-
Sr-regular. Therefore, from Theorem 3.1 we 
immediately get the following results. 

Corollary 3.3. If M  transforms cs
P

 into cs
B

 for a 
Sr-Sr-conservative Riesz matrix P,  then 

mns = On ps( )and mns = On ps!1( ) . 

Corollary 3.4. If M  transforms cs
P

 into cs
B

 for a 
Sr-Sr-regular Riesz matrix P,  then 

mns = on ps( ) and mns = on ps!1( ) . 
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