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Matrix Transforms of Summability Domains of Normal Series-to-
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Abstract: In the present paper matrix transforms of summability domains ¢s, of normal series-to-series matrices A are

investigated. Let M be a matrix and B a triangular series-to-series matrix. Necessary and sufficient conditions for M
to be a transform from ¢s, into cs, are found. For application the special case, when A is a series-to-series Riesz

matrix, are studied.
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1. INTRODUCTION

In this paper matrix transforms of summability
domains of normal series-to-series matrices are
investigated. Let w be the set of all sequences with
real or complex entries, ¢ c @ the set of all convergent

sequences and ¢, c ¢ the set of all null sequences. For
every x=(x,)ew we denote

Sx=(X,).X, = ixk,lim Sx=limX, .

k=0

Throughout this paper, we assume that indices and
summation indices run from 0 to oo unless otherwise
specified. Let

cs={xeo|Sxec},cs, ={xecs|Sxec,}.

Let A=(a,)be a matrix with real or complex entries.

We say that a sequence x is A™ -Asummable if the
series

An'x = Z ank'xk
k

are convergent and Ax =(Ax)ecs. If the series A x

are convergent and Ax € ¢, then we say that xis A™ -
summable. The sets of all A™ - and A™ -summable
sequences we denote correspondingly by cs,and c,.
A matrix A=(a, ) is said to be normal ifA=(a,) is
lower triangular and a, #0. A matrix A is called

nn
series-to-series conservative (shortly, Sr-Sr

conservative) ifcsccs,, and series-to-series regular
(shortly, Sr-Sr regular) if
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lim S(Ax)=1im Sx

for every x € cs .Similarly, if for every xecs (for every
xec) we have Axec, then A is called series-to-
sequence conservative or Sr-Sq conservative
(correspondingly sequence-to-sequence conservative
or Sg-Sq conservative). If

limA, x=1limSx

for every xecs, then A is called series-to-sequence
regular or Sr-Sq regular. If

limA x=limx,
n n

for every x e c, then A is called sequence-to-sequence
regular or Sq-Sq regular. Let M =(m,, ) be a matrix with
real or complex entries and B=(b,,) a triangular matrix

with real or complex entries. We say that A and B are
M’ -consistenton cs, if

limS[ B(Mx) |=1imS(Ax),
and M™ -consistentonc, if
lim B, (Mx)=1im A x .

If M=(5,), where §,=1 forn=k and §,=0

ser

otherwise, M*" -consistency and M*? -consistency of
A and B coincide with ordinary consistency of A and
B.

The matrix transforms from ¢, into ¢, are studied in
several works. First results for such transforms are

obtained by Alpér (see [8], [9]), who found necessary
and sufficient conditions for M to be transform from ¢,

into ¢, ifA=C" and B=C’ are series-to-sequence
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Cesaro matrices with ordersa>0 and3>0. In 1986

Thorpe (see [13]) generalized the result of Alpér, taking
instead of C’ arbitrary normal matrix B. Further
generalization is presented in [7], where the author of
the present paper considered this transform in the case
where A is a reversible series-to-sequence matrix and
B arbitrary triangular  (series-to-sequence or
sequence-to-sequence) matrix. In [6] this problem is
studied for non-triangular B and in [6] also necessary
and sufficient conditions for M*-consistency of A and
B are found. Later in 1994 (see [5]) above-mentioned
results are generalized for the case where A is a Sr-Sq
regular or Sq-Sq regular perfect matrix and B is a
triangular matrix. In 2009 (see [4]) the transform from
¢, into cs, are investigated in the case, where the
elements of normal A, triangular B and arbitrary M
are continuous linear operators from a Banach space
X into a Banach space Y. In [1-3] some classes of
matrices M, transforming ¢, into ¢s,, are

characterized.

In this paper in Section 2 necessary and sufficient
conditions for M (with real or complex entries) to be
transform from cs, into cs, for a normal series-to-

series matrix A (with real or complex entries) and a
triangular series-to-series matrix B (with real or
complex entries) are established. Also in Section 2

the M* consistency of A and B on cs,are

investigated. In Section 3 for application the special
case, when A is a series-to-series Riesz matrix, are
studied.

2. MAIN RESULTS

Let throughout this Section A=(a, ) be a normal
series-to-series matrix with its inverse A™=(n,),
B=(b,) a
M =(m, ) an arbitrary matrix. Throughout this paper,
we use the following notations:

triangular series-to-series matrix and

5
no,_ no,__ n__ n
Cy= Zmnknkl’Alcsl =Cy—C{p, -
=l

Theorem 2.1. For all n the series M x are convergent
for every x e cs, if and only if

there exist finite limits lism ch=c,, (1)
Z|A1C:ll
1

Moreover, for every x € cs, hold the equalities

=0,(). (2)

M, x= gcnO +2Alcnl (Yl _é) (3)

with
!
Y= )
k=0
where y, =Ax and &= limY, .

Proof. Necessity. Let all series M, x be convergent
for every x e cs, . Then for every x e cs, we have

k: Zmnk‘xk :zc:'llyl :(C”)Yy )
k=l I=0

where y=(y,)ecsand C"=(c ). As by the normality of

A for everyyecs there existsxecs, so that Ax=y,

then the matrix C" for every n transforms c¢s into c. In
addition to it,

lifn(C")Sy:Mnx (5)

for everyxecs,, where y=Ax. Consequently

conditions (1) and (2) are fulfilled and equality (3) holds
for each n by Theorem 1.3 of [10] (see also [11], p.
50).

Sufficiency. Let conditions (1) and (2) be fulfilled.

Then by Theorem 1.3 of [10] the matrix C" for every n
transforms c¢s into c¢. As equalities (5) hold, then
equalities (3) for every n also are satisfied by Theorem
1.3 of [10].

Now we prove the main result of this paper.

Theorem 2.2. A matrix M transforms cs, info cs,
if and only if conditions (1) and (2) are satisfied and

the seriesz Y, are convergent foralll, (6)

t

ZAI)/H

t=0

>

1

=0(D), (7)

where

t
Yo = thkckl .

k=0

Proof. Necessity. Assume thatM transforms cs,
into cs, . Then all series M, x are convergent for every
x ecs,. Hence conditions (1) and (2) are fulfilled and
equalities (3) (where Y, presented by (4)), hold for
every xecs, by Theorem 2.1. It follows from equalities
(3) that
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B,(Mx)=&y,,+ > Ay, (Y,-&) (8)

for every xecs,. By the normality of A for the
sequence ¢’ :=(1.0,0,..)ecs there exists the sequence
Yecs, so that Ax=e¢". This

5=((a")k") that

implies due to

B,(M%)=B,[M(A7¢")]=7,,.
Hence

the series Zyro is convergent . (9)
As every Y =(Y,)ec can be presented in the form (4),
where y=(y,)ecs and by the normality of A for this y

there exists xecs, so that Ax=y, then from (8) and
(9) we get that the series

> YAy (v-¢) (10)

is convergent for everyY =(¥,)ec with limY, =& It's

well-known (see, for example [11]) that every
Y =(¥,)ec with lim¥, =& can be presented in the form

Y=Y"+&Y" =(Y)ecpe=(Ll...).

Thus, the series (10) is convergent for each
Y°=(Y,-¢&), i.e. the matrix I'=(Ay,) transforms ¢,

into c¢s. Therefore condition (7) is satisfied and the
series

2 Aﬂ/,[
1

are convergent for all [ by Proposition 43 of [12].
Consequently, condition (6) is fulfilled by (9).

Sufficiency. Let conditions (1), (2), (6) and (7) be
fulfiled. Then all series M x are convergent and
equalities (3) are valid for every xecs, by Theorem

2.1. The validity of (3) implies also the validity of (8). It
follows from conditions (6) and (7) that the matrix

I'=(Ay,) transforms ¢, into cs. Therefore from (8)
we get by condition (6) that M transforms cs, intocs, .

From Theorem 2.2 we get the following result.
Corollary 2.3. Matrices

consistent if and only if conditions (1), (2) and (7) are
satisfied and

Aand Bare M -

> v, =1 forall L. (11)

Proof. Necessity. LetA and B are M*-
consistent. Then conditions (1), (2) and (7) are fulfilled
by Theorem 2.2 and equalities (8) are satisfied for
every x ecs,, Where

limS(Ax)= €. (12)
Hence
limS[ B(Mx)]=¢ (13)

for every xecs,. Let Xecs, be a sequence, for which
Ai=¢’. As in this case limS(AX)=1, then

limS[ B(M%)]=Y7,,=1. (14)

Therefore, it follows from (8) and (13) that
I'=(A;y,)transforms ¢, into cs,. Hence

ZAI%I =0

for all I by Proposition 54 of [12]. Consequently, with
the help of (14) we have that condition (11) is satisfied.

Sufficiency. Let conditions (1), (2), (7) and (11) be
satisfied. Them M transforms c¢s, into c¢s, by

Theorem 2.2 and equalities (8) hold for every xecs,.
From conditions (7) and (11) it follows with the help of
Proposition 54 of [12] that I'=(Ayy,) transforms ¢,
into cs, . Consequently from (8) we get with the help of
condition (7) that equality (13) holds for each xecs,
satisfying equality (12), i.e. A and B are M™ -
consistent.

For a Sr-Sr-conservative matrix A we get the
following necessary condition for M to be transform
from cs, to cs,.

Corollary 2.4. Let A be a Sr-Sr-conservative. If M
transforms cs, intocs,, then

thk =g, (gk is aﬁnitenumber), (15)

where

1
grk = memnk .
n=0

Proof. Let ¢ =(0....,0,1,0,...) with number 1 in & -th
position. Taking e* e cs,, we get
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limS[B(Mek)] = Z’gﬂ(.

This implies the validity of the assertion of Corollary
2.4,

For a Sr-Sr-regular matrix A we get the following
necessary condition for M* -consistency of A and B.

Corollary 2.5. Let A be a Sr-Sr-regular. If A and
B are M* -consistent on cs,, then condition (15) is

fulfilled with g, = 1.

Proof follows from the fact that limS(Aek)zl for a
Sr-Sr-regular matrix A .

3. MATRIX TRANSFORMS OF SUMMABILITY
DOMAINS OF RIESZ MATRICES

In this section we consider the case when A is a
Riesz matrix. Let (p,) be a sequence of nonzero

complex numbers,
letP=(R,p,)=(a,) be
matrix generated by (p,), i.e. P is the normal matrix
with

P =p,+..+p,#0 and
the series-to-series Riesz

P
ank = If;p"

n—1

(see [10], p. 113). Throughout this section, we assume
that terms with negative indices are equal 0. The matrix

P has the inverse matrix P~ =(n,), where (see [10],
p. 116)

= (k=)
le
Ne=1 b (k:n—l), (16)
pn—l
0 (k<n—10rk>n).

Theorem 3.1. Let P be a Sr-Sr-conservative matrix.
Then M transforms cs,into cs, if and only if condition

(15) is fulfilled and

B —0w), (17)
o —0.), (18)
psfl

=0,), (19)

AI (ﬂ A/mnl J + Almn I+

12

>

1

=0(1). (20)

Pl .
A, (_lezgn)"‘ ZA/gz,m

=0 t=0

Proof. Necessity. Assume that M transforms cs,
into ¢s,. Then for A=P conditions (1), (2), (6) and (7)

are satisfied by Theorem 2.2 and condition (15) is
fulfilled by Corollary 2.4. With the help of (16), we get
that

¢, =—m,——=m (21)

Hence

P
n — AN n =L _—— —_—
Ay g5y = € — Chpn = M. m m nl+2

1 ! 1+1 1+1

P P P, -
— L _ I+ _ I+1
- mnl mn,[+] mn,l+l + m

1z P 1z Pra

P P
= _[Azmm - Am
1z P

nl+1 + A[n/ln.lﬂ .

This implies

n
Acc

sl

P
(1ss-2) = A, [p_/Almnl ) +Am,,.,. (22)

1

It is easy to see that

’ L i L
Alc.\l (I=S*1) = I mn,x—l - mn,s S mn,x > (23)
psfl ps psfl
’ i
Alc.sl (1=5) = mn,.\ (24)
and
Aty =0. (25)

Therefore conditions (17) and (19) are fulfilled by (2)
and

P P P
= ns—1 _Smn,s - Lzmn,a' = 0)1(1)
psfl ps psfl

Consequently, condition (18) is satisfied by (17).
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Using (21), we get

P P
Yu :_lgtl _#gn,l+]' (26)

1 1

Therefore, similarly to relation (22) it is possible to
show that

P
Ay, = Al(_lAzgrzj+Azg:,1+|- (27)

1
Thus, condition (20) is fulfilled by condition (7).

Sufficiency. Assume that conditions (15) and (17) -
(20) are fulfilled and show that M transforms cs, into
cs, . For this purpose it is sufficient to show that all

conditions of Theorem 2.2 are satisfied for A=P . First
we see that conditions (1) and (6) are fulfilled
correspondingly by (21) and (26). As relations (22) -
(25) hold, then condition (2) is fulfilled by (17) - (19).
From relation (27) we get by (20) that condition (7) is
also satisfied. Thus M transforms cs, into cs, by

Theorem 2.2.
From Theorem 3.1 we get the following corollary.

Corollary 3.2. Let P be a Sr-Sr-regular matrix.
Then P and B are M* -consistent on cs, if and only
if condition (15) with g, =1 and conditions (17) - (20)
are fulfilled.

Proof. Conditions (15) and (17) - (20) are
necessary and sufficient for M to be transform from
cs, into cs,. Therefore conditions (1), (2), (6) and (7)
are satisfied by Theorem 2.2. By the Sr-Sr-regularity of
P we have that the relation g, =1 is necessary for M -
consistency of P and B oncs,. This relation implies
by (26) that condition (11) is fulfilled. Consequently by
Corollary 2.3 P and B are M* -consistenton cs, .

It is well-known (see [10], p. 114 or [11]) that the
existence of lim, P, #0 is necessary for P to be Sr-Sr-

n n
conservative and lim,|P,| is necessary for P to be Sr-

Sr-regular. Therefore, from Theorem 3.1 we
immediately get the following results.

Corollary 3.3. If M transforms cs, into cs, for a
Sr-Sr-conservative Riesz matrix P, then

mns = 0)1 (ps)andmm = On (pS—l) '

Corollary 3.4. If M transforms cs, into cs, for a
Sr-Sr-regular Riesz matrix P, then

mns = On (p,) and mru = 011 (pS—]) '
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