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Abstract: The object of the present paper is to derive new coefficient inequalities for certain subclasses of p — valent

analytic functions defined in the open unit disk . Our results are generalized of the previous theorems given by J.
Clunie and F.R. Keogh [1], by H. Silverman [3] and by M. Nunokawa et al. [2].
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1. INTRODUCTION

Let Ap denote the class of the form

f2)=Yaz" (e, =1,p neN={12.1}), (1.1
n=p

which are analytic and p — valent in the open disk
U={zeC : |z] <1}. Wenote that 4 = A.

A function f € Ap is said to be p — valently starlike

of order o(0 < a < p) ifand only if

%{zf_(z)} > q, (z € L{).
f(2)

The class of all such functions are denote by S (a).
Here, S'(a)=38"(a) and &(0)=S8" are the
classes of starlike function of order a(o <a< 1) and

starlike function, respectively. On the other hand, a
function f € Ap is said to be p — valently convex of

order a(0 < a < p) ifand only if

%{1+@} >a, (z€ U).
()

Let Cp(a) denote the class of all those functions.

Also C (a)=C(a) and C(0) = C are the classes of
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convex function of order a(O <a< 1) and convex
function, respectively.

Clunie and Keogh [1] (also Silverman [3]) have
proved the following results: If f(z) € A satisfies

n=2

then f(z) is univalent and starlike in U. If f(z) e A
satisfies

a | <1,
n

.
>

n=2
then f(z) is univalent and convexin U.

Nunokawa et al. [2] have proved the following

results: Let f(z) be of the class A and
max|a, | = t|a,|. If f(z) € A satisfies
n>1
Z (|n7 t|+ t) a,| < t|a’f,|’
n=1, n=t

then f(z) is univalent and starlike in U. Let f(z) be of

the class A and maxn’|a,|=*|a,|. If f(z)€ A
n>1

satisfies

0
> alln—t[+t)e,| < ]l
n=1, n=t

then f(z) is univalent and convex in U.

In the present investigation, we consider new
coefficient inequalities for functions f(z) to be p—
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valently starlike of order « and p — valently convex of

order « in U.
2. COEFFICIENT INEQUALITIES

Our first result for functions f(z) to be p — valently

starlike of order a in U is contained in the following
Theorem 2.1.

Theorem 2.1. Let f(z) be in the class A and

maxn|a,”| = (t +p— 1>|at+p_1|.

n>p

If f(2) € A, satisfies the following inequality

a
n

3 (|n—t—p+1|+t+p-1+a)
p

then f(z) is p — valently starlike of order « in U.

Proof: Applying the maximum principle of analytic
functions, the following inequality is hold on | z |= 1

|of'(2) = 1f(2) = (p = 1) ()| = |t7(2)] = |(p = 1) F@)| + |f (2)]

o0 o0 o0 o0
= E (n—t—p%—l)a”z" -t Za”z” —(p—l) Ea”z" +a|y e,
n=p, n=p n=p n=p
nzl+p-1
00 o0
t+p—1
n n
< Z ‘n t p+1HanHz ‘ t ‘atﬂ)—le‘ Z a, ||z
n=p, n=p,
n=t+p-1 n=t+p—1
o0 o0
t+p-1 n t+p-1 n
~(p-1) ‘“HP—IHZ‘ - ) (] e ‘QHP—IHZ‘ - Yl
n=p, n=p,
nzt+p-1 nzt+p-1

%
= Z (‘n—t—p+1‘+t+p—1+a/)‘an‘—(t—p+l+a)‘at+p_l‘§0.
Zifjrpfl

Therefore, it follows that the following inequality

#'(2)
f(2)

ftf(pfl) §t+(p71>fa

holds for all z € U{. This shows that f(z) is p—
valently starlike of order « in U.

If we take a = 0 in the Theorem 2.1., we get the
following corollary.

Corollary 2.2. Let f(z) be in the class A and

maxn|a,”| = (t +p— 1>|at+p_1|.

n>p
If f(2) € A, satisfies the following inequality

oo
DRI RN FRY I P (R

n=p,
n=t+p—1

)

then f(z) is p — valently starlike in U.

For p =1 in the Theorem 2.1.,, we have the
following corollary.

Corollary 2.3. Let f(z) be in the class A and

If f(z) € A satisfies the following inequality

o0

Z (|n7t|+t+a)

n=1,n=t

a, < (t + a)|at |,

then f(z) is starlike of order « in U.

Next, we derive the coefficient condition for
functions f(z) to be p — valently convex of order « in

U is contained in the Theorem 2.4 as given below.

Theorem 2.4. Let f(z) be in the class Ap and
T;;(ng |a"| - (t TP 1)2 |at+p—1 |

If f(2) € A, satisfies the following inequality

Z n<|n7t—p+1|+t+p71+a) a,

p (2.2)

< (t +p —1)(’5 +p—1- Oé)|af+p71|’

then f(z) is p — valently convex of order « in U.

Proof: Applying the maximum principle of analytic
functions, the following inequality is hold on | z |= 1

%w+ﬂ@—W@—@—wﬂw—www+@—QNM+Mﬂw
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o (o)
= Z [n(n—t—erl)]anz”_l —t Znanz”_l
n=p, n=p
n=t+p—1
oo oo
—(p —1) Znanz"’l + « z:nanz"’1
n=p n=p
00
< Z n|n—t—p+1||an|z"_1‘—t
”n:¢p£+p71
00
(4 o=, [ = X nfa, [l
77:r:¢p£+p71
t4p-1 >~
,(p,l) (t+p71)|at+p71||z| S Z nla, z””l‘
nn,ziptthpfl
1 oo
Fal(t+p =D, o] = 3 ala, ]
nrz,:¢1)1;+p71
(o)
= Z n(|n7tfp+1|+t+p—1+oz) a,
Zig}:‘rl)*l

—(t—l—p—l)(t+p—1—o¢)|at+p71| <0.
Therefore, it follows that the follwing inequality
4
‘[1+Zf,—(z)]t<pl)
f(z)
holds for all z € Y. This shows that f(z) is p—
valently convex of order « in U.

<t+(p-1)-a

By taking o = 0 in the Theorem 2.4, we get the
following corollary.

Corollary 2.5. Let f(z) be in the class A and

maxn2|an| = (t +p— 1)2|at+p_1|.

n>p

NEW COEFFICIENT INEQUALITIES
If f(2) € A, satisfies the following inequality

3 n(ln—t—p+1|+t+p-1)

n=p,
n=t+p—1

)

< (t +r- I)Q‘Qtﬁ-p—l

[4)
n

then f(z) is p — valently convexin U.

By taking p =1 in the Theorem 2.4, we get the
following corollary.

Corollary 2.6. Let f(z) be in the class A and

maxn2|a |: t2|a |
n t

n>1
If f(z) € A satisfies the following inequality

o0

Z n(|n7 t|+t+ a)|an| < t(tfa)|at|,

n=1,n=t
then f(z) is convex of order « in U.

Remark 2.7. By considering some special values
for the parameters «, p and ¢, we can deduce the

following results.

In the Theorem 2.1. and Theorem 2.4., for p =1
and a = 0, we get the result given by Nunokawa et al.
[2].

In the Theorem 2.1. and Theorem 2.4., for p =1,
a =0 and ¢ = 1, we obtain the result given by Clunie
and Keogh [1] (also Silverman [3]).
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