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Abstract: The Galerkin truncation method is a powerful method for nonlinear dynamics analysis, and has been widely 
used to discretize the spatial differential operator. Due to more and more new fields of application, the research interest 
on the Galerkin method is still high today. In this paper, research on the convergence of Galerkin method for nonlinear 
dynamics of the continuous structure is thoroughly reviewed. At the beginning, the Galerkin method is briefly introduced. 
Then, the paper reviews the application of the truncation method. This paper also sums up the comparative study on the 
Galerkin method with other methods, such as the finite difference method (FDM), the finite element method (FEM), and 
the multiple time scales method. In the investigations concerning the convergence of the Galerkin method, this paper 
summarizes recent studies on nonlinear dynamics of the axially moving systems, the continua on the nonlinear 
foundation, and the belt-pulley systems. Finally, the truncation terms of Galerkin method for the continuous structure's 
nonlinear dynamics analysis is suggested for the future research applications. 
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1. INTRODUCTION 

The dynamical problems of the continuous 
structure, which is described by partial differential 
equations with boundary conditions, usually display 
nonlinear characters and the solution becomes difficult. 
The Galerkin method is a powerful tool for such cases. 
The Galerkin method is usually credited to the Russian 
mathematician Boris Galerkin for finding the 
approximate solution of an operator equation [1]. The 
approach is used to convert a continuous operator 
problem to a discrete problem in the area of ap-
proximate numerical analysis. In principle, the Galerkin 
method is the equivalent of applying the method 
variation of parameters to a function space, by 
converting the equation to a weak formulation. Applying 
the Galerkin method, the space is cha-racterized with a 
finite set of basis functions by using some constraints 
on the function space. Furthermore, the differential 
equations are simplified into linear equations to solve 
problems. There is a general approach to approximate 
methods, which includes the projection methods, the 
FDM and other approximate methods which are 
generalizations of the Galerkin method. Moreover, the 
nowadays widely used the FEM is also a special case 
of the Galerkin method.  

For dynamical problems of continuum by using the 
Galerkin method, one assumes the distributed co-
ordinates as 
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u(x, t) = qj
j=1

n

! (t)" j , j = 1, 2,…,n          (1) 

where x is the neutral axis coordinate of the continuum, 
u(x,t) is the displacement of the continuum at x and 
time t, qj(t) (j=1,2…n) is a set of generalized 
coordinates or modal coordinates for the continuum, 
φj(x) (j=1,2…n) is the trial function, which satisfies or 
partial satisfies the given boundary conditions. The 
weight functions, wi(x) (i=1,2…n), can be the same as 
the trail functions. With the concepts of the inner 
product and orthogonality, a set of n-order linear or 
nonlinear ordinary differential equations are obtained. 
Then, the continuous system is idealized as a multi-
degree-of-freedem system with generalized 
coordinates {φ} [2]. The Galerkin method is called the 
Bubnov–Galerkin method if the coordinate and the 
projection systems are identical [3]. In addition, the 
Galerkin method is sometimes called the Petrov–
Galerkin method in Hilbert spaces. For analyzing the 
complex mechanical models of nonhomogeneous 
structures, a hybrid Wentzel-Kramer-Brillouin-Galerkin 
(or WKB-Galerkin) is employed [4]. This paper presents 
an easy-to-follow tutorial of the application of the 
Galerkin method for the nonlinear dynamics of the 
continuous structure. 

2 SHORT REVIEW OF THE APPLICATION OF THE 
GALERKIN METHOD 

The Galerkin method is frequently used in 
engineering to estimate the static and dynamic 
behavior of continuous structures with quite good 
accuracy and convergence. The complex nonlinear 
behavior of an axially loaded cylindrical shell was 
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studied [5]. A derivation of the finite element equations 
for vibration of a thermopiezoelectric infinite cylinder 
was presented [6]. The Galerkin approach is carried 
out for the stochastic analysis of cables in turbulent 
wind through a reduced-order model containing both 
mechanical and aerodynamic non-linearities [7]. A 
relatively small number of modes are used to 
investigate the global non-linear behavior and the 
stability of a thin-walled fluid-filled cylindrical shell 
under lateral pressure and axial loads [8]. The 
eigenvalues of a fluid conveying tube were obtained 
[9]. By a simple mechanical model, it was also 
demonstrated that the Galerkin method may fail 
completely, if the energy dissipation is governed by the 
stable modes. For investigating nonlinear and 
viscoelastic behaviour, Galerkin’s method is used to 
derive modal amplitude equations for a pinned-pinned 
beam interacting with polyurethane foam foundation 
[10]. Cheung and Zhou derived the eigenfrequency 
equation of a flexible thin plate placed [11]. The regular 
and chaotic vibrations of an axially moving viscoelastic 
string were presented [12]. Nonlinear forced vibration 
of a viscoelastic buckled beam [13] and of a 
viscoelastic pipe conveying fluid around curved 
equilibrium due to the supercritical flow [14] subjected 
to primary resonance in the presence of Two-to-One 
internal resonance is investigated. 

The Galerkin method is modified and improved by 
many researchers. Gorman and Ding obtained the 
accurate free vibration analysis of symmetric [15] and 
antisymmetric [16] angle-ply laminated rectangular 
plates and the thick Mindlin plate [17] by the 
Superposition-Galerkin method. The authors 
enumerated the advantages of the superposition-
Galerkin method over the traditional superposition 
method, such as the hyperbolic functions no longer 
appear in the analysis. Combining the polynomial 
shape functions of conventional finite element analysis 
with Galerkin orthogonal functions, the Galerkin 
element method is applied to the vibration of damped 
sandwich beam structures [18] and damped sandwich 
plates [19]. The numerical results showed that only a 
few elements are required to obtain even high-
frequency modal parameters with very good accuracy. 
The Galerkin method in conjunction with natural 
coordinates had been presented as the basis for the 
dynamic analysis of general simply supported plates 
with intermediate line or point supports [20]. To analyze 
the natural frequencies of composite laminates of 
complicated shape, Chen et al. proposed an efficient 
and robust element free Galerkin method [21]. Amabili 
et al. found that the proper orthogonal decomposition in 

conjunction with the Galerkin approach permits a 
lower-dimensional model [22]. Natural frequencies, 
mode shapes and dynamic tensions of an elastic cable 
carrying an attached mass are obtained by using the 
Galerkin method with anti-derivatives of Daubechies 
wavelets [23]. The study showed that the frequencies 
and modes are concerned the Fourier and wavelet 
solutions are generally in good agreement. As far as 
the dynamic tension is concerned, the numerical 
results gave the indication of presence of error in the 
Fourier solution. The Bubnov–Galerkin method was 
used to study the thermo-mechanical vibration of the 
single-walled carbon nanotube embedded in a Winkler-
type elastic medium [24]. 

3. SHORT REVIEW OF THE COMPARISON WITH 
OTHER METHODS 

For determining the accuracy and the efficiency in 
the applications, the Galerkin method had been 
compared with some other methods. Based on the 
chaotic vibrations of circular cylindrical shells, the 
conventional Galerkin method is compared with the 
proper orthogonal decomposition method in 
conjunction with the Galerkin approach [25]. The 
numerical results showed that the conventional 
Galerkin method is more “robust”. The comparison 
between the generalized Galerkin method and the FEM 
analysis shows a pretty good match until the primary 
postbuckling equilibrium path comes close to the 
secondary bifurcation point, where ANSYS fails to 
converge [26]. Cepon and Boltezar preformed a 
quantitative comparison between three approximate 
methods, namely, the Galerkin finite-element method, 
the Galerkin method, and the finite-difference method 
[27]. Considering a comparison of the approximate 
solutions with the exact solution, one can assume that 
the Galerkin method gives a poor prediction of the 
dynamic response of an axially moving continuum at 
high velocities. The nonlinear behavior of a 
transversally excited, buckled pinned-pinned beam is 
studied by higher order single-mode as well as 
multimode Galerkin discretizations and is verified by 
finite element analyses. It is concluded that the 
difference in the dynamic response of the FEM 
analyses and the Galerkin analyses with higher order 
approximations becomes very small [28]. Fazzolari and 
Carrera compared the Rayleigh-Ritz, Galerkin and 
Generalized Galerkin methods for accurate buckling 
and vibration analysis of anisotropic laminated 
composite plates [29].  

The attention was paid especially to improve the 
Galerkin method for dynamic analysis of the elastic 
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system. A modified Galerkin approach was presented 
for free vibrations of delaminated unidirectional 
sandwich panels with a transversely flexible core [30]. 
The numerical results compare very well with those of 
the FEM results. The periodic nonlinear vibration of 
light axially moving band is solved by the Fourier–
Galerkin–Newton method [31] and verified by 
experimental results [32]. Amirani et al. found that the 
results of the element free Galerkin method showed 
good agreement with those obtained by the FEM for 
free vibration analysis of sandwich beam with 
functionally graded core [33]. A mesh-free Galerkin 
method for the free vibration analysis of corrugated 
plates was proposed by Liew et al. [34]. The results 
showed a good agreement with the solutions that are 
derived with the FEM commercial software ANSYS. 
The Element-Free Galerkin method was used for free 
vibration analysis of point supported nonhomogeneous 
moderately thick plates resting on a two-parameter 
type elastic foundation [35]. It was found that the 
Element-Free Galerkin had very good agreements with 
available literature even with small number of nodes. 
Peng et al. proposed a meshfree Galerkin method for 
analyzing free vibration of corrugated-core sandwich 
plates [36]. The results showed a good agreement with 
the solutions that are derived with the ANSYS software. 
For analyzing the elasto-plastic problem of the 
moderately thick plate, a meshless local Petrov–
Galerkin method was used with a radial basis function 
coupled with a polynomial basis function [37]. 
Numerical results show a good agreement compared 
with the results obtained using the ANSYS and the 
literature. Based on the moving Kriging interpolation 
technique, a meshless local Petrov-Galerkin approach 
achieved more accurate numerical solutions than the 
FEM for nonlinear bending problems of functionally 
graded plates in thermal environments but require less 
CPU time [38]. Through the bending and free vibration 
analysis of composite plates, it is observed that the 
meshless natural neighbor Galerkin method solutions 
are closer to the analytical solutions and slightly higher 
than solutions that are obtained using the FEM [39]. 
The meshless local Petrov-Galerkin method is 
implemented to analyze the free vibration and axial 
buckling characteristics of single-walled carbon 
nanotubes [40]. The numerical results are shown to be 
in good agreement with the exact solution. 

4. THE CONVERGENCE OF THE GALERKIN 
METHOD 

The convergence of solutions is achieved when the 
variation of displacements of the beam with a number 

of coordinate functions is sufficiently small. For 
investigating the nonlinear responses of buckled 
beams to primary-resonance excitations [41] and 
subharmonic-resonance excitations [42], a multi-mode 
Galerkin discretization found that using a single-mode 
approximation leads to quantitative and qualitative 
errors in the static and dynamic behaviors and cannot 
predict some of these nonlinear phenomena, such as 
Hopf bifurcation. The theoretical results are in good 
qualitative agreement with the experiment results. 
Wang analyzed the dynamics of a finite inextensible 
beam with an attached accelerating mass, and found 
that there was negligible difference between the results 
for 20-term and 30-term truncation [43]. Eshmatov and 
Khodjaev studied the numerical convergence of the 
Bubnov-Galerkin method for the non-linear vibration 
and dynamic stability of a viscoelastic cylindrical panel 
with concentrated mass [44]. Results show that a 
further increase in the number of components, the 
retained modes are more than seven, does not 
essentially influence the amplitude of vibrations, and 
the boundary terms influence the results. Nonlinear 
vibrations of viscoelastic orthotropic rectangular plates 
[45] and viscoelastic composite cylindrical panels [46] 
were studied by retaining the first five harmonics and 
the first seven harmonics, respectively. The numerical 
convergence study showed that a further increase in 
the number of components does not greatly influence 
the amplitude of vibration. For studying transverse 
vibrations of double-beam systems with viscoelastic 
inner layer, the Galerkin-type approximations are 
developed by Palmeri and Adhikari [47]. Numerical 
examples show that the 6-term Galerkin-type approach 
converges faster than a classical finite-element 
modelling. 

The references showed that the convergence of the 
Galerkin method was influenced by the basis function. 
Based on the non-linear dynamics of continuous elastic 
systems, it can be concluded that the proper 
orthogonal decomposition basis is not more efficient 
than the Hilbertian basis [48]. For analyzing in-plane 
vibrations of flat-sag suspended cables carrying an 
array of moving oscillators with arbitrarily varying 
velocities, it has been found that such series exhibits 
poor convergence because of the singularities 
associated with the moving oscillators [49]. 
Furthermore, the study showed that the convergence of 
the series expansion is improved through the 
introduction of the so-called “quasi-static” solution. A 
spectral-Tchebychev technique was presented for 
obtaining the spatially discretized equations of motion 
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[50]. The authors found that only a small number of 
polynomials are sufficient to obtain the machine-
precision accuracy. For the free vibration analysis of 
doubly curved shallow shells, the study of Mochida et 
al. showed very good convergence rate for the 
fundamental natural frequencies with only five terms of 
the driving coefficients [51]. 

5. REVIEW OF SELECTED WORKS PUBLISHED BY 
THE AUTHOR 

5.1. Convergence Studies on the Axially Moving 
Systems 

Axially moving systems are extensively studied 
because they can model many engineering devices 
such as elevator cables, belt saws, paper sheet and 
web processes, fiber winding and power transmission 
band. The axially moving speed greatly affects the 
dynamic behavior of the system. Above a certain 
critical velocity, the first natural frequency of the system 
becomes zero and the straight configuration of 
equilibrium becomes unstable, with multiple coexisting 
equilibrium positions. For analyzing the dynamic 
behavior in the sub and super-critical speed ranges, 

Pellicano and Vestroni used the Galerkin method to 
discretize an axially moving beam subjected to an axial 
transport of mass [52]. The authors found that eight 
terms of the series expansion are sufficient to describe 
the response correctly. For motion about each 
bifurcated solution, the nonlinear governing equations 
are cast in the standard form of continuous gyroscopic 
systems by introducing a coordinate transform. The 
first two natural frequencies are obtained for the 
transverse vibration [53] and the coupled planar 
vibration [54] via the Galerkin method. As shown in 
Figure 1, the 2-term Galerkin truncation for the natural 
frequency for axially moving beams in the supercritical 
range is bigger than the 4-term ones and the difference 
increase with the growth of axial speed, and the 4-term 
Galerkin method yields rather accurate results. 

It is assumed that the excitation of the forced 
vibration is spatially uniform and temporally harmonic. 
For an axially moving beam constituted by the Kelvin 
model, the steady-state response of the primary 
resonance is analyzed via the Galerkin method in the 
supercritical speed range [55]. Figure 2 shows that 1-
term Galerkin truncation yields the convincing primary 

 
Figure 1: Comparison between 2-term, 4-term and 8-term Galerkin truncation results for the planar vibration. 

 
Figure 2: Comparisons among the 1-term, 2-term and 4-term Galerkin truncation for the primary resonance. 
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resonance. However, the results of the 2-term 
truncation are closer to those of the 4-term truncation 
than the 1-term Galerkin method. σ is the detuning 
parameter, which is introduced to quantify the deviation 
of the frequency of the external excitation from the 
fundamental frequency. 

The bifurcation and chaos of an axially accelerating 
viscoelastic Euler-Bernoulli beam are investigated by 
using the Galerkin method with various truncations and 
the differential and integral quadrature methods (DQM 
& IQM) in the supercritical regime [56]. The speed of 
the axially moving beam is assumed to be comprised of 
a constant mean value along with harmonic 
fluctuations. By comparison with the DQM & IQM, the 
numerical results showed that the 2-term, 4-term, and 
6-term Galerkin truncation and the DQM & IQM all 
predict that the chaotic motion and the periodic motion 
exchange alternately. As shown in Figure 3, there is 
qualitative disagreement among the different term 
truncated system, and the 6-term Galerkin truncation 
and the DQM & IQM predict similar motion forms. 

The steady-state periodic response and the chaos 
and bifurcation of an axially accelerating viscoelastic 

Timoshenko beam werestudied in the sub and super-
critical speed ranges [57]. The Galerkin truncation is 
applied to discretize the governing equations into a set 
of nonlinear ordinary differential equations. The 
convergence of the Galerkin truncation was 
investigated. From the observation of Figure 4, one can 
find that there are significant differences between the 
results of the stable steady-state periodic response 
based on the 2-term truncation and the other two 
truncations. Furthermore, the 2-term, 4-term, and 6-
term Galerkin truncation all deliver that the periodic 
motion and the chaotic motion exchange alternately 
with the varying axial mean speed, but there are certain 
difference for bifurcation point prediction. 

5.2. Convergence Studies on the Continua on the 
Nonlinear Foundation 

Elastic beams resting on different types of 
foundations are extensively investigated because they 
can model many mechanical structures such as 
bridges, roads or airport pavements, railway enginee-
ring equipments, transversally supported pipelines. The 
dynamic response problem of elastic beams lying on 
foundations displays nonlinear and viscous characters, 

 
Figure 3: The nonlinear dynamics of an axially accelerating viscoelastic Euler-Bernoulli beam by using the Galerkin method with 
various truncations and DQM & IQM. 
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and the solution becomes difficult. The Galerkin 
method is a common tool for dealing with dynamical 
problems for such cases. Convergences of Galerkin 
truncation for dynamical response of beams on 
nonlinear foundations [58] and Timoshenko beams 
resting on a six-parameter foundation [59] under a 
moving load were studied based on the asphalt 
pavement resting on soft soil foundation moving the 
vehicle. In Figure 5, l is the length of the elastic beam 
resting on foundations, n is the truncation term. The 
numerical results in Figure 5 demonstrated that the 50–
term Galerkin method is not accurate enough for the 
dynamical response analysis the asphalt pavement on 
soft soil foundation running the vehicle, and there are 
discernible differences between the results of the 75–
term and the 150–term Galerkin method. The 
comparisons predict that the 150–term Galerkin 
method yields rather accurate results. The investigation 
also found that the convergence of the Galerkin 
truncation can be predicted by the natural frequencies, 
the property of slower growth in the natural frequency 
of beam causes lack of convergence. Furthermore, the 
convergence accelerates with growing of the modulus 
of elasticity of the beams, the nonlinear foundation 

parameters, the span length and width of the 
pavement, but slows down with greater linear 
foundation parameters and damping coefficient. 

 
Figure 5: Effects of the Galerkin truncation terms on the 
vertical displacements of the pavement's midpoint. 

The coupled nonlinear vibration of vehicle–
pavement system is investigated by using the Galerkin 
method [60]. The pavement is modeled as a 
Timoshenko beam resting on a six–parameter 

 
Figure 4: The nonlinear dynamics of an axially accelerating viscoelastic Timoshenko beam by using the Galerkin method with 
various truncations. 
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foundation. Moreover, the vehicle is simplified as a 
spring–mass–damper oscillator. The Galerkin method 
was applied to discretize the nonlinear governing 
equation. The numerical results in Figure 6 showed 
that the dynamic response of the Timoshenko beam 
subjected to a moving oscillator needs more than 50 
terms of the modal truncation. Furthermore, the 
convergence of the Galerkin truncation for Timoshenko 
beams on foundations is slightly slower than the Euler–
Bernoulli beam. 

5.3. Convergence Studies on the Belt-Pulley 
Systems 

Pulley-belt systems, involving a flexible belt and 
several rigid pulleys, are widely applied to transmit 
power between rotational machine elements. For 
eliminating the effects of the greater weight accessory 
on the belt-drive systems, it is necessary to have a 
one-way clutch between the driven pulley and the 
accessory shaft. The nonlinear steady–state response 
of a belt-drive system with a one-way clutch was 

studied [61]. The derived coupled discrete-continuous 
nonlinear equations consist of integro–partial–
differential equations and piece-wise ordinary 
differential equations. The resonance responses of the 
coupled belt-drive system are determined by using the 
Galerkin method. Furthermore, the results of the 2-term 
and 4-term Galerkin truncation are compared to 
determine the numerical convergence. As shown in 
Figure 7, the two-term Galerkin method provides 
convergent numerical result in predicting the steady-
state response of the pulley-belt system considering a 
string model for the belt. 

Based on the non-trivial equilibrium, the steady-
state periodic response of belt-drive system with a one-
way clutch and belt flexural rigidity was studied via the 
Galerkin truncation as well as the DQM & IQM [62]. 
The belt spans were modeled as axially moving 
viscoelastic beams. New nonlinear governing 
equations are derived by introducing a coordinate 
transform based on the non-trivial equilibrium. The 
influences of the truncation terms, such as 6-term, 8-

 
Figure 6: Convergence of the Galerkin method for the coupled nonlinear vibration of vehicle–pavement system. 

 
Figure 7: The comparisons of the steady-state response between 2-term and 4-term Galerkin truncation. 



50     Journal of Advances in Applied & Computational Mathematics, 2014, Vol. 1, No. 2 Hu Ding 

term, 10-term, 12-term and 16-term, are investigated 
by comparing with the DQM & IQM. As the 
comparisons shown in Figures 8 and 9, the 6-term and 
the 16-term Galerkin truncation predict the periodic 
response with qualitative differences. Moreover, the 
comparisons showed that the study on steady-state 
responses of the pulley-belt system with a one-way 
clutch and belt flexural rigidity needs 16-term 
truncation. 

6. CONCLUDING REMARKS 

The up-to-date survey of the knowledge on the 
convergence of the Galerkin method for nonlinear 
dynamics of the continuous structure in this paper 
allows for stating that this subject belongs to one of the 
most currently developed in the last 20 years. The 
author hopes that this manuscript was able to draw a 
clear picture of current research on the Galerkin 
method and the convergence of the Galerkin method 
for nonlinear dynamics of the continuous structures, 
especially of the axially moving systems, the continua 

on the nonlinear foundation, and the belt-pulley 
systems. One can draw the following conclusions and 
recommendations for future research work: 

• The Galerkin method has been widely used to 
analyze the nonlinear dynamics of the 
continuous structure and has been proved as a 
powerful and efficient tool via comparison with 
other methods, such as the FDM, the ANSYS 
software, and the multiple time scales method.  

• The basis function affects the convergence of 
the Galerkin method. A set of appropriate basis 
function improves the convergence of the series 
expansion. 

• The non-trivial equilibrium of the dynamical 
systems, such as axially moving systems and 
pulley-belt systems, slows down the 
convergence of the mode truncation. 

• For the future research applications, the 
convergence of the Galerkin truncation can be 

 
Figure 8: The comparisons of the steady-state response for different truncation terms: at a relatively low frequency. 

 

 
Figure 9: The comparisons of the steady-state response via the 16 terms Galerkin truncation and the DQM & IQM. 
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predicted by the natural frequencies of the 
continuous structure, the property of slower 
growth in the natural frequency of the structure 
causes lack of convergence. 
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