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Application of Ranked Set Sampling to Normality Tests 
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Abstract: The normality assumption is used in many statistical analyses and is also a fundamental concept in statistics. 
Because of this there are many statistical tests for testing the normality assumption. Two of the most primitive ones are 
the R and Z tests. The main aim of this study is to investigate the application of ranked set sampling to these tests. 
Therefore, by using the idea of ranked set sampling, modifications of the R and Z tests are considered. Using 
simulations the results of these new tests are discussed. 
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1. INTRODUCTION 

In many applications of statistics and statistical tests 
the normality assumption is of vital importance. One of 
the most primitive but conceptually simple univariate 
normality tests is the R test. It combines two 
fundamentally easy concepts: the probability plot and 
the correlation coefficient. Filiben [1] introduced the 
probability plot correlation coefficient test statistic. 
Although it is an old test, it is widely used because the 
logic behind this test is simple. Another important test 
for testing normality, suggested by Tiku [2, 3] is a test 
based on generalized spacings. It was shown that 
Tiku's test based on generalized spacings is more 
powerful than the R test against skew alternatives but 
less powerful against symmetric alternatives [2]. 

The aim of this study is to investigate the 
performance of these tests when ranked set sampling 
is used instead of simple random sampling. Ranked set 
sampling (RSS) is a data collection technique that 
results in a collection of measurements that are more 
likely to span the range of values in the population 
compared to a simple random sample [4]. This 
approach is especially useful and appropriate when 
ranking is cheap compared to actual measurement of 
observations. 

The main objective of this study is to use this fact 
and apply it in goodness-of-fit testing for the normal 
distribution. Since ranked set sampling is expected to 
represent the population more accurately than simple 
random sampling it seems natural to investigate 
whether the performance of the R and Z tests may be 
improved by using ranked set sampling. 

 

 

*Address correspondence to these authors at the Izmir University of 
Economics, Department of Mathematics; Tel: +90 232 4889858;  
Fax: +90 232 2792626; E-mail; guvenc.arslan@gmail.com 

The paper is organized as follows. In Section 2 and 
3 we present the basic idea and concepts of the R and 
Z tests, respectively. After presenting the R and Z 
statistic in detailed, in Section 4 the basic idea about 
ranked set sampling is given. Then simulation results 
that are composed in R programme are introduced in 
Section 5 and 6. 

2. THE PROBABILITY PLOT CORRELATION 
COEFFICIENT TEST FOR NORMALITY (R TEST) 

Let Y1:n ,Y2:n , ...,Yn:n  denote the order statistics of a 
sample from a distribution whose cumulative 
distribution function (cdf) is of the form 
F y ! µ( ) /"#$ %& ,where µ  and !  are the location and 
scale parameters, respectively. To construct a 
probability plot, the sample order statistic, y

i:n , is 
plotted (usually on the vertical axis) against 
xi:n = F

!1
pi( )  (usually on the horizontal axis), where 

p
i  is an estimate of F yi:n ! µ( ) /"#$ %& . This estimate is 

called the plotting position [5]. 

There are lots of plotting positions but the most 
common ones are given below (see [6, 7] and [8] 
respectively)  

 
p

i
= i ! 0.5( ) / n            (1) 

p
i
= i / n +1( )            (2) 

p
i
= i ! 0.375( ) / n + 0.25( )          (3) 

Looney S.W. and Gulledge T.R (see [5]) showed 
that the Blom’ s plotting position yields a correlation 
coefficient test that is more powerful than Filiben’s, 
Hazen’ s and Weibull’ s plotting positions. 

The correlation statistic is simply  

 
R = 1! "̂2

0 < R < 1( ) ,         (4)
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where !̂  is the ordinary correlation coefficient between 
y
i:n  and µ

i:n
(see [1] and [9]). Here, the Y

i:n
 1 ! i ! n( )  

are the order statistics of a random sample of size n  
from the normal distribution and Z

i:n
= Y

i:n
! µ( ) /"  are 

the corresponding standardized normal order statistic. 
µ
i:n

, 1 ! i ! n( )  are the expected values of the 
standardized normal order statistics, i.e, µ

i:n
= E Z

i:n[ ].  
The correlation coefficient statistics can be used for 
testing any assumed density of type 
1 /!( ) f y " µ( ) /!( ).  For ease of computation, in 

several studies, values of µ
i:n

 are obtained by the 
population quantiles 

µ
i:n
= F

0

!1
i / n +1( ),  1 ! i ! n( ) , 

where F
0
z( ) =

1

2!
e
"
z
2

2 dz

"#

z

$  is the cumulative 

distribution function of the standard normal distribution. 
The expected values of the standardized normal 
statistics µ

i:n( )  for some particular i  and n  values can 

be obtained from Harter [10]. Details on how the µ
i:n

 
are calculated in this study are given in section 5. Note 
that the null distribution of R  in general is not known 
for a given density f

0
.  Its percentage points have to be 

determined empirically by Monte Carlo simulation. The 
critical values for ! = 0.1  and some values of n  are 
given in Table 1. 

Table 1: Critical Values for the R Test (α=0.1)  

n Simpson’s Rule Blom’s Plotting 
Position 

10 0.933 0.934 

20 0.960 0.960 

50 0.981 0.981 

3. THE Z TEST 

Let Y
1:n
,Y

2:n
, ...,Y

n:n
 be the order statistics of a random 

sample of size n  from an exponential distribution with 
parameters µ  and ! , i.e., Y

i
~ E µ,!( ) :  

f y( ) =
1

!
e
"
y"µ( )
! ,  µ < y < ! . It is well known that the 

spacings 

 
D

i
= n ! i + 1( ) y

i+1:n
! y

i:n( ) , 1 " i " n ! 1.          (5) 

are also exponential. Using this fact, Tiku [2,3] defined 
the statistic 

 

Z
E
=

2 n ! 1! i( )D
i

i=1

n!1

"

n ! 2( ) D
i

i=1

n!1

"

.           (6) 

To test whether a data set comes from an exponential 
population, he showed that the null distribution of 

 
Z

E
/ 2  is exactly the same as the distribution of the 

mean of  n ! 2  independent and identically distributed 
(iid) uniform ( )0,1  random variates. Therefore  

 
E Z

E
( ) = 1  and 

 

V Z
E( ) =

1

3 n ! 2( )
,         (7) 

and the null distribution of 
 
Z

E
 converges to a normal 

distribution very quickly. 

The basic idea of the Z test is based on 
generalization of the statistic given in (6). Let 
Y
1:n
,Y

2:n
, ...,Y

n:n
 be the order statistic from a population 

with cumulative distribution function  F . The Z statistic 
is given by  

 

Z =

2 n ! 1! i( )Gi

i=1

n!1

"

n ! 2( ) G
i

i=1

n!1

"

,  0 < Z < !,         (8) 

where  

 

G
i
=

y
i+1:n

! y
i:n

µ
i+1:n

! µ
i:n

,   1 ! i ! n " 1          (9) 

are the generalized spacings. Similar to R the Z test is 
used for testing location scale family distributions. For 
large  n  (effectively,  n ! 10 ) the null distribution of Z is 
normal [11].  

The asymptotic distribution of 
 
G

i
 is identical with 

the distribution of 
 
D

i
 [12] and the asymptotic 

distribution of  Z  is also normal. But for small sample 
size ( n < 100 ), the values of  V  are not well 

approximated by 
 

1

3 n ! 2( )
. Because of this reason the 

values of  V  are obtained by simulation [11]. In this 
study, critical values are calculated by using simulation 
for any sample size. The critical values for  ! = 0.1  and 
some values of  n  are given in Table 2. 

4. RANKED SET SAMPLING 

Ranked set sampling (RSS) was first proposed by 
Mc Intire [13]. He used this model for estimating the 
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mean of pasture yields. This design appeared as a 
useful technique for improving the accuracy of the 
estimated means [14]. The RSS procedure is based on 
the selection of independent samples, not necessarily 
of the same size, by using simple random sampling 
(SRS). The sampled units are ranked and only the 
selected units are measured and used in statistical 
inference. 

Table 2: Critical Values for the Z Test (α=0.1)  

 Simpson’ s Rule Tiku 

n 5% 95% 5% 95% 

10 0.6265 1.1484 0.71 1.29 

20 0.7601 1.1256 0.81 1.19 

50 0.8681 1.0924 0.88 1.12 

An RSS can be described as follows. Let 

 
X

1
, X

2
,..., X

n
,...  be independent and identically 

distributed random variables with cdf F . Consider r  
independent sets of sample sizes 

 
n

1
,n

2
,...,n

r
,  from this 

distribution, where
 
r ! n

r
. The 

 
n

i
, 

 i = 1,...,r  represent 
the set sizes for each independent collection of random 
variables. From the first set of 

1
n  independent we 

select the smallest
 

X
1:n

1

1( )( ) , while from the second set we 

select the second smallest
 

X
2:n

2

2( )( ) . In this way we 

continue to select independent random variables until 
we have selected  r  representative random variables 
denoted here by 

 
X

1,n
1

!" #$
, X

2,n
2

!" #$
,..., X

r ,n
r

!" #$
. The 

notation
 
X

i,n
j

!
"

#
$

, 
 
1 ! j ! r  is used to express the fact that 

each ordered random variable is selected from 
independent sets as described. In this way a set of 
independent order statistics is obtained. We note here 
also that the basic idea in RSS is to rank the 
observations in each set without actual measurement. 
This process has been summarized as follows [15]. 

 

X
1:n

1

1( )
X

2:n
1

1( )
... X

n
1
:n

1

1( ) ! X
1,n

1
"# $%

~ F
1:n

1

x( )

X
1:n

2

2( )
X

2:n
2

2( )
... X

n
2
:n

2

2( ) ! X
2,n

2
"# $%

~ F
2:n

2

x( )

... ... ... ... ! ...

X
1:n

r

r( )
X

2:n
r

r( )
... X

n
r
:n

r

r( ) ! X
n

r
,n

r
"# $%

~ F
r:n

r

x( )

 

The random variables 
 
X

1,n
1

!" #$
, X

2,n
2

!" #$
,..., X

n
r

,n
r

!" #$
 

obtained in this way represent one cycle in a RSS. This 
process may be repeated  K  times to obtain more 

random variables. In this study, we assume that all 

 
n

i
= n  for 

 i = 1,...,r , which corresponds to a balanced 
RSS. 

5. APPLICATION OF RANKED SET SAMPLING 

Let 
 
X

1
, X

2
,..., X

n
 be a random sample from a 

population with cumulative distribution function 
 
F x( ) .  

In goodness of fit test we are interested to test 
hypotheses of the form: 

 
H

0
: F = F

0
 against 

 
H

1
: F ! F

0
,   

where 
 
F

0
x( )  is a specific distribution. In this study we 

assume that 
 
F

0
 represents a normal distribution. 

In the R and Z normality tests the null hypothesis 

 
H

0
 is tested by using a simple random sample. In this 

section, it is explained how ranked set sampling is 
applied to these tests. Therefore, instead of simple 
random samples ranked set samples with cycles of  1  
through  5  are used. Then for different alternative 
distributions the power of these tests are calculated 
using simulations for several sample sizes. 

It should be noted that the R and Z tests both are 
based on comparisons of the order statistics 

 
Y

i:n
 from a 

given population with the theoretical expectations 
 
µ

i:n
 

of the ordered data from the standard normal 
distribution. Therefore, finding accurate estimates for 
the order statistics, 

 
Y

i:n
, when calculating critical values 

of these tests is an important step in applying these 
tests. 

Let Y
1:n
,Y

2:n
, ...,Y

n:n
 be the order statistics from a given 

population with cdf  F .  In the R test the correlation 
between Y

1:n
,Y

2:n
, ...,Y

n:n
 and is used as a measure of to 

conclude whether the data come from a normal 
population. In this study, we propose to use ranked set 
samples 

 
Y

1,n!" #$
,Y

2,n!" #$
,...,Y

n,n!" #$
 instead of simple random 

samples Y
1:n
,Y

2:n
, ...,Y

n:n
. Note that 

 

µ
i:n
= i

n

i

!

"#
$

%&
x F

0
x( )'( )*

i+1

1+ F
0

x( )'( )*
n+i

f
0

x( )dx
+,

,

-       (10) 

where 
 

µ
i:n
= E Z

i:n!" #$
( ) . Therefore, we will use the 

correlation between 
 
Y

1,n!" #$
,Y

2,n!" #$
,...,Y

n,n!" #$
 and 

 
µ

1:n
,µ

2:n
 

 
,...,µ

n:n
as a measure for normality. 
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Remark 1: Since the integrand formula (10) is very 
close to  0  for 

 
x > 7.6  [10] the trapezoidal rule for 

numerical integration can be applied to evaluate these 
values. Instead of using plotting positions, the 

i:n
µ  

values are calculated by using numerical integration in 
this way. 

Suppose that K cycles are used. Let 

 
Y

j( )
= Y

1:n!" #$

j( )
,Y

2:n!" #$

j( )
,...,Y

n:n!" #$

j( )( )  denote the ranked set sample 

corresponding to the 
 
j ! th  cycle, where 1≤j≤K and 

 
µ = µ

1:n
,µ

2:n
,...,µ

n:n( ) .  The modified R test will be 

denoted by 
 
R

*
= 1! "2

, where 
 
!̂

j
= Cor y

j( )
,µ( )  and 

 

! =
1

k
!̂

j
.

j

"   

To find the critical values of the R* statistic, ranked 
set samples from the standard normal distribution are 
generated for each cycle 

 
j = 1,2,...,K . Then for each 

cycle 
 
!̂

j
 is calculated. The results are given Table 3 for 

some values of  n  and cycle sizes of one through five. 

In a similar way the modified Z test is denoted by 
Z*, which is defined as 

 

Z*
=

1

K
Z

j( )
* ,

j=1

K

!  where 

 

Z
j( )

*
=

2 n ! 1! i( )Gi,j

*

i=1

n!1

"

n ! 2( ) G
i,j

*

i=1

n!1

"

,

 

G
i,j

*
=

y
i+1:n

!" #$

j( ) % y
i:n

!" #$

j( )

µ
i+1:n

% µ
i:n

.  

Using simulation critical points for the Z* are 
computed for 5% and 95% percentage point. The 
results are given in Table 4 for some values of n  and 
cycle sizes of one through five. 

6. SIMULATION RESULTS 

Using the critical values as obtained in Tables 3 and 
4, for different alternative distributions in the alternative 
hypothesis, the power values are calculated. But before 
presenting the power results the Type I error 
probabilities for both of the R* and Z* tests are 
summarized in Table 5 for a significance level of 
α=0.10. 

Table 6 shows the simulation results of the R* test 
for a sample size of n=10. It should be noted that for 
ranked set sampling the sample size is chosen such 
that  K .m = n , where  K  is the cycle size and  m  is the

Table 3: Critical values for R and R* test (α=0.1) 

n 5 10 20 30 50 

SRS 0.903 0.933 0.959 0.971 0.980 

1 cycle 0.684 0.847 0.922 0.947 0.968 

2 cycle 0.836 0.918 0.959 0.973 0.984 

3 cycle 0.886 0.946 0.973 0.982 0.989 

4 cycle 0.917 0.959 0.979 0.986 0.991 

5 cycle 0.934 0.967 0.983 0.989 0.993 

 

Table 4: Critical Values for the  Z  and  Z*  Tests 

N 10 20 30 50 

 5% 95% 5% 95% 5% 95% 5% 95% 

SRS 0.627 1.148 0.760 1.126 0.817 1.114 0.868 1.092 

1 cycle 0.608 1.168 0.795 1.099 0.862 1.071 0.910 1.049 

2 cycle 0.693 1.092 0.840 1.056 0.889 1.041 0.922 1.032 

3 cycle 0.730 1.052 0.861 1.032 0.903 1.028 0.939 1.019 

4 cycle 0.746 1.027 0.870 1.022 0.912 1.021 0.946 1.015 

5 cycle 0.760 1.008 0.879 1.015 0.916 1.014 0.943 1.011 
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Table 5: Type I Errors for the 
 R

*  and 
 Z

*  

Method n=5 n=10 n=20 n=30 n=50 

The  R
* Test  

SRS 0.101 0.097 0.096 0.099 0.104 

1 cycle RSS 0.101 0.088 0.105 0.104 0.111 

2 cycle RSS 0.098 0.097 0.092 0.105 0.107 

3 cycle RSS 0.088 0.103 0.105 0.110 0.106 

4 cycle RSS 0.098 0.103 0.093 0.096 0.106 

5 cycle RSS 0.101 0.098 0.091 0.112 0.085 

The  Z
* Test  

SRS 0.096 0.102 0.093 0.099 0.101 

1 cycle RSS 0.102 0.108 0.096 0.101 0.101 

2 cycle RSS 0.101 0.100 0.094 0.100 0.069 

3 cycle RSS 0.109 0.102 0.107 0.09 0.100 

4 cycle RSS 0.097 0.098 0.100 0.105 0.095 

5 cycle RSS 0.095 0.104 0.093 0.096 0.067 

 
Table 6: Power of the R and R* for Symmetric and Skewed Distributions  

 1 cycle 2 cycle SRS 

Sample Size n 10 5 10 

Symmetric Distributions    

Student t(2) 0.332 0.163 0.417 

Student t(4) 0.185 0.120 0.231 

Logistic 0.129 0.105 0.152 

Uniform 0.094 0.110 0.110 

Skew Distributions    

 

!
1( )
2  0.687 0.304 0.783 

 

!
2( )

2  0.404 0.177 0.519 

 

!
4( )
2  0.228 0.135 0.333 

Lognormal 0.609 0.279 0.681 

Weibull (2) 0.121 0.102 0.140 

Beta (2,1) 0.125 0.113 0.187 

 

set size. Similarly, Table 7 and Table 8 show the 
simulation results for sample sizes of  n = 20  and n=50 
are presented. It can be seen that for sample size of 
n=20 and n=50 the power of the R* test, in general, is 
better than for the R test for one cycle. For a sample 
size of n=10 there seems to be no improvement in 
using ranked set sampling. 

Table 9 shows the simulations results of the Z* test 
for a sample size of n=10. In contrast to the R* there 

seems to be improvement even for a small sample size 
of n=10 for symmetric alternatives. At this point we 
note that Tiku [2] showed that the Z test is more 
powerful than the R test, except for testing Uniform, 
Normal and Logistic (symmetric distributions) against 
symmetric alternatives. 

In general, we can say that using ranked set 
sampling is worth investigating in goodness-of-fit tests. 
In this study we only considered small modifications of
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Table 7: Power of the R and R* for Symmetric and Skewed Distributions 

 1 cycle 2 cycle 3 cycle 4 cycle SRS 

Sample Size n 20 10 7 5 20 

Symmetric Distributions  

Student t(2) 0.701 0.458 0.357 0.223 0.640 

Student t(4) 0.362 0.207 0.175 0.124 0.352 

Logistic 0.209 0.136 0.125 0.101 0.203 

Uniform 0.097 0.096 0.112 0.107 0.175 

Skew Distributions  

 

!
1( )
2  1.000 0.932 0.813 0.886 0.986 

 

!
2( )

2  0.927 0.658 0.526 0.573 0.866 

 

!
4( )
2  0.638 0.376 0.303 0.267 0.606 

Lognormal 0.987 0.850 0.736 0.547 0.941 

Weibull (2) 0.186 0.143 0.156 0.110 0.205 

Beta (2,1) 0.223 0.157 0.163 0.127 0.327 

 

Table 8: Power of the R and R* for Symmetric and Skewed Distributions 

 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle SRS 

Sample Size n 50 25 17 12 10 50 

Symmetric Distributions       

Student t(2) 0.990 0.921 0.849 0.727 0.682 0.914 

Student t(4) 0.775 0.556 0.453 0.340 0.298 0.592 

Logistic 0.418 0.274 0.226 0.176 0.156 0.314 

Uniform 0.744 0.372 0.300 0.199 0.197 0.640 

Skew Distributions       

 

!
1( )
2  1.000 1.000 1.000 1.000 1.000 1.000 

 

!
2( )

2  1.000 1.000 0.999 1.000 1.000 1.000 

 

!
4( )
2  0.999 0.984 0.940 0.969 0.943 0.959 

Lognormal 1.000 1.000 1.000 0.998 0.999 1.000 

Weibull (2) 0.618 0.407 0.362 0.279 0.952 0.455 

Beta (2,1) 0.983 0.790 0.660 0.449 0.421 0.815 

 

Table 9: Power of the  Z  and  Z*  for Symmetric and Skewed Distributions  

 1 cycle 2 cycle SRS 

Sample Size  n  10 5 10 

Symmetric Distributions    

Student t(2) 0.365 0.416 0.358 

Student t(4) 0.227 0.242 0.214 
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(Table 9...Continue) 

 1 cycle 2 cycle SRS 

Sample Size  n  10 5 10 

Logistic 0.152 0.082 0.146 

Uniform 0.034 0.085 0.076 

Skew Distributions    

 

!
1( )
2  0.725 0.450 0.822 

 

!
2( )

2  0.537 0.268 0.590 

 

!
4( )
2  0.351 0.174 0.378 

Lognormal 0.663 0.399 0.722 

Weibull (2) 0.146 0.113 0.153 

Beta (2,1) 0.133 0.104 0.198 

 

Table 10: Power of the Z and Z* for Symmetric and Skewed Distributions 

 1 cycle 2 cycle 3 cycle 4 cycle SRS 

Sample Size n 20 10 7 5 20 

Symmetric Distributions      

Student t(2) 0.503 0.416 0.368 0.270 0.472 

Student t(4) 0.300 0.239 0.201 0.147 0.265 

Logistic 0.188 0.148 0.133 0.115 0.171 

Uniform 0.006 0.025 0.040 0.059 0.072 

Skew Distributions      

 

!
1( )
2  0.996 0.929 0.840 0.671 0.989 

 

!
2( )

2  0.959 0.792 0.648 0.472 0.886 

 

!
4( )
2  0.797 0.562 0.434 0.286 0.665 

Lognormal 0.980 0.876 0.784 0.622 0.960 

Weibull (2) 0.330 0.219 0.180 0.129 0.253 

Beta (2,1) 0.492 0.246 0.187 0.132 0.380 

 

the classical R and Z tests. For the considered 
alternatives, in testing normality, Z* generally (except 
for the Uniform distribution) is more powerful than the 
 Z  test, except for a small sample size of n=10 with 
skewed alternative distributions. 

In parameter estimation problems it has been 
shown that RSS provides an unbiased estimator for the 
population mean with smaller variance than for simple 
random sampling (for example [16, 17]). Although this 
study shows that also in goodness-of-fit testing the use 
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of ranked set sampling may improve the power more 
detailed analysis and simulations should be done. 
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Table 11: Power of the Z and Z* for Symmetric and Skewed Distributions 

 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle SRS 

Sample Size n 50 25 17 12 10 50 

Symmetric Distributions       

Student t(2) 0.642 0.614 0.571 0.521 0.495 0.587 

Student t(4) 0.396 0.355 0.336 0.298 0.271 0.338 

Logistic 0.219 0.208 0.184 0.168 0.168 0.206 

Uniform 0.001 0.004 0.008 0.015 0.026 0.069 

Skew Distributions       

 

!
1( )
2  1.000 1.000 1.000 1.000 0.998 1.000 

 

!
2( )

2  1.000 1.000 0.999 0.992 0.980 1.000 

 

!
4( )
2  1.000 0.996 0.980 0.935 0.875 0.975 

Lognormal 1.000 1.000 1.000 1.000 0.995 1.000 

Weibull (2) 1.000 0.775 0.590 0.444 0.397 0.587 

Beta (2,1) 1.000 0.954 0.870 0.675 0.619 0.771 


