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Abstract: This study proposes a cooperative particle swarm optimization (CPSO) to optimize the parameters of the TSK-
type neural fuzzy system (TNFS) for classification applications. The proposed CPSO uses cooperative behavior among 
multiple subswarms to decompose the neural fuzzy systems into rule-based subswarms, and each particle within each 
subswarm evolves by a specific particle swarm optimization (PSO) separately. Therefore, the CPSO can accelerate the 
search and increase global search capacity. Finally, the TNFS with CPSO (TNFS-CPSO) is adopted in several 
classification applications. Experimental results demonstrate that the proposed TNFS-CPSO method has a higher 
accuracy rate and a faster convergence rate than the other methods. 
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1. INTRODUCTION 

In recent years, neural fuzzy systems for 
classification applications have become a popular 
research topic [1-8]. The key advantage of the neural 
fuzzy systems lies in the fact that it does not require a 
mathematical description of a system when the system 
is modeled. Two typical types of neural fuzzy systems 
are the Mamdani-type and TSK-type neural fuzzy 
systems. Many researchers have shown that using the 
TSK-type neural fuzzy systems (TNFS) superior 
performance in system size and learning accuracy than 
using the Mamdani-type neural fuzzy systems [9-10]. 
Furthermore, backpropagation (BP) algorithm is usually 
adopted to train the parameters of neural fuzzy 
systems to make neural fuzzy systems more adaptive 
and effective. BP is a powerful training technique that 
can be applied to neural fuzzy systems with a forward 
structure. Unfortunately, BP may reach the local 
minima very quickly and never find the global solution, 
because the steepest descent technique is used in BP 
training to minimize the error function. 

The aforementioned disadvantages lead to 
suboptimal performance, even for a favorable neural 
fuzzy system. Therefore, technologies that can be used 
to train the system parameters and find the global 
solution while optimizing the overall structure are 
required. Accordingly, a new optimization algorithm, 
called particle swarm optimization (PSO), appears to 
be better than BP. PSO is a stochastic optimization 
technique developed by Kennedy and Eberhart in 1995 
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[11-12], inspired by the social behavior of bird flocking 
or fish schooling. Bird flocking has some underlying 
rules that enables large numbers of birds to flock 
synchronously, often changing direction suddenly. PSO 
has been successfully applied to many optimization 
problems [13-21]. 

Furthermore, an increasingly large and complex 
system often requires solving complex high-
dimensional optimization problems. When the 
dimension of the problem increases, the overall 
performance of the system often decreases 
significantly. Cooperative evolution has been proven to 
be an effective solution to above-mentioned problems 
[22-24]. Cooperative evolution consists of a number of 
cooperative populations and processes the low-
dimensional subcomponents of the original problem 
simultaneously. Cooperation between the 
subcomponents combines their strengths and builds a 
complete solution to the original problem. 

In this study, the TNFS model with the CPSO 
method (TNFS-CPSO) is proposed for classification 
applications. The proposed CPSO learning algorithm 
uses cooperative evolution to decompose the neural 
fuzzy systems into the rule-based subswarms. Each 
subswarm represents a set of the single fuzzy rule, and 
each particle in each rule-based subswarm evolves by 
PSO separately. The proposed CPSO embeds 
cooperative evolution into PSO to accelerate the 
search and increase global search capacity. 

This study is organized as follows. Section 2 
describes the structure of the TNFS model. The 
proposed CPSO is presented in Section 3. In Section 
4, the proposed CPSO method is evaluated, and its 
performances are benchmarked against other 
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methods. Finally, conclusions on the proposed method 
are given in the last section. 

2. STRUCTURE OF THE TSK-TYPE NEURAL FUZZY 
SYSTEM 

This section describes the TNFS model [25]. A 
fuzzy logic is a knowledge-based system characterized 
by a set of rules that determine the relationship 
between the input and the output. The reasoning 
process is defined by means of the inference method, 
aggregation operators, and fuzzy connectives. The 
fuzzy knowledge base contains the definition of fuzzy 
sets, which is stored in a fuzzy database, and a 
collection of fuzzy rules. The definition of fuzzy sets 
and the collection of fuzzy rules constitute the fuzzy 
rule base.  

Fuzzy rules are defined by their antecedents and 
consequents, which relate an observed input state to a 
desired output. Most neural fuzzy systems employ the 
inference method proposed by Mamdani in which the 
consequent parts are defined by fuzzy sets [26]. A 
Mamdani-type fuzzy rule has the form: 

IF x1 is A1j (m1j , σ1j )and x2 is A2j(m2j , σ2j )…and xn is Anj 

(mnj , σnj) 

THEN y’ is Bj (mj ,σj )           (1) 

where mij and! ij  represent a Gaussian membership 
function with mean and deviation, respectively, of the 
ith dimension and the jth rule node. The consequent Bj 
of the jth rule is aggregated into one fuzzy set for the 
output variable y’. The crisp output is obtained through 
defuzzification, which calculates the centroid of the 
output fuzzy set. In addition, the more common fuzzy 
inference method proposed by Mamdani and Takagi-
Sugeno-Kang introduced a modified inference scheme 
[25]. The first two parts of the fuzzy inference process, 
fuzzifying the inputs and applying the fuzzy operator, 
are exactly the same. A TNFS model employs different 
implication and aggregation methods than the standard 
Mamdani model. Instead of fuzzy sets being used, the 
conclusion part of a rule is a linear combination of the 
crisp inputs, as follows: 

IF x1 is A1j (m1j , σ1j )and x2 is A2j(m2j , σ2j )…and xn is Anj 

(mnj , σnj ) 

THEN y’=w0j+w1jx1+…+wnjxn          (2) 

where mij and! ij  represent a Gaussian membership 
function with mean and deviation, respectively, of the 
ith dimension and the jth rule node. Since the 
consequent of a rule is crisp, the defuzzification step 
becomes obsolete in the TSK inference scheme. 
Instead, the model output is computed as the weighted 
average of the crisp rule outputs. This computation is 
less expensive than calculating the center of gravity. 

 
Figure 1: The structure of the TNFS model. 
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3. COOPERATIVE PARTICLE SWARM OPTIMIZA-
TION FOR THE TSK-TYPE NEURAL FUZZY 
SYSTEM 

This section describes the proposed CPSO to 
optimize the parameters of the TNFS model. In the 
proposed method, cooperative evolution is used to 
effectively decompose the neural fuzzy systems into 
rule-based subswarms and evolve these subswarms 
cooperatively. Cooperation evolution among the subs-
warms is responsible for combining their information 
and building the complete neural fuzzy system. 
Furthermore, each particle in each subswarm evolves 
separately using PSO. The foremost step in CPSO is 
the coding of a fuzzy rule into a particle. The coding of 
the parameters of a fuzzy rule into a particle is shown 
in Figure 2, where mij  and ! ij  are the mean and 
standard deviation of the ith input variable and the jth 
rule of the Gaussian membership function, 
respectively, and wj  represents the corresponding link 
weight of the consequent part that is connected to the 
jth rule node. In this study, a real number represents 
the position of a particle. A flowchart describing this 
process is presented in Figure 3. The proposed CPSO 
process is described step-by-step below. 
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Figure 3: Flowchart of the proposed CPSO method. 

Step 1: Subswarm Initialization 

Before the CPSO method is applied, every position 
x j,k  must be created randomly in the range [0, 1] in 
each subswarm, where j=1, 2,…, R represents the jth 
subswarm and k=1, 2, …, ps represents the kth 
particle. 

Step 2: Buffer Vector Initialization 

In the rule-based subswarm, each particle 
represents a fuzzy rule. To evaluate each particle, the 
particle is added to the buffer vector (i.e., best neural 
fuzzy system) with the other particles of the 
subswarms. The initial buffer vector is composed of 
randomly selected particles from each subswarm. 

Step 3: Evaluation 

There is a conspicuous problem in evaluating the 
particles using the fitness function because they come 
from different subswarms. This problem can be solved 
by defining a buffer vector, an information sharing 
mechanism in the form of a public memory area that 
stores particles with the best performances. The buffer 
vector is defined as follows: 

buffer = [S1,1, ...,SD,1,S1,2 , ...,SD,2 ,

...,S1, j , ...,SD, j , ...,S1,R , ...,SD,R ]
         (3) 

The dimension of the buffer vector is D ! R , where R 
represents the number of fuzzy rules and [S1, j , ...,SD, j ]  
represents the contributor in the jth subswarm. 

The kth particle of the jth subswarm is evaluated 
using the buffer vector to replace the corresponding 
contributor with the evaluated particle. Therefore, the 
evaluated particle is defined as follows: 

 ],...,,...,,...,,...,,...,,,...,[
,,1,,,1,2,2,11,1,1 RDRkDjkjDD

SSxxSSSS

particle xj,k   
(4)

 

where x j,k  is the kth evaluated particle of the jth 
subswarm. 

 

m1j m2j w0j w1j w2j….. mij ….. ….. wij …..

Particle

j1! j2! ij!

Rule j

 
Figure 2: Coding a fuzzy rule into a particle in the proposed CPSO method. 
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In this study, a fitness function is adopted to 
evaluate the performance of the neural fuzzy system. 
The fitness function is defined as follows 

f (x) =
1

1+   
1

Nt

(ys ! ys )
2

s=1

Nt

"

          (5) 

where ys is the model output of the sth data, ys  is the 
desired output of the sth data, and Nt is the number of 
the training data. 

Step 4: Update local best Lj,k, global best Gj, and 
cooperative best Cj 

The local best position Lj,k is the best previous 
position that yielded the best fitness value of the jth 
subswarm of the kth particle and the global best 
position Gj is generated by the whole local best 
position. In this step, the first step updates the local 
best position. Compare the fitness value of each 
current particle with that of its local best position. If the 
fitness value of the current particle exceeds those of its 
local best position, then the local best position is 
replaced with the position of the current particle. The 
second step updates the global best position. Compare 
the fitness value of all particles in their local best 
positions with that of the particle in the global best 
position. If fitness value of the particle in the local best 
position is better than those of the particles in the 
global best position, then the global best position is 
replaced with the current local best position. 

Lj,k =
x j,k ,

Lj,k ,

!
"
#$

if F  (x j,k )  < F  (Lj,k )

if F  (x j,k )  % F  (Lj,k )

Gj = arg max
Lj ,k

F(Lj,k ),           1 & k & ps

       (6) 

The third step updates the cooperative best 
position. Compare the fitness values of all composed 
neural fuzzy systems and the best neural fuzzy system. 
If the fitness value of one of all composed neural fuzzy 
systems exceeds those of the best neural fuzzy 
system, then the best neural fuzzy system is replaced 
with the composed neural fuzzy system in which the 
corresponding rule is the cooperative best (Cbest). 

Step 5: Generate new subswarms using Lj,k, Gj and Cj 

The step updates velocity and position of each 
particle to generate the new subswarms using Eqs. (7) 
and (8). 

vj,k (t +1) = ! " vj,k (t) + #1 " Rand() " (Lj,k $ x j,k ) + #2 "

Rand() " (Gj $ x j,k ) + #3 " Rand() " (Cj $ x j,k )
     (7) 

x j,k (t +1) = x j,k (t) + vj,k (t +1)          (8) 

where !  is the coefficient of inertia, φ1 is the cognitive 
study, φ2 is the society study, φ3 is the group study, and 
Rand()  is generated from a uniform distribution in the 
range [0, 1]. 

Step 6: Buffer Vector Adjustment 
The buffer vector needs to be adjusted to keep the 

best neural fuzzy system during the evolution process. 
This process is performed by comparing the fitness 
value of the current particle to that of the buffer vector. 
If the fitness value of the current particle exceeds the 
fitness value of the buffer vector (i.e., 
f x j,k( ) > f buffer( ) ), then the corresponding contributor 

of the buffer vector is replaced by the current particle. 

5. ILLUSTRATIVE EXAMPLES 

In this section, the performance of the TNFS model 
with the proposed CPSO method is evaluated using 
two better-known benchmark data sets for classification 
problems. The first example uses the Iris data and the 
second example uses the Wisconsin breast cancer 
data. The two benchmark data sets are available from 
the University of California, Irvine, via an anonymous 
ftp address ftp://ftp.ics.uci.edu/pub/machine-learning-
databases. In the following simulations, the parameters 
and number of training epochs were based on the 
desired accuracy. In short, the trained TNFS with 
CPSO was stopped once its high learning efficiency 
was demonstrated. Table 1 presents the initial 
parameters of the proposed CPSO in the three 
classification problems. 

Table 1: Initial Parameters before Learning 

Parameter Value 

Subswarm Size 100 

Maximum Number of Generation 2000 

!
1

, !
2

 1 

!
3
 2 

ω 0.4 

Coding Type Real Number 
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        (a)        (b) 

       
        (c)        (d) 

  
        (e)        (f) 

Figure 4: The distribution of input training patterns and final assignment of three rules. (a) For the Sepal Length and Sepal Width 
dimensions. (b) For the Petal Length and Petal Width dimensions. (c) For the Sepal Length and Petal Length dimensions. (d) 
For the Sepal Width and Petal Width dimensions. (e) For the Sepal Width and Petal Length dimensions. (f) For the Sepal Length 
and Petal Width dimensions. 

5.1. Iris Data Classification 

The Fisher-Anderson iris data consists of four input 
measurements, sepal length (sl), sepal width (sw), 
petal length (pl), and petal width (pw), on 150 
specimens of the iris plant. Three species of iris were 
involved, Iris Sestosa, Iris Versiolor and Iris Virginica, 
and each species contains 50 instances. 

In the Iris data experiment, 25 instances with four 
features from each species were randomly selected as 

the training set (i.e., a total of 75 training patterns were 
used as the training data set) and the remaining 
instances were used as the testing set. Once the TNFS 
model was trained, all 150 test patterns of the Iris data 
were presented to the trained TNFS model, and the re-
substitution error was computed. In this example, three 
fuzzy rules are adopted. The learning proceeded for 
2000 generations, and was repeated thirty runs. After 
2000 generations, the average fitness value was 
0.9424. Figure 4 (a-f) show the distribution of the 
training pattern and the final assignment of the fuzzy 
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rules (i.e., distribution of input membership functions). 
Since the region covered by a Gaussian membership 
function is unbounded, in Figure 4 (a-f), the boundary 
of each ellipse represent a rule with a firing strength of 
0.5. 

In this example, the PSO [12], RPSO [27], and 
LPSO [28] methods were applied to the same problem 
to show the effectiveness and efficiency of the TNFS 
model with the proposed CPSO learning method. In the 
PSO, RPSO, and LPSO, the cognitive coefficient !

1
 

was set to 2, the society coefficient !
2
 was set to 2, 

and the population size was set to 200. The coefficient 
!  of PSO was set to 0.4, the maximal and minimal 
weights of LPSO are set to 0.9 and 0.4, respectively. 
We compared the testing accuracy of our proposed 
method with that of other methods – TNFS-PSO, 
TNFS-RPSO, and TNFS-LPSO. Thirty experiments 
were used. These experiments calculated the 
classification accuracy and the values of the average 
produced on the testing set using the TNFS-PSO 
method, the TNFS-RPSO method, the TNFS-LPSO 
method, and the proposed TNFS-CPSO method. 

During the learning phase, the learning curves from 
the proposed TNFS-CPSO method, the TNFS-LPSO 
method, the TNFS-RPSO method, and the TNFS-PSO 
method are shown in Figure 5. Table 2 shows that the 
average classification accuracy of the TNFS-CPSO 
method in high accuracy was better than that of other 
methods. 

5.2. Wisconsin Breast Cancer Diagnostic Data 

The Wisconsin breast cancer diagnostic data set 
contains 699 patterns distributed into two output 
classes, “benign” and “malignant.” Each pattern 
consists of nine input features: clump thickness, 
uniformity of cell size, uniformity of cell shape, marginal 
adhesion, single epithelial cell size, bare nuclei, bland 
chromatin, normal nucleoli, and mitoses. 458 patterns 
are in the benign class and the other 241 patterns are 
in the malignant class. Since there were 16 patterns 
containing missing values, we used 683 patterns to 
evaluate the performance of the proposed TNFS-
CPSO method. To compare the performance with other 
methods, we used half of the 683 patterns as the 
training set and the remaining patterns as the testing 
set.  

Experimental conditions were the same as the 
previous experiment. We also used half of the original 
data patterns as the training data (randomly selected) 
and the remaining patterns as the testing data. For 
training, the training patterns were randomly chosen, 
and the remaining patterns were used for testing. 

This example, as subsection 5.1, compares the 
performance of the TNFS-CPSO with that of other 
methods. In the PSO, RPSO and LPSO methods, the 
parameters are the same as in subsection 5.1. Thirty 
experiments also were used. These experiments 
calculated the classification accuracy and the values of 

 
Figure 5: Learning curves of the proposed CPSO method, the LPSO method, the RPSO method, and the PSO method. 

 
Table 2: Classification Accuracy Using Various Methods for the Iris Data 

Method TNFS-PSO TNFS-RPSO TNFS-LPSO TNFS-CPSO 

Mean (%) 91.33 94.76 95.82 97.33 

Std Dev 3.3356 2.0085 1.9102 1.1087 
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the average produced on the testing set by the TNFS-
PSO method, the TNFS-RPSO method, the TNFS-
LPSO method, and the proposed TNFS-CPSO method. 
During the supervised learning phase, 2000 epochs of 
training were performed. Figure 6 shows the 
membership functions for each input feature. The 
learning curves from the proposed TNFS-CPSO 
method, the TNFS-LPSO method, the TNFS-RPSO 
method, and the TNFS-PSO method are shown in 
Figure 7. The performance of the TNFS-CPSO method 
is better than the performance of all other methods. 
Table 3 shows that the average classification accuracy 
of the TNFS-CPSO method was better than that of 
other methods.  

6. CONCLUSION 

This study proposes a CPSO method for a TNFS 
model in classification problems. The major novelty of 
the proposed CPSO learning algorithm uses the rule-
based subswarms to allow that each particle in each 
subswarm evolves separately using a specific PSO for 
constructing the TNFS-CPSO method. Furthermore, 
the proposed CPSO embeds cooperative evolution into 
PSO to accelerate the search and increase global 
search capacity. Three examples showed that the 
proposed TNFS-CPSO method improves the system 
performance in terms of a fast learning convergence, 
and a high correct classification rate. 

 
Figure 6: Input membership functions for breast cancer classification. 

 

 
Figure 7: Learning curves from the proposed CPSO method, the LPSO method, the RPSO method, and the PSO method.  

 
Table 3: Classification Accuracy for the Wisconsin Breast Cancer Diagnostic Data 

Method TNFS-PSO TNFS-RPSO TNFS-LPSO TNFS-CPSO 

Mean (%) 91.8 94.51 95.61 97.39 

Std Dev 0.0154 0.0127 0.0105 0.0087 
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