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Abstract: Homotopy Analysis Method (HAM) is used to analytically study the heat transfer in a porous medium over a 
stretching surface with internal heat generation and radiation. The governing equations are transformed into a system of 
ordinary differential equations and then solved using HAM method. Effects of different physical parameters such as 
permeability, suction, Prandtl number, radiation and Heat generation have been studied on temperature and velocity 
fields. And also analytical results have been shown for local skin friction coefficient and the Nusselt number. The 
analytical solutions have been compared with numerical results which showed remarkable agreements. 
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1. INTRODUCTION 

Boundary layer flows on continuous moving surface 
have many engineering applications. Cooling of an 
infinite metallic plate in a cooling bath, aerodynamic 
extrusion of plastic sheets, the boundary layer along a 
liquid film in condensation processes and a polymer 
sheet or filament extruded continuously from a dye, or 
a long thread traveling between a feed roll and a 
windup roll, are examples for practical applications of 
continuous flat surface. Sriramula et al. [1] investigated 
the flow and heat transfer of a viscous incompressible 
flow in porous medium over a stretching sheet studied. 
Subhas and Veena [2] studied the Visco-elastic fluid 
flow and heat transfer in a saturated porous medium 
over an impermeable stretching surface. Elbashbeshy 
and Bazid [3-5] analyzed heat transfer over 
continuously moving plate embedded in non-Darcian 
porous medium. They studied heat transfer over 
unsteady stretching surface with internal heat 
generation or absorption. Pop and Na [6] studied free 
convection heat transfer of non-Newtonian fluids along 
a vertical wavy surface in a porous medium. Most of 
engineering problems, especially heat transfer 
equations are mostly nonlinear. There are many 
effective methods for obtaining the solutions of 
nonlinear equation such as, variational iteration method 
[7], Adomian method [8] and Homotopy perturbation 
method [9-10], and HAM [11-21]. HAM expresses 
solutions of a nonlinear problem by means of different 
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base functions and unlike perturbation techniques, it is 
independent of any small or large quantities.  

In this study Homotopy Analysis Method has been 
implemented to study boundary layer [22-31] heat 
transfer in a porous medium over a stretching surface 
in the presence of internal heat generation and 
radiation. 

2. GOVERNING EQUATION 

In this study a steady, incompressible and 2-D 
laminar viscous flow through a porous medium over a 
stretching surface with a uniform wall with negligible 
radiative heat flux in the x -direction temperature has 
been considered. The conservation equations of the 
laminar boundary layer are as follows: 
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where, ,u v are the velocity components along 
  
x, y  

coordinates respectively, !  is the density of the fluid, 

  K
'  is the permeability of the porous medium, µ  is the 

coefficient of the dynamic viscosity, 
 
µ

e
is the effective 

viscosity,  T  is the temperature of the fluid in the 
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boundary layer,
 
T
!

 is the temperature of the fluid 

outside the boundary layer, 
 
!

c
 is the effective thermal 

diffusivity of the saturated porous medium and 
 
Q  is the 

volumetric rate of heat generation.  
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where 
 
!

1
 is the Stefan-Boltzmann constant and

 
!

1
 is 

the mean absorption coefficient. We assume that the 
temperature differences within the flow are sufficiently 
small such that T4 may be expressed as a linear 
function of temperature. This is accomplished by 
expanding   T

4  in a Taylor’s series about 
 
T
!

and 
neglecting higher-order terms, thus  
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By using of Eqs. (4) and (5), Eq. (3) gives 
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The corresponding boundary conditions for the above 
problem are given by 

  
u = u

0
x,v = ±v

w
,T = T

w
 at 

  
y = 0          (7) 

  
u = 0,T = T

!  as  y ! "           (8) 

Positive and negative values for 
 
v

w
 indicate blowing 

and suction respectively, while 
  
v

w
= 0 corresponds to 

an impermeable plate. 

The following non-dimensional variables are 
introduced in order to obtain the non-dimensional 
governing equations: 
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where, !  is the stream function. 

Since 
 

u =
!"

!y
and 

 

v = !
"#

"x
, we have from Eq. (9) 

that 
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Here 
 
f  is non-dimensional stream function and 

prime denotes differentiation with respect to ! . Now by 
substituting Eqs. (9) and (10) into Eqs. (1), (2) and (6) 
we obtain, 
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 is the heat generation or absorption parameter, 
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Prandtl number. 

The corresponding boundary conditions (7) and (8) 
becomes, 
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where 
   

f
w
= !v

w

!

µu
0

 is the suction and injection 

velocity at the plate for 
 
f

w
> 0 and 

 
f

w
< 0 respectively. 

The quantities of main interest in such problem are 
the skin friction coefficient and the Nusselt number 
(rate of heat transfer). The shearing stress on the 
surface is defined by 
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where 
  

Re
x
=

u
0
x
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a

 is local Reynolds number. 

Thus from Eq. (14) we see that the local values of 
the skin friction coefficient 

 
c

f
 is proportional to

  
!!f (0) . 

The heat flux on the wall can be defined as: 
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The local Nusselt number may be written as 

  
Nu =

h(x)
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Thus from Eq. (17) we see that the local Nusselt 
number Nu is proportional to 

 
! "# (0) . 

3. HOMOTOPY ANALYSIS METHOD SOLUTION 

A solution may be expressed with different base 
functions, among which some converge to the exact 
solution of the problem faster than others. Such base 
functions are obviously better suited in terms of 
converging to the final solution. Noting these facts, 
g !( )  by a set of base functions is: 
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the initial guess and auxiliary linear operators are as 
follows: 
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where 
  
c

i
(i = 1! 5)  are constants. Let P ! 0,1[ ]  denotes 

the embedding parameter and  !  indicates non–zero 
auxiliary parameters. Then, we construct the following 
equations: 

3.1. Zeroth –Order Deformation Equations 
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For p = 0  and p = 1  we have 
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In which 
 
!
1
 and 

  
!

2
 are chosen in such a way that 

these two series are convergent at p = 1 , therefore we 
have through equation (31) and (32): 
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3.2. mth–Order Deformation Equations 
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The general solutions of Eqs. (35)-(40) are: 
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Where 
  
C

1

m to 
  
C

5

m are constants that can be obtained by 
applying the boundary condition in Eq. (36) and (39). 

As discussed in [11] the rule of coefficient ergodicity 
and the rule of solution existence play important roles 
in determining the auxiliary function and ensuring that 
the high-order deformation equations are closed and 
have solutions. Thus, the auxiliary function 

  
H (!)  is as 

follow: 

  
H (!) = exp("!)          (44) 

4. CONVERGENCE OF THE HAM SOLUTION 

As stated in [11], the convergence and rate of 
approximation for the HAM solution strongly depends 
on the value of auxiliary parameter  ! . By means of the 
so-called  ! -curves it is easy to find out the so-called 
valid regions of  !  to gain a convergent solution series. 
According to Figure 2 and 3, the acceptable range of 
auxiliary parameters for 

  
pr = 0.73, K = 0.5,! = 0.03, N = 0.1 
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Figure 2: The 
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-validity for 

  K = 0.5 , 
 Pr = 0.73 , 

  N = 0.1 , 
 ! = 0.03 , 
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= 0 . 

 

 
Figure 3: The 
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-validity for 

  K = 0.5 , 
 Pr = 0.73 , 

  N = 0.1 , 
 ! = 0.03 , 

  
f

w
= 0 . 

 

 
Figure 1: Schematic diagram of problem. 
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Figure 4 and 5 shows how auxiliary parameters 
  
!

1
 

and 
  
!

2
varies with changing 

 
f

w
. If 

 
f

w  increases the 
range of convergence of solution is restricted and then 
decreased. 

 

Figure 4: The 
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-validity for various 
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  K = 0.5 , 
 Pr = 0.73 , 

  N = 0.1 , 
 ! = 0.03 . 

 

 

Figure 5: The 
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-validity for various 
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  K = 0.5 , 
 Pr = 0.73 , 

  N = 0.1 , 
 ! = 0.03 . 

 

 

Figure 6: The 
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1
-validity for various  K , 
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= 0 , 

 Pr = 0.73 , 

  N = 0.1 , 
 ! = 0.03 . 

 

Figure 7: The 
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2
-validity for various  K , 

  
f

w
= 0 , 

 Pr = 0.73 , 

  N = 0.1 , 
 ! = 0.03 . 

 

 

Figure 8: The 
  
!

1
- validity for various ! , 

  
f

w
= 0 , 

 Pr = 0.73 , 

  N = 0.1 , 
  K = 0.5 . 

 

 

Figure 9: The 
  
!

2
-validity for various ! , 

  
f

w
= 0 , 

 Pr = 0.73 , 

  N = 0.1 , 
  K = 0.5 . 

5. RESULTS AND DISCUSSION 

In the calculations, the values of permeability 
parameter K, suction parameter 

 
f

w
, Prandtl number Pr, 
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radiation parameter N, Heat generation or absorption 
parameter λ are chosen arbitrarily. Figure 10 shows the 
dimensionless velocity profiles for different values of 
injection and suction parameters 

 
f

w
. It can be seen 

that the velocity profiles decrease monotonically with 
the increase of injection parameter as well as suction 
parameter. Figure 11 also shows the similar behavior 

(like as the velocity profiles) of the effect of suction and 
injection parameter on the temperature profiles. 
Figures 12 and 14 show the velocity profiles for 
different values of permeability parameter K in case of 
suction and injection. From these figures, we see that 
the velocity decreases with the increase of the 
permeability parameter K in both case of suction and 
injection. 

 
Figure 13: Temperature profile !"  for various  K  when 
 Pr = 0.73 , 

  N = 0.1 , 
  
f

w
= 0.5 , 

 ! = 0.03 . 

 

 
Figure 14: Velocity profile 

 !f for various  K  when
 Pr = 0.73 , 

  N = 0.1 ,
  
f

w
= !0.5 ,

 ! = 0.03 . 

 

 
Figure 15: Temperature profile !"  for various  K  when 
 Pr = 0.73 , 

  N = 0.1 , 
  
f

w
= !0.5 , 

 ! = 0.03 . 

 
Figure 10: Velocity profile 

 !f  for various  f
w  when 

 Pr = 0.73 , 
  N = 0.1 , 

  K = 0.5 , 
 ! = 0.03 . 

 

 
Figure 11: Temperature profile !"  for various  

f
w  when 

 Pr = 0.73 , 
  N = 0.1 , 

  K = 0.5 , 
 ! = 0.03 . 

 

 
Figure 12: Velocity profile 

 !f  for various  K  when 
 Pr = 0.73 , 

  N = 0.1 , 
  
f

w
= 0.5 , 

 ! = 0.03 . 
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Figure 16: Temperature profile !"  for various !  when 

 Pr = 0.73 , 
  N = 0.1 , 

  
f

w
= 0.5 , 

  K = 0.5 . 

 
Figure 17: Temperature profile !"  for various !  when 

 Pr = 0.73 ,   N = 0.1 , 
  
f

w
= !0.5 , 

  K = 0.5 . 

 

 
Figure 18: Temperature profile !"  for various  Pr  when 

 ! = 0.03 , 
  N = 0.1 , 

  
f

w
= 0.5 , 

  K = 0.5 . 

Figures 18 and 19 show the temperature profiles for 
different values of Prandtl number Pr. From these 
figures we see that the dimensionless temperature 

profile decreases with increasing Pr in case of suction 
and injection. All the above calculations have been 
carried out for a fixed radiation parameter N. Therefore, 

 
Figure 19: Temperature profile !"  for various  Pr  when 

 ! = 0.03 , 
  N = 0.1 , 

  
f

w
= !0.5 , 

  K = 0.5 . 

 

 
Figure 20: Temperature profile !"  for various  N  when 

 ! = 0.03 , 
 Pr = 0.73 , 

  
f

w
= 0.5 , 

  K = 0.5 . 

 

 
Figure 21: Temperature profile !"  for various  N  when 

 ! = 0.03 , 
 Pr = 0.73 , 

  
f

w
= !0.5 , 

  K = 0.5 . 
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the effects of radiation parameter N on velocity and 
temperature profiles are not clear from the earlier 
discussions. Figures 20 and 21 show the effect of 
radiation parameter N on the temperature profiles in 
the case of suction and injection. We observe from 

these figures that temperature profile decreases with 
the increase of radiation parameter for both cases. For 
large N, it is clear that temperature decreases more 
rapidly with the increase of N. Therefore using 
radiation, we can control the temperature distributions. 

Table 1: The Results of HAM and NS for   f (!) , 
 
!f (") , ! (")  when f

w
= 0 , 

 Pr = 0.73 , ! = 0.03 , 
 N = 0.1 , 

 K = 0.5  

  
f (!)    

!f (")   
! (")  

!  

HAM NS Error (%) HAM NS Error (%) HAM NS Error (%) 

0.0 0.0000 0.0000 0 0.9995 0.9999 0.0400 0.9998 0.9999 0.010 

0.2 0.1747 0.1773 1.4664 0.7831 0.7827 0.05110 0.9904 0.9917 0.1310 

0.4 0.3150 0.3162 0.37950 0.6131 0.6126 0.08161 0.9827 0.9835 0.0813 

0.6 0.4261 0.4249 0.28241 0.4802 0.4795 0.14598 0.9748 0.9752 0.0410 

0.8 0.5086 0.5099 0.25495 0.3757 0.3753 0.10658 0.9690 0.9668 0.227 

1.0 0.5812 0.5765 0.81526 0.2942 0.2938 0.1361 0.9607 0.9585 0.2295 

1.2 0.6296 0.6287 0.14315 0.2305 0.2299 0.2609 0.9531 0.9501 0.3157 

1.4 0.6688 0.6695 0.10455 0.1805 0.1800 0.277 0.9450 0.9418 0.3397 

1.6 0.6987 0.7014 0.3849 0.1410 0.1402 0.5706 0.9380 0.9334 0.4928 

1.8 0.7272 0.7264 0.1101 0.1107 0.1103 0.36264 0.9317 0.9250 0.7243 

2.0 0.7474 0.7460 0.18766 0.0863 0.0863 0 0.9175 0.9167 0.0872 

2.2 0.7614 0.7613 0.01313 0.0675 0.0675 0 0.9112 0.9084 0.3082 

2.4 0.7717 0.7733 0.20690 0.0530 0.0628 15.605 0.9002 0.9000 0.022 

2.6 0.7790 0.7826 0.4600 0.0414 0.0414 0 0.8908 0.8917 0.101 

2.8 0.7883 0.7900 0.21518 0.0326 0.0324 0.61728 0.8777 0.8834 0.6452 

3.0 0.7973 0.7957 0.2010 0.0254 0.0253 0.3952 0.8699 0.8751 0.59421 

 

Table 2: The Results of HAM and NS for 
  
!!f (0) , 

 
!" (0)  when 

 
f

w
= -0.5 , 

 Pr = 0.73 , 
 ! = 0.03 ,  N = 0.1 ,  K = 0.5  

  
!!f (0)  

 
! "# (0)  

K 
 
!
1

 
 
!
2

 
HAM NS HAM NS 

0.5 -1.0 -1.0 -1.0000 -0.9999 0.0294 0.0295 

1.0 -0.9 -1.0 -1.1864 -1.1861 0.0250 0.0251 

1.5 -0.8 -1.0 -1.3514 -1.3507 0.0223 0.0223 

 

Table 3: The Results of HAM and NS for
  
!!f (0) , 

 
!" (0)  when 

 
f

w
= 0.5 , 

 Pr = 0.73 , 
 ! = 0.03 , 

 N = 0.1 , 
 K = 0.5  

  
!!f (0)  

 
! "# (0)  

K 
  
!

1
 

 
!
2

 
HAM NS HAM NS 

0.5 -1.2 -1.0 -1.4994 -1.5000 0.0549 0.0551 

1.0 -1.0 -1.0 -1.6854 -1.6860 0.0522 0.0523 

1.5 -1.0 -1.0 -1.8520 -1.8507 0.0503 0.0504 
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6. CONCLUSION 

In this study, we have applied Homotopy Analysis 
Method (HAM) to compute heat transfer in a porous 
medium over a stretching surface with internal heat 
generation and suction or injection. Using usual 
similarity transformations, the governing equations 
have been transformed into a system of non-linear 
ordinary differential equations and are solved for similar 
solutions by using (HAM). The proper range of the 
auxiliary parameter  !  to ensure the convergency of the 
solution series was obtained through the so-called  ! -
curves. When compared with other analytic methods, it 
is clear that HAM provides highly accurate analytic 
solutions for nonlinear problems. A analytical study has 
been performed to survey the influence of permeability 
parameter, heat source (sink) parameter, Prandtl 
number and radiation parameter on the skin friction 
coefficient, the rate of heat transfer coefficient, 
dimensionless velocity and temperature profiles. From 
the above investigation, we found that Radiation has 
significant effect on temperature profiles. Velocity 
profiles decrease with increasing injection as well as 
suction. The temperature profiles increase with 
increasing permeability and heat source parameter and 
decreases with increasing Prandtl number and 
radiation parameter. The skin friction coefficient 
increases with heat source and decreases with 
permeability. The rate of heat transfer coefficient 
decreases with heat source parameter as well as 
permeability and increases with Prandtl number as well 
as radiation parameter. It has been attempted to show 
the accuracy, capabilities and wide-range applications 
of the homotopy analysis method in comparison with 
the numerical solution of nonlinear heat transfer in a 
porous medium over a stretching surface with internal 
heat generation and suction or injection. 
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NOMENCLATURE 

B Positive constant 

 
f  Non-dimensional stream function 

 !  Auxiliary parameter 

HAM Homotopy Analysis Method 

 H  Auxiliary function 

 L  Linear operator of HAM 

 N  Non-linear operator/radiation parameter 

 
a

c
 Effective thermal diffusivity 

 Pr  Prandtl number 

 Pn  Radiative Prandtl number 

T Temperature 

 
T
!

 Ambient temperature 

 
T

w
 Wall temperature 

u Velocity in x direction 

!  Velocity in y direction 

 
c

p  Specific heat at constant pressure 

!  Similarity function for temperature 

 K  Permeability b of the porous medium 

 
Q  Volumetric rate of heat generation 

!  Heat generation 

 N  Radiation on parameter 

!  Density of the fluid 

Ψ Stream function 

Table 4: The Results of HAM and NS for 
  
!!f (0) , 

 
!" (0)  for Various 

 
f

w  When, 
 Pr = 0.73 , ! = 0.03 , 

 N = 0.1 , 
 K = 0.5  

  
!!f (0)  

 
- !" (0)  

 
f

w
= -0.5  

  
f

w
= 0.5  Pr 

HAM NS HAM NS 

0.73 0.0293 0.0295 0.0549 0.0550 

1.5 0.0270 0.0271 0.0955 0.0957 

2.0 0.0268 0.0269 0.1282 0.1284 
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µ  Dynamic Viscosity 

 
!

1
 Effective viscosity 

 
!

1
 Stefan-Boltzman constant 

 
!

1
 Absorption coefficient 

!  Dimensionless similarity variable 

 v  Kinematic viscosity 

!  Free stream values 

Re Reynolds number 
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