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Determination of Director Angle for Flow Aligning Nematic Liquid 
Crystals under Couette Geometry 
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Abstract: We consider steady state flow of nematic liquid crystals in a Couette geometry driven by the relative rotation 
of the two concentric cylinders. We use the standard Ericksen-Leslie continuum model. The director, a unit vector, 
represents the average molecular orientation. We assume strong anchoring conditions at the walls of the flow which 
fixes the director orientation, and find an explicit expression of the director angle as a function of its distance from the 
common axis of the rotating cylinders.  
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1. INTRODUCTION 

Nematic liquid crystals consist of elongated and 
rigid rod-like molecules. In the absence of flow and 
external fields they tend to follow a preferred direction 
of alignment. The hydrodynamic theory for liquid 
crystals, developed by Ericksen [8] and Leslie [9, 10], 
uses the director, n, and the velocity, v, as fundamental 
unknowns. Imposed boundary conditions and the 
balance between viscous and elastic forces in 
response to external stimuli determine stable flow 
configurations in various regimes. In the Couette 
geometry that we consider for this article, the external 
stimulus is provided by the relative rotation of the 
bounding cylinders. 

In this article, we consider flow-aligning nematic 
liquid crystals. At a steady state of the flow between 
two concentric cylinders, we find an explicit expression 
of the director angle as a function of the distance from 
the common axis of the two rotating cylinders. In 
Section 2, we introduce the model, discuss the 
constitutive relations leading to constraints. We also 
define the flow alignment angle (equation 8) for flow-
aligning nematics. Section 3 describes the equations of 
motion for the Couette geometry. The liquid crystal 
sample is confined between two concentric cylinders 
and the flow is driven by the relative rotation of the 
cylinders. In Section 4, we solve the system of 
equations that arising from balance of linear and 
angular momentum. Section 5 provides a summary and 
discusses possibilities for future research. 

2. ERICKSEN-LESLIE MODEL AND CONSTITUTIVE 
EQUATIONS 

Let v = (v1, v2, v3)  and n = (n1, n2, n3)  represent the 
velocity and director fields. We assume that the director 
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is a unit vector, n ! n = 1 , and the flow is incompressible, 
which gives ! "v = 0 . The Ericksen-Leslie model uses 
the Frank-Oseen elastic energy, F n,!n( ),  a function of 
the director and its gradients defined by: 

F n,!n( ) =
1
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where the constants K1, K2, and K3 correspond to 
splay, twist, and bend deformations. The Cauchy stress 
tensor !  is: 

! = " pI" #n( )
T $F

$#n
+! v,          (2) 

where p  is the pressure and !
v
 is the viscous part of 

the stress tensor [6, 7, 9, 12]. We assume that the 
viscous part of the stress tensor has a linear 
relationship to the velocity gradient: 

!
v
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where 2A =  !v +  !v( )
T T is the symmetric part of 

the velocity gradient, 2! =  "v # ("v)
T  represents the 

skew-symmetric part of the velocity gradient, and 
N =  n

t
+ v.!( )n "#n  measures relative rate of change 

of the director. The coefficients !
i
 in equation (3) are 

the Leslie coefficients and their values depend on the 
underlying liquid crystal. 

For nematic liquid crystals in motion, the balance of 
linear and angular momentum are: 

![vt +  v ."( )v] =  ".#  and         (4) 
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where ! > 0  denotes the constant density of the 
material, !

1
 represents the rotational viscosity and !
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the torsion. Both !
1
 and !

2
 are linear combinations of 

Leslie coefficients. The six Leslie coefficients are not 
independent and they satisfy certain constraints. For a 
detailed derivation and discussion of the constitutive 
properties for nematic liquid crystals, see [1, 2, 9, 14]. 
In particular, the coefficients satisfy a linear constraint 
and the rotational viscosity is positive: 

!6 "!5 =!!2 +!! 3,  and          (6) 

! 1 =" 3 #"2 >!0, ! 2 ="6 #"5          (7) 

In addition to the trivial stable states possible for 
nematic liquid crystals without the infuence of flow or 
external fields, when !2! 3 > 0,  the sample can attain a 
non-trivial stable state where the director aligns itself at 
a specific angle. Nematic liquid crystals possessing this 
property are called flow-aligning and the angle at which 
the director orients itself is the flow-alignment angle 
and it satisfies the following condition: 

cos 2! !=  -
"

1

"
2

           (8) 

where !  is the flow-alignmnet angle and a detailed 
discussion on flow-aligning nematics and the flow-
alignment condition can be found in [5, 14]. 

3. GOVERNING EQUATIONS FOR COUETTE FLOW 

We consider flow between two concentric cylinders 
of radii R1 and R2 (R2 > R1), rotating with angular 
velocities !

1
and !

2
 respectively. Assuming a 

cylindrical polar coordinate system ( r,!! ,  z ) with z 
along the common axis of the cylinders and 
considering in-plane velocity components only, we 
examine solutions of the form:  

v =  (v1;  v2;  v3 ) =  0,  r! ,  0( )  and  

n =  (n1;  n2;  n3 ) =  sin!",  cos!",  0( ),
        (9) 

where ! =! (r,t)  and ! = ! r,  t( ).  These choices 
automatically satisfy the requirements that n is a unit 
vector and the flow is incompressible. One component 
of the vector equation (4) determines the pressure 
while the other component relevant in this geometry 
yields: 
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where !̂
12

 and !̂
21

 are components of the viscous part 
of the stress tensor !

v
. Similarly, The balance of 

angular momentum (5) for the director reduces to: 
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Using equation (11) to replace the term containing 
the radial derivatives of !  in (10) and evaluating the 
remaining terms using (3), we obtain: 
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where g(!)  is a generalized measure of viscous effects 
in the liquid crystal and equals: 
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The second law of thermodynamics applied in the 
form of the Calusius-Duhem inequality implies that 
g !( ) > 0 . The orientation of the molecules (and hence 
the value of n) at the boundary depends on the 
preparation and treatment of the boundary material. 
Without loss of generality, we will assume that the walls 
are crystalline which leads to strong anchoring 
boundary conditions for the director. Under this 
assumption: 

! !(R1,  0) =!(R2 ,  0) =!!0        (14) 

where homogenous and homeotropic boundary 
conditions are given by,  

!!0 =  0,!!0 = ± / 2         (15) 

respectively. 

An analysis leading to the existence of weak 
solutions for the Leslie-Ericksen system in the Couette 
geometry follows from the corresponding theory for 
more general systems by Calderer and Liu [3] and Lin 
and Liu [11]. 

4. DETERMINATION OF DIRECTOR ANGLE AT 
STEADY STATE 

We seek steady state solutions of the system of 
equations (11) and (12). For time-independent velocity 
and director fields, ! r,  t( )  =! r( )  and !" r,  t( )  =!" r( ),  
all time derivative terms vanish and the right hand side 
of (12) reduces to:  

d

dr
g !( )r" r#$ %& + 2g !( )" r = 0        (16) 

Similarly, dividing both sides of (11) by !
1
 and 

assuming a time independent field for the director, we 
arrive at: 
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Main Result: In the flow aligning regime, the 
director angle !  at a distance r from the common 
rotational axis of the cylinders can be expressed 
explicitly by the function !(r) = "A ln r + B  where the 
constants are given by 

A =
!

lnR
2
" lnR

1

and B =
!

2

ln R
1
R
2( )

lnR
1
" lnR

2

 where R1 and R2 

are radii of the inner and outer cylinders respectively. 

Proof: Integrating (16) yields the relationship 
r

3! r r( )g "( )  =  C,  where the constant C may be 
interpreted as the magnitude of the moment per unit 
length of a cylinder with radius r. When !

r
r( )  =  0( ),  

( equivalently,  !  =  constant ), the motion corresponds to 
a rigid body rotation. We may conceptualize 
incompressible isotropic viscous fluids as a special 
case of anisotropic liquid crystals where the director 
! r( )  is independent of the radial coordinate. Under 
these assumptions, all terms involving derivatives of !  
in equation (17) are zero. Thus, for non-rigid body 
motions (!

r
r( )  "  0),  and for flow-aligning nematic 

liquid crystals using equation (8), equation (17)  
reduces to; 

!
r

r
+!

rr
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After integrating equation (18), we get 

! r( ) = A ln r + B          (19) 

where A and B are constants of integration. Using 
homeotropic boundary conditions (15), we evaluate the 
constants as: 
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Remark: We use homeotropic boundary conditions 
because homogeneous boundary conditions give only 
the trivial solution. 

 
 

5. SUMMARY AND FUTURE RESEARCH 

In this paper we have found an explicit expression 
of the director angle !  at a distance r from the 
common axis of the rotating cylinders. To study 
stability, there are many experimental [4, 13] and 
numerical [15] work are done involving director angles 
in the Couette flow of nematic liquid crystals. Our future 
work will involve the comparison between this 
analytical work and the existing experimental and 
numerical work. 
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