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Abstract: In this paper, we consider a nonlinear matrix equation. We propose necessary and sufficient conditions for the 
existence of Hermitian positive definite solutions. Some necessary conditions and sufficient conditions for the existence 
of Hermitian positive definite solutions of this equation is also derived. Based on the Banach fixed point theorem, the 
existence and the uniqueness of the Hermitian positive definite solution are studied. An iterative method for obtaining the 
Hermitian positive definite solution of this equation is proposed. Finally, some numerical examples are presented to 
illustrate the performance and efficiency of the proposed algorithm. 
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1. INTRODUCTION 

In this paper, we consider the nonlinear matrix 
equation; 

X
s
+ A

*
X

! t
1A + B

*
X

! t
2B = I          (1) 

where  I  is an  n! n  identity matrix, 
  
A, B are  n! n  

nonsingular complex matrices and s,t
1
,t
2

 are positive 
numbers. A!  stands for the conjugate transpose of the 
matrix A . 

Nonlinear matrix equations with the form of (1) have 
many applications in engineering, control theory, 
dynamic programming, ladder networks statistics and 
so on. Several authors have studied the necessary and 
sufficient conditions of the existence of Hermitian 
positive definite (HPD) solutions of similar kinds of 
nonlinear matrix equations. In [7], the case 

  
s = t

1
= t

2
= 1 is considered and different itreative 

methods for computing the HPD solutions are 
proposed. In addition, the case 

  
s = t

1
= 1, 0 < t

2
! 1  has 

been studied for computing the HPD solutions are 
proposed in [8]. In [9], the author considered the matrix 
equation   X + A

*
X

! t
1 A+ B

*
X

! t
2 B = I

  
(0 < t

1
,
  
t

2
! 1)  and 

proposed three different kinds of iterative methods to 
compute the HPD solutions. The authors [10,12] 

considered the matrix equation 
  

X
s
+ A

i

*
X

t
i A

i
i=1

m

! = Q  

with   s > 0,
  
0 < t

i
! 1  and studied the existence and the 

uniqueness of the HPD solution.  

In this paper, we discuss the general case, namely, 
X

s
+ A

*
X

! t
1A + B

*
X

! t
2B = I  with 

  
s, t

1
, t

2
> 0.  We propose  
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necessary and sufficient conditions for the existence of 
HPD solutions. Some necessary conditions and 
sufficient conditions for the existence of HPD solutions 
of this equation is also derived. Based on the Banach 
fixed point theorem, the existence and the uniqueness 
of the Hermitian positive definite solution are studied.  

The paper is organized as follows: In Section 2, we 
give some notations and lemmas that will be needed to 
develop this work. Then in Section 3, we propose 
necessary and sufficient conditions for the existence of 
HPD solutions of Eq.(1). We also present some 
necessary conditions and sufficient conditions for the 
existence of HPD solutions of Eq.(1). In section 4, we 
propose an iterative method for the HPD solution of 
Eq.(1). Finally, some numerical examples are 
presented to illustrate the performance and the 
efficiency of the algorithm. 

2. PRELIMINARIES 

The following notations and the lemmas started 
below will be needed for developing the work: 

(1) For 
  
A, B !C

n"n
, we write 0 ( 0)A > ! if the matrix 

A is an Hermitian positive definite (semidefinite). If 

  
A! B > 0 ( A! B " 0),  we write 

  
A > B ( A ! B).

  

(2) We use B  and 
 

B
F

 to denote the spectral 
norm and Frobenius norm of an  n ! n  HPD matrix  B . 

(3) Let !
min
(A)  and !

max
(A)  denote the minimal and 

maximal eigenvalues of an n ! n  HPD matrix A  
respectively. 

(4) The spectral norm is monotonic, that is if 
0 < A ! B , then A ! B .

 

Lemma 2.1 ([1]). If A ! B > 0  (or A > B > 0 ), then 
A

!
" B

!
> 0  (or A

!
> B

!
> 0 ) for all ! "(0,1] , and 

B
!
" A

!
> 0  (or B!

> A
!
> 0 ) for all ! "[#1,0) . 
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Lemma 2.2 ([3]). If D and E are Hermitian matrices 
of the same order with E > 0 , then; 

DED + E
!1
" 2D . 

Lemma 2.3 ([4]). If P  and Q  are Hermitian 
matrices of the same order with PQ = QP , then 
P

!
>Q

!
> 0  for all ! " 0,+#( ) . 

Lemma 2.4 ([2]). If ! > 0 , and  P  and Q  are 
positive definite matrices of the same order with 

  
P,Q ! bI > 0,  then 

  
P!"

! Q!"
# "b!"!1 P ! Q .

 

Lemma 2.5 ([5]). If 0 < ! " 1 , P andQ are positive 
definite matrices of the same order with

  
P,Q ! bI > 0 , 

then 

  
P!

" Q"!
# !b!"1 P " Q ,  P!"

!Q
!"

# "b
!"!1

P !Q .  

Lemma 2.6 ([5]). Let
  
f (x) = xt

! " xs( ) ,  
! > 0,  

  x ! 0 . Then 

(1) f  is increasing on 0,
s

s + t
!"

#$
%
&'

1

s
(

)

*
*

+

,

-
-

 and decreasing 

on s

s + t
!"

#$
%
&'

1

s

,+(
)

*

+
+

%

&
'
'
;  

(2) fmax = f
s

s + t
!"

#$
%
&'

1

s
"

#
$
$

%

&
'
'
=

s

s + t

t

s + t

"
#$

%
&'

t

s

!
t

s
+1

.  

Lemma 2.7 ([7]). Let P  and Q  be positive 
operators on a Hilbert space such that; 

  
0 < m

1
I ! P ! M

1
I ,0 < m

2
I ! Q ! M

2
I ,0 < P ! Q,  then; 

  

P
! "

M
1

m
1

#

$%
&

'(

!)1

Q
!

,

  

P
! "

M
2

m
2

#

$%
&

'(

!)1

Q
!

 

hold for any  ! " 1. 

3. EXISTENCE CONDITIONS AND PROPERTIES OF 
THE HPD SOLUTIONS 

Theorem 3.1 Eq.(1) has an HPD solution if and only 
if there exist an HPD matrix L and a column-

orthonormal matrix 
L
s

N
1

N
2

!

"

#
#
#

$

%

&
&
&

such that 

  
A = L

t
1 N

1
, B = L

t
2 N

2
.           (2) 

In this case, Eq.(1) has an HPD solution X = L
2 , and 

all the solutions can be constructed by this way. 

Proof: Necessity. If Eq.(1) has an HPD solution X , 
then X > 0 . Let X = L

2
= L

!
L  be the Cholesky 

factorization, where L  is an HPD matrix. Then Eq.(1) 
can be rewritten as; 

  

X
s
+ A

!
X

" t
1 A+ B

!
X

" t
2 B

= L
2s
+ A

!
L
"2t

1 A+ B
!
L
"2t

2 B

= L
!( )

s

L
s
+ A

!
L
!( )

" t
1

L
" t

1 A+ B
!

L
!( )

" t
2

L
" t

2 B

= L
!( )

s

, A
!

L
!( )

" t
1

, B
!

L
!( )

" t
2#

$
%
&

L
s

L
" t

1 A

L
" t

2 B

#

$

'
'
'

%

&

(
(
(

=

L
s

L
" t

1 A

L
" t

2 B

#

$

'
'
'

%

&

(
(
(

*

L
s

L
" t

1 A

L
" t

2 B

#

$

'
'
'

%

&

(
(
(
= I ,

 

Let 
  
N

1
= L

! t
1 A,  

  
N

2
= L

! t
2 B, then we get that 

A = L
t1N

1
,B = L

t2N
2

 and 
L
s

N
1

N
2

!

"

#
#
#

$

%

&
&
&

 has orthonormal 

columns. 

Sufficiency. Let X = L
2
= L

!
L . It follows from Eq.(2) 

that; 

X
s
+ A

!
X

" t1A + B
!
X

" t2B

= L
2s
+ N

1

!
L
t1L

"2t1L
t1N

1
+ N

2

!
L
t2L

"2t2L
t2N

2

= L
2s
+ N

1

!
N
1
+ N

2

!
N
2

=

L
s

N
1

N
2

#

$

%
%
%

&

'

(
(
(

*

L
s

N
1

N
2

#

$

%
%
%

&

'

(
(
(

= I ,  

hence Eq.(1) has an HPD solution. 

Corallary 3.2 If 
Q
1

Q
2

Q
3

!

"

#
#

$

%

&
&

 has orthonormal columns, 

where Q
1
,Q

2
,Q

3
!C

n"n  and 
  
Q

1
= Q

1

!   > 0 , then there 

exist unitary matrices 
  
U

1
!C

n"n , 
  
U

2
!C

2n"2n and 
diagonal matrices   I !W > 0 ,   I > T ! 0  with 
W

2
+ T

2
= I  such that; 

U
1

!
0

0 U
2

!

"

#$
%

&'

Q
1

Q
2

Q
3

"

#

$
$

%

&

'
'U1

=
W

T

"
#$

%
&'
.
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Proof: First, !(Q
1
) " 1  and there exist unitary matrix 

U
1
 and diagonal matrix W such that; 

U
1

!
Q
1
U
1
=W =

I
t

C
n"t

#
$%

&
'(

. 

Let 
 

!Q =
Q
2

Q
3

!
"#

$
%&

, 

since 
 
Q
1

!
Q
1
+ !Q

! !Q = I  and 

   

!QU
1( )

!
!QU

1( ) = U
1

!
I " Q

1

!
Q

1( )U1

= I "W
!
W =

0
t

0

0 I
n"t

" C
n"t

2

#

$
%

&

'
( = T

2
,

 

 
!QU

1   
has orthonormal columns, where the first t columns are 
zero columns. Orthormalizing the later n ! t  columns of 

 
!QU

1  and expanding them into an orthonormal basis of 

C
n!n , we use U2  to denote the basis matrix and obtain 

that 
 
U
2

! !QU
1
= T .  

Theorem 3.3 Eq.(1) has an HPD solution if and only if 

there exist a unitary matrix P
1
!C

n"n

, a column-

orthonormal matrix P =
P
11

P
21

!
"#

$
%&
'C 2n(n , 

P
11
,P

21
!C

n"n( )  and diagonal matrices C > 0  and S ! 0  

with C 2
+ S

2
= I  such that; 

A = P
1

!
CP

1( )
t1

s P
11
SP

1
,
     

     (3) 

B = P
1

!
CP

1( )
t
2

s P
21
SP

1
.
      

      (4) 

Proof: Necessity. If Eq.(1) has an HPD solution, by 
Theorem 3.1, we get that; 

A = L
t1N

1
,B = L

t2N
2
,  and the matrix 

L
s

N
1

N
2

!

"

#
#
#

$

%

&
&
&

 has 

orthonormal columns. According to the CS 
decomposition Theorem and Corallary 3.2, there exists 
a unitary matrix  

  

P =
P

1
0

0 P
2

!

"
#

$

%
& 'C

3n(3n (P
1
'C

n(n , P
2
'C

2n(2n ),

 

such that; 

  

P
1

0

0 P
2

!

"
#

$

%
&

L
s

N
1

N
2

!

"

#
#
#

$

%

&
&
&

P
1

'
=

(
)

!

"#
$

%&
=

I
t

0

0 C
n*t

0
t

0

0 S
n*t

0 0

0 0

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

=

C

S

0

!

"

#
#
#

$

%

&
&
&

,

      

         (5) 

where; 

   

C = diag 1, 1,!, 1, cos!
t+1

,!,cos!
n( ) ,

S = diag 0, 0,!,0, sin!
t+1

,!, sin!
n( ) ,

 

0 ! "
t+1

!! ! "
n
!
#

2
. Thus the diagonal matrices 

C,S ! 0  and C 2
+ S

2
= I .  Notice that L is an HPD 

matrix, by (5), we have; 

C = P
1
L
s
P
1

!
> 0,
     

      (6) 

P
2

N
1

N
2

!
"#

$
%&
P
1

'
=

S

0

!
"#

$
%&
.            (7) 

Eq.(7) is equivalent to 
N
1

N
2

!
"#

$
%&
= P

2

' S

0

!
"#

$
%&
P
1
, Let P

2

!  be 

partitioned as P
2

!
=

P
11

P
12

P
21

P
22

"
#$

%
&'

， in which 

  
P

ij
!C

n"n
, i = 1,2; j = 1,2.  Then we have  

N
1

N
2

!
"#

$
%&
=

P
11

P
12

P
21

P
22

!
"#

$
%&
S

0

!
"#

$
%&
P
1
=

P
11
SP

1

P
21
SP

1

!
"#

$
%&
,

 

thus 
  
N

1
= P

11
SP

1
, N

2
= P

21
SP

1
.  By (6), we obtain; 

L = P
1

!
CP

1( )
1

s .
 

Then by 
  
A = L

t
1 N

1
, B = L

t
2 N

2
 in Theorem 

3.1, we get that; 

A = L
t1N

1
= P

1

!
CP

1( )
t1

s P
11
SP

1
, B = L

t
2N

2
= P

1

!
CP

1( )
t
2

s P
21
SP

1
.
 

Sufficiency. If A,B  have the decompositions as (2), 

then let X = P
1

!
C
2
P
1( )
1

s ,  which is an HPD matrix, we 
obtain; 

  

X
s
+ A

*
X

! t
1 A+ B

*
X

! t
2 B

= P
1

"
C

2
P

1
+ L

t
1 N

1( )
"

P
1

"
C

2
P

1( )
t
1

s L
t
1 N

1( )

+ L
t
2 N

2( )
"

P
1

"
C

2
P

1( )
t
2

s L
t
2 N

2( )

= P
1

"
C

2
P

1
+ N

1

"
L

t
1 P

1

"
C

2
P

1( )
t
1

s L
t
1 N

1

+N
2

"
L

t
2 P

1

"
C

2
P

1( )
t
2

s L
t
2 N

2
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= P
1

!
C

2
P

1
+ N

1

!
N

1
+ N

2

!
N

2

= P
1

!
C

2
P

1
+ N

1

!
N

2

!( )
N

1

N
2

"

#
$
$

%

&
'
'

= P
1

!
C

2
P

1
+ P

1

! S

0

"

#$
%

&'

!

P
2
P

2

! S

0

"

#$
%

&'
P

1

= P
1

!
C

2
P

1
+ P

1

!
S

2
P

1
= I ,

  

thus X  is an HPD solution of Eq.(1). 

Theorem 3.4 If Eq.(1) has an HPD solution, then; 

! A( )( )
2

"
s

s + t
1

t
1

s + t
1

#
$%

&
'(

t1

s

,           (8) 

! B( )( )
2

"
s

s + t
2

t
2

s + t
2

#
$%

&
'(

t
2

s

.           (9) 

Proof: If Eq.(1) has an HPD solution, by Theorem 
3.3, there exist a unitary matrix P

1
!C

n"n , a column-

orthonormal matrix 
  

P =
P

11

P
21

!

"
#

$

%
& 'C

2n(n (P
11

, P
21
'C

n(n ) , and 

diagonal matrices C > 0  and S ! 0  with C 2
+ S

2
= I  

such that A = P
1

!
CP

1( )
t1

s P
11
SP

1
, B = P

1

!
CP

1( )
t
2

s P
21
SP

1
. 

  

! A( ) = ! P
1

"
CP

1( )
t
1

s P
11

SP
1

#

$
%

&

'
(

= ! P
1

"
C

t
1

s P
1
P

11
SP

1

#

$
%

&

'
(

= ! C

t
1

s P
1
P

11
S

#

$
%

&

'
( .

 

Then ! A( )( )
2

" C

t1

s P
1
P
11
S

2

2

= P
1
P
11
C

t1

s S

2

2

" C

t1

s S

2

2

,  

Let 
   
C = diag x

1
, x

2
,!, x

n( ) , S = diag y
1
, y

2
,!, y

n( ) ,  

where x
i
!(0,1], x

i

2
+ y

i

2
= 1.
  

Then; 

  

! A( ) = max
i

x
i

t
1

s 1" x
i

2( )
1

2
#
$
%

&%

'
(
%

)%

* max
x+(0,1]

x

t
1

s 1" x
2( )

1

2
#
$
%

&%

'
(
%

)%
=

s

s + t
1

t
1

s + t
1

,

-.
/

01

t
1

s

.

 

The proof of (10) is similar to that of (9), thus omitted 
here. 

Theorem 3.5 If Eq.(1) has an HPD solution X , then 

!
min

A
"
A + B

"
B( ) #

t

s + t

$
%&

'
()

t

s s

s + t
, and X ! "̂ I , where 

t = min t
1
, t
2{ } , and !̂  is a solution of equation; 

y
t
1! y

s( ) = "
min

A
#
A + B

#
B( )  in t

s + t

!
"#

$
%&

1

s

,1

'

(

)
)

*

+

,
,

. 

Proof: Consider the sequence defined as follows: 

   

!
0
= 1, !

k+1
= 1"

#
min

A
$
A+ B

$
B( )

!
k

t

%

&
'
'

(

)
*
*

, k = 0,1,2,!Let X be 

an HPD solution of Eq.(1), then 

X = I ! A
*
X

! t1A ! B
*
X

! t2B( )
1

s < I = "
0
I .
 

Suppose that 

X <!
k
I , then by Lemma 2.3, we have 

X
s
= I ! A*X ! t1A ! B*X ! t2B

< I ! A* "
k
I( )

! t1
A ! B* "

k
I( )

! t2
B

< I !
A

#
A + B

#
B

"
k

t

< 1!
$
min

A
#
A + B

#
B( )

"
k

t

%

&
'

(

)
* I

= "
k+1

s
I .  

Therefore X <!
k+1
I . Then by induction, we obtain; 

   
X <!

k
I ,k = 0,1,2,! . 

Notice that the sequence 
k

! is monotonically 
decreasing and positive, hence 

k
!  is convergent. Let 

,ˆlim !! =
"# kk

 then; 

!̂ = 1"
#
min

A
$
A + B

$
B( )

!
k

t

%

&
'

(

)
*

1

s

, 

where !̂  is a solution of equation; 

y
t
1! y

s( ) = "
min

A
#
A + B

#
B( )  . 

Consider the function f (y) = yt 1! ys( ) , since; 

max
y![0,1]

= f
t

s + t

"
#$

%
&'

1

s
"

#
$
$

%

&
'
'
=

t

s + t

"
#$

%
&'

t

s s

s + t
, 

from which it follows that; 
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!
min

A
"
A + B

"
B( ) #

t

s + t

$
%&

'
()

t

s s

s + t
. 

Next we shall prove that !̂ =
t

s + t

"
#$

%
&'

1

s

,1

(

)

*
*

+

,

-
-

. 

Obviously, !̂ "1 . On the other hand, for the 

sequence !
k
, since !

0
= 1>

t

s + t

"
#$

%
&'

1

s

, we may assume 

that !
k
>

t

s + t

"
#$

%
&'

1

s

, then 

  

!
k+1

= 1"
#

min
A

$
A+ B

$
B( )

!
k

t

%

&
'
'

(

)
*
*

1

s

+ 1"
1

!
k

t

t

s+ t

%
&'

(
)*

t

s s

s+ t

%

&

'
'

(

)

*
*

1

s

> 1"
1

t

s+ t

%
&'

(
)*

t

s

t

s+ t

%
&'

(
)*

t

s s

s+ t

%

&

'
'
'
'
'

(

)

*
*
*
*
*

1

s

=
t

s+ t

%
&'

(
)*

1

s

.

 

Hence 
 

!
k
>

t

s + t

"
#$

%
&'

1

s

,k = 0,1,2,!.

 
So 

!̂ = lim
k"#! k

$
t

s + t

%
&'

(
)*

1

s

.Consequently, we have 

  

!̂ =
t

s+ t

"
#$

%
&'

1

s

,1

(

)

*
*
*

+

,

-
-
-

. 

This completes the proof. 

Theorem 3.6 Suppose Eq.(1) has an HPD solution, 

then if A

B

!

"#
$

%&
 is column full rank, then !

max
X( ) <1; if 

A

B

!

"#
$

%&
 is not column full rank, then !

max
X( ) = 1.  

Proof: Eq.(1) is equivalent to; 

X
s
+

A

B

!

"#
$

%&

'
X

( t
1

X
( t
2

!

"
#

$

%
&

A

B

!

"#
$

%&
= I .        (10) 

(1)     If A

B

!

"#
$

%&
 is column full rank, then 

A

B

!

"#
$

%&

'
X

( t
1

X
( t
2

!

"
#

$

%
&

A

B

!

"#
$

%&
is positive definite matrix, 

hence; 

  

X
s
= I ! A

B

"

#$
%

&'

(

X
! t

1

X
! t

2

"

#
$

%

&
'

A

B

"

#$
%

&'
< I ,

 
we can 

obviously obtain that !
max

X( ) <1. If A

B

!

"#
$

%&
 is not 

column full rank, let rank
A

B

!
"#

$
%&
= r < n,  by Schur 

theorem, there exists a unitary matrix T  such 

that
A

B

!

"#
$

%&
= T

' A
1
0

B
1
0

!

"
##

$

%
&&
T .

 

Let Y = TXT
! , then Eq.(11) has an HPD solution X  

if and only if; 

Y
s
+

A
1
0

B
1
0

!

"
##

$

%
&&

'

Y
( t
1

A
1
0

B
1
0

!

"
##

$

%
&&
= I        (11) 

has an HPD solution Y . Substituting; 

 

Y
s
=

Y
11

Y
21

Y
21

!
Y
22

"

#
$
$

%

&
'
'
,Y

( t1 =

!Y
11
!Y
21

!Y
21

! !Y
22

"

#
$
$

%

&
'
'
,

 
Then (11) turns into the following form 

! Y
21

Y
21

!
Y
22

"

#
$
$

%

&
'
'
= I ,

 

and therefore 

Y
21
= 0,Y

22
= I , X = T

! Y
11

!
0

0 I

"

#
$

%

&
' T , 

!
max

X( ) = max !
max

Y
11

1

s
"
#$

%
&'
,1

(
)
*

+*

,
-
*

.*
/1 . 

On the other hand, !
max

X( ) "1 , so we can get that 
!
max

X( ) = 1.  

Theorem 3.7 Suppose Eq.(1) has an HPD solution 
 X , then 

  
X ! M , N( ), where 

  

M =
1

2

!
min

( AA
")

!
max

( AA
")

#

$
%

&

'
(

1)t
1

t
1

AA
"( )

1

t
1 +

!
min

(BB
")

!
max

(BB
")

#

$
%

&

'
(

1)t
2

t
2

BB
"( )

1

t
2

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

,
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N = I ! A

"
A! B

"
B( )

1

s .          (12) 

Proof: Let  X  be an HPD solution of Eq.(1), then it 
follows that   0 < X

s
< I  and Lemma 2.3 that 

  X
! t

1 > I ,  X
! t

2 > I .  Hence; 

  X
s
= I ! A

"
X

! t
1 A! B

"
X

! t
2 B < I ! A

"
A! B

"
B. Thus we 

have; 

  
X < (I ! A

"
A! B

"
B)

1

s = N .
 

On the other hand, from 

  A
!
X

" t
1 A < I ,  it follows that; 

  

A
!
X

"
t
1

2 X
"

t
1

2 A < I ,

X
"

t
1

2 AA
!
X

"
t
1

2 < I ,

AA
!
< I .  

When 
  
0 < t

1
<1,
 
since 

  

1

t
1

>1,. and 

  
!

min
( AA

")I # AA
"
# !

max
( AA

")I ,  by Lemma 2.7, we get 
that; 

  

X >
!

min
( AA

")

!
max

( AA
")

#

$
%

&

'
(

1)t
1

t
1

AA
"( )

1

t
1 .

 
When   

t
1
!1,  since 

  

0 <
1

t
1

!1, by Lemma 2.1, we have
  
X > AA

!( )
1

t
1 .

 
Hence, 

for 
  
!t

1
"R

+ , we have; 

  

X >
!

min
( AA

")

!
max

( AA
")

#

$
%

&

'
(

1)t
1

t
1

AA
"( )

1

t
1 .

 

When 
  
0 < t

2
<1,
 
we have; 

  

X >
!

min
(BB

")

!
max

(BB
")

#

$
%

&

'
(

1)t
2

t
2

BB
"( )

1

t
2 .

 

When 
1
1,t !  we have 

  
X > BB

!( )
1

t
2 .
 
Thus for 

  
!t

2
"R

+ , we have; 

  

X >
!

min
(BB

")

!
max

(BB
")

#

$
%

&

'
(

1)t
2

t
2

BB
"( )

1

t
2 .

 

Hence we have; 

  

X >
1

2

!
min

( AA
")

!
max

( AA
")

#

$
%

&

'
(

1)t
1

t
1

AA
"( )

1

t
1

#

$

%
%
%

+

            
!

min
(BB

")

!
max

(BB
")

#

$
%

&

'
(

1)t
2

t
2

BB
"( )

1

t
2

&

'

(
(
(
= M .

 

This completes the proof. 

Theorem 3.8 If   A
!
X

" t
1 A+ B

!
X

" t
2 B # I " M

s

 for all 

  
X ! M , I"# $% , and 

  
p =

1

s
t
1
!

min

" t
1
"s

M( ) A
F

2

+ t
2
!

min

" t
2
"s

M( ) B
F

2( ) <1,
 

where  M  

is defined by(15), then Eq.(1) has a unique HPD 
solution. 

Proof: By the definition of  M , we have   M > 0.  
Hence 

  
!

min
( M ) > 0.

 
We consider the map; 

  
F( X ) = I ! A

"
X

! t
1 A+ B

"
X

! t
2 B( )

1

s  and let 

  
X !" = X M # X # I .

 
Obviously, !  is a convex, 

closed and bounded set and 
  
F( X )  is continuous  

on ! . 

By the hypothesis of the theorem, we obtain; 

  
I ! I " A

#
X

" t
1 A+ B

#
X

" t
2 B( )

1

s
! I " I + M

s( )
1

s = M , i.e., 

  
M ! F X( ) ! I . Hence 

  
F !( )" !. For arbitrary 

  
X ,Y !",  

we get that; 

  A
!
X

" t
1 A+ B

!
X

" t
2 B # I " M

s
,

  A
!
Y

" t
1 A+ B

!
Y

" t
2 B # I " M

s
.  Hence 

  

F X( ) = I ! A
"
X

! t
1 A+ B

"
X

! t
2 B( )

1

s

# I ! I + M
s( )

1

s # $
min

M( ) I ,

        (13) 

  

F Y( ) = I ! A
"
Y

! t
1 A+ B

"
Y

! t
2 B( )

1

s

# I ! I + M
s( )

1

s # $
min

M( ) I .

        (14) 

From (13) and (14), we have; 

  

F X( )
s

! F Y( )
s

F

= F X( )
i

F X( )! F Y( )( )F Y( )
s!i!1

i=0

s!1

"
F

= vec F X( )
i

F X( )! F Y( )( )F Y( )
s!i!1

i=0

s!1

"
#

$
%

&

'
(

= vec F X( )
i

F X( )! F Y( )( )F Y( )
s!i!1#

$%
&
'(

i=0

s!1

"

= F Y( )
s!i!1

) F X( )
i( )vec F X( )! F Y( )( )

i=0

s!1

"

* +
min

s!1
M( )

i=0

s!1

" vec F X( )! F Y( )( )

  
= s!

min

s"1
M( ) F X( )" F Y( )

F

.        (15) 
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According to the definition of the map of ,F we 
obtain; 

  

F X( )
s

! F Y( )
s

= I ! A
"
X

! t
1 A+ B

"
X

! t
2 B( )! I ! A

"
Y

! t
1 A+ B

"
Y

! t
2 B( )

= A
"

Y
! t

1 ! X
! t

1( )A+ B
"

Y
! t

2 ! X
! t

2( )X
! t

2 B.

      (16) 

Combining (15) and (16), by Lemma 2.4 and Lemma 
2.5 , we have; 

  

F X( )! F Y( )
F

"
1

s#
min

s!1
M( )

F X( )
s

! F Y( )
s

F

=
1

s#
min

s!1
M( )

A
$

Y
! t

1 ! X
! t

1( )A+ B
$

Y
! t

2 ! X
! t

2( )X
! t

2 B
F

"
1

s#
min

s!1
M( )

A
F

2

Y
! t

1 ! X
! t

1

F

+ B
F

2

Y
! t

2 ! X
! t

2

F
( )

"
1

s#
min

s!1
M( )

t
1
#

min

! t
1
!1

M( ) A
F

2

+ t
2
#

min

! t
2
!1

M( ) B
F

2( ) X !Y
F

=
1

s
t
1
#

min

! t
1
!s

M( ) A
F

2

+ t
2
#

min

! t
2
!s

M( ) B
F

2( ) X !Y
F  

Let 
  
p =

1

s
t
1
!

min

" t
1
"s

M( ) A
F

2

+ t
2
!

min

" t
2
"s

M( ) B
F

2( ),
 

since 

  
p <1 , by Banach fixed point theorem, the map 

 
F X( ) has a unique fixed point in !  and Eq.(1) has a 

unique HPD solution in 
  

M , I!" #$.   

4. AN ITERATIVE METHOD FOR SOLVING THE 
EQUATION (1) 

In this section, we consider the iterative method for 
solving the Eq.(1). We proposed the following 
algorithm: 

Algorithm 4.1. 

   

X
0
=! I ,

X
k+1

= I " A
*
X

k

" t
1 A" B

*
X

k

" t
2 B( )

1

s , k = 0,1,2,3!

#

$
%

&
%

 
Theorem 4.1 Suppose A, B , 0 < ! <" <1

 
and 

0 < t
1
< t

2
, satisfying the following conditions: 

(1)      ! t1 1"! s( ) I # A$
A + B

$
B # % t2 1"% s( ) I ,  

(2)      1
s
! 1"s t

1
! " t

1
"1
A

2

+ t
2
! " t

2
"1
B

2( ) <1.
 

Then the sequence X
k{ }  generated by Algorithm 4.1 

converges to the HPD solution X  of the Eq. (1), where 
! " # ,$[ ],  ! I " X "#I .

 

Proof: Since 
  
X

0
=! I , we have ! I " X

0
"#I .   

Suppose that 
 
! I " X

k
"#I , by Lemma 2.3, we 

have; 

  

1

!
t
1

I " X
k

# t
1 "

1

$
t
1

I %
1

!
t
1

A
&
A " A

&
X

k

# t
1 A "

1

$
t
1

A
&
A,   

  

1

!
t
2

I " X
k

# t
2 "

1

$
t
2

I %
1

!
t
2

B
&
B " B

&
X

k

# t
2 B "

1

$
t
2

B
&
B.

 

Thus; 

I !
1

" t1
A

#
A !

1

" t2
B

#
B

$
%&

'
()

1

s

* I ! A*X
k

! t1A ! B*X
k

! t2B( )
1

s

* I !
1

+ t1
A

#
A !

1

+ t2
B

#
B

$
%&

'
()

1

s

.

 
By (1) in Theorem 4.1, we zoom the inequality 

separately as follows: 

  

X
k+1

! I "
1

# t
1

A
$
A"

1

# t
2

B
$
B

%

&'
(

)*

1

s

! I "
1

# t
2

A
$
A+ B

$
B( )

%

&'
(

)*

1

s

! I "
1

# t
2

# t
2 1"# s( ) I

%

&'
(

)*

1

s

= # I ,

X
k+1

! I "
1

# t
1

A
$
A "

1

# t
2

B
$
B

%
&'

(
)*

1

s

! I "
1

# t
1

A
$
A + B

$
B( )

%
&'

(
)*

1

s

! I "
1

# t
1

# t
1 1"# s( ) I

%
&'

(
)*

1

s

=#I .
 

i.e., ! I " X
k+1

"#I . 

By induction we have 
 
! I " X

p
"#I , p = 1,2,3,!

 
According to Lemma 2.4 and Lemma 2.5, we obtain; 

  

X
k+1

! X
k

= I ! A
*
X

k

! t
1 A! B

*
X

k

! t
2 B( )

1

s ! I ! A
*
X

k!1

! t
1 A! B

*
X

k!1

! t
2 B( )

1

s

"
1

s
#

s
1

s
!1

$
%&

'
()

A
*

X
k!1

! t
1 ! X

k

! t
1( )A+ B

*
X

k!1

! t
2 ! X

k

! t
2( )B

"
1

s
# 1!s

X
k!1

! t
1 ! X

k

! t
1 A

2

+
1

s
# 1!s

X
k!1

! t
2 ! X

k

! t
2 B

2

"
1

s
# 1!s

t
1
# ! t

1
!1

X
k!1

! X
k

A
2

+
1

s
# 1!s

t
2
# ! t

2
!1

X
k!1

! X
k

B
2

=
1

s
# 1!s

t
1
# ! t

1
!1

A
2

+ t
2
# ! t

2
!1

B
2( ) X

k!1
! X

k  
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Let q =
1

s
! 1"s t

1
! " t1"1 A

2
+ t

2
! " t2"1 B

2( ),By (2) in 

Theorem4.1, we obtain; 

Xk+1 ! Xk " q Xk ! Xk!1 ,  And then we have 

Xk+1 ! Xk " q
k
X
1
! X

0
,By Banach fixed point theorem, 

 
X

k
{ }  have the limit X.  

Note: 

When 
 
0.9 ! " <# <1, the condition (1) and (2) hold. 0.9 

is estimated by MATLAB 7.0, there is no strict proof 
here. 

5. NUMERICAL EXAMPLES 

In this section, we give some numerical examples to 
illustrate the efficiency of the Algorithm 4.1. All 
computations are performed on a Intel(R) Core(TM) i5-
3210M CPU @ 2.50GHz computer. All the tests are 
performed by MATLAB, version 7.0. We stop the 
practical iteration when the residual; 

X
s
+ A

*
X

! t1A + B
*
X

! t2B ! I
F
"1.0 #10

!10
.
 

Example 5.1 Let t
1
= 2, t

2
= 4, s = 5,! = 0.91  and 

A =

0.015 !0.006 !0.041

!0.106 0.038 !0.043

!0.023 !0.054 !0.112

"

#

$
$
$

%

&

'
'
'

, B =

0.013 0.029 0.028

0.025 0.133 0.047

0.028 0.047 0.255

!

"

#
#
#

$

%

&
&
&

.

By using Algorithm 4.1 and iterating ten steps, we 
obtain the HPD solution of Eq. (1) as follows: 

  

X ! X
10
=

 0.9972    " 0.0005    " 0.0034

 " 0.0005     0.9947     " 0.0055

 " 0.0034    " 0.0055    0.9811

#

$

%
%
%

&

'

(
(
(

,

  

with the residual; 

  
X

10

s
+ A

*
X

10

! t
1 A+ B

*
X

10

! t
2 B ! I

F

" 6.4410#10
!11

.
  

It is not difficult to varify that 
  
! I " X

10
"#I .  The 

residual; 

  

R
10

( X ) = X
10

s
+ A

*
X

10

! t
1 A+ B

*
X

10

! t
2 B ! I

F

=6.4410"10!11

 shows that the 

algorithm is effective. 

Example 5.2 Let t
1
= 0.5, t

2
= 1.5, s = 2,! = 0.9  and; 

  

A =

0.025 !0.045 0.039 0.026

!0.019 0.057 !0.038 0.019

0.044 !0.073 0.093 !0.034

0.021 0.016 !0.013 0.023

"

#

$
$
$
$

%

&

'
'
'
'

,

B =

0.215 !0.045 0.039 0.024

!0.015 0.127 !0.038 0.017

0.024 !0.027 0.293 !0.034

0.012 0.016 !0.012 0.021

"

#

$
$
$
$

%

&

'
'
'
'

.

 

  

A =

0.025 !0.045 0.039 0.026

!0.019 0.057 !0.038 0.019

0.044 !0.073 0.093 !0.034

0.021 0.016 !0.013 0.023

"

#

$
$
$
$

%

&

'
'
'
'

,

B =

0.215 !0.045 0.039 0.024

!0.015 0.127 !0.038 0.017

0.024 !0.027 0.293 !0.034

0.012 0.016 !0.012 0.021

"

#

$
$
$
$

%

&

'
'
'
'

.

 
By using Algorithm 4.1 and iterating ten steps, we 

obtain the HPD solution of Eq. (1) as follows: 

  

X ! X
10
=

   0.9730    0.0095    " 0.0127   " 0.0016

   0.0095    0.9840     0.0148     " 0.0027

 "  0.0127   0.0148     0.9429        0.0075

 " 0.0016  " 0.0027   0.0075        0.9968

#

$

%
%
%
%

&

'

(
(
(
(

,   

with the residual; 

  
X

10

s
+ A

*
X

10

! t
1 A+ B

*
X

10

! t
2 B ! I

F

"  5.8837 #10
!11

.
 

It is not difficult to varify that 
  
! I " X

10
"#I .  The 

residual; 

  

R
10

( X ) = X
10

s
+ A

*
X

10

! t
1 A+ B

*
X

10

! t
2 B ! I

F

            = 5.8837 "10!11

 

shows that the algorithm is effective. 

6. CONCLUSIONS 

Compared to previous results in [12], our results are 
more general. In this paper, we discuss the HPD 
solutions of Eq.(1). We derive necessary and sufficient 
conditions for the existence of the HPD solutions of Eq. 
(1). We propose an iterative method for obtaining the 
HPD solution of Eq. (1). Numerical results show that 
the proposed algorithm is quite efficient. However, we 
have not found a suitable iterative algorithm for finding 
the optimal solution of the nonlinear matrix equation. 
We only add two constraint conditions to make the 
nonlinear matrix equation converge to an HPD solution 
by Algorithm 4.1. 
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