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Abstract: For an ordered set P and for a linear extension L of P, let s(P,L) stand for the number of ordered pairs (x, y) of 
elements of P such that y is an immediate successor of x in L but y is not even above x in P. Put s(P) = min {s(P, L): L 

linear extension of P}, the jump number of P. Call an ordered set P jump-critical if s(P - {x}) < s(P) for any x  P. We 

introduce some theorems about the jump-critical ordered sets with jump number four. 
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1. INTRODUCTION 

Let P be a poset and L be a linear extension of P. 

Every linear extension L of a finite ordered set P can be 

expressed as the linear sum C1  C2  … Cm of 

chains Ci of P so labeled that supP Ci  infP Ci+1 in P. 

(The linear sum A  B of ordered sets A and B is 

the set A B ordered so that a  b provided that a  A 

and b  B, or else, a b in A or, a  b in B). 

Let Ci = {ai = ai1 < ai2 < …< aiki = bi}. Then bi  ai+1 

in P and such a pair (bi, ai+1) is called a jump (or set up) 

of the linear extension L, which is said to have m-1 

jumps. We write s (P, L) = m-1. Note that ai+1 covers bi 

in L, although ai+1 bi in P itself. We put s(P) = min {s 

(P,L)| L linear extension of P}. This problem finds its 

practical settings too. Let the elements of P represent 

certain jobs to be performed one at a time by a single 

processor while the order of P imposes precedence 

constraints upon these jobs. Then an optimal linear 

extension of P is just a schedule of the jobs which 

minimizes the number of " set up" between unrelated 

jobs. 

Observe that s(P) > s(P - {x}) > s(P) - 1 for any x  

P. A poset P is called jump-critical if s (P – x) < s (P), 

for every element x  P. If P is jump-critical with s(P) = 

m, then we say that P is m-jump-critical. It is easy to 

see that every ordered set P contains a jump-critical 

subset K with s (P) = s (K). It may be that jump-critical 

ordered sets tell us much about the problem 

determining s(P) - even about constructing "optimal" 

linear extensions for P, that is, ones for which s(P, L) = 

s(P). The ordered set illustrated in Figure 1 is jump- 

 

 

*Address correspondence to this author at the Department of Scientific 
Computing, Faculty of Computer Science and Informatics, Benha University, 
Benha, Egypt; E-mail: badrgraph@gmail.com 

critical. Obviously, s(P - {a41}) < s(P)). But to verify that 

s(P - {a31}) < 4, for instance, requires a different chain 

decomposition: P - {a31} = C2  C4  C5  {a11 < a12 < 

a32}. It is a good exercise to check all eight cases. 

The purpose of this paper is to stimulate activity on 

the jump number of an ordered set by recording 

several important examples. In section 2, we introduce 

some special methods to construct jump-critical 

ordered sets. In section 3, we introduce the complete 

lists of 1-jump-critical, 2-jump-critical, 3-jump-critical 

ordered sets and some theorems about 4-jump-critical 

ordered sets. 

2. SPECIAL METHODS TO CONSTRUCT JUMP-
CRITICAL ORDERED SETS 

In this section we present special methods for 
constructing jump-critical posets. An n-element 
antichain is jump-critical. In fact, it is fairly obvious that 
the disjoint sum of jump-critical ordered sets is jump-
critical. In addition, s(P1 + P2) = s(P1) + s(P2) + 1. It is 
equally obvious that the linear sum of jump-critical 

ordered sets is jump-critical. Also s(P1  P2) = s (P1) + 

s (P2). These are special cases of a more general 
construction. Let P be an ordered set and each  x P , 

let 
x

P  be an ordered set. The lexicographic sum 

 
P

xx P
is the set 

  
P

xx P
ordered so that u  v if, for 

some  x P , 
 
u P

x
, 

 
v P

x
and u  v in 

 
P

x
, or else, 

 
u P

x
, 

 
v P

y
, for some x < y in P. It is implicit in M. 

Habib [5] that the lexicographic sum 
 

P
xx P

of critical 

ordered sets 
 
P

x
is itself critical, as long as each |

 
P

x
|>2. 

M. H. El-Zahar and I. Rival introduced a new method 
which gets jump-critical ordered sets by the theorem 1 
[2]. 

Theorem 1: Let P1 and P2 be finite jump-critical 

ordered sets. Any ordered set obtained from P1 and P2 

by gluing a maximal element of P1 with a maximal 
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element of P2 is jump-critical and, in this case, the jump 

number is s(P1) + s(P2). If | max P1 | = | max P2 | =2 

then the ordered set obtained from P1 and P2 by gluing 

max P1 with max P2 is jump-critical and, in this case, 

the jump number is s(P1) + s(P2) -1.  

This gluing construction can be used to construct an 

example of jump-critical ordered set in which an 

"optimal" linear extension uses a long chain (see 

Figure 2). 

 

Figure 2:  

There is an obvious question that arises for the 

second part of Theorem 1: does the gluing construction 

produce a jump-critical ordered set if there are more 

than two maximal elements? This question is open until 

now.  

3. (1-4) JUMP-CRITICAL ORDERED SETS 

In this section, we introduce the complete lists of 1-

jump-critical, 2-jump-critical, 3-jump-critical ordered 

sets and some theorems about 4-jump-critical ordered 

sets. 

Obviously, the only jump-critical ordered sets P with 

s(P) = 0 is the singleton. If s(P) = 1 then, of course, P 

must contain a noncomparable pair of elements. So, if 

P is jump-critical then P must be a two-element 

antichain. Suppose P is jump-critical and s(P) = 2. P 

may be a three-element antichain. The only other 

possibility is that P is the " four-cycle", as showed in 

Figure 3. Thus, either P  1 + 1 + 1 or P  (1 + 1)  

(1 + 1). 

M. H. El-Zahar and I. Rival [2] introduced the 

complete list of the jump-critical ordered sets with jump 

number three which has fourteen jump-critical ordered 

sets. These are, up duality, the ordered sets illustrated 

in Figure 4. 

Let P be a finite ordered set. For an element a in P 

put 
  
D(a) =  { x P | x a} , a down set in P, 

  
U (a) =  { x P | x a} , an upper set in P. Following M. 

H. El-Zahar and J. H. Schmerl [3] call the element a 
accessible in P if D(a) is a chain in P. For instance, 
each minimal element of P is accessible. Let w(P) 
stand for the width of P, the size of a maximum-sized 
antichain. According to Dilworth's chain decomposition 
theorem (1), P is the (disjoint) union of w(P) chains. For 
maximum-sized antichains A, B in P we write A B  

whenever for a A  there is  b B  satisfying a b . (It 

follows, in this case that, for each  b B  there is  a A  

satisfying 
 
a b , too). In this way the set of maximum-

sized antichains of P is ordered: there is greatest 
(highest) antichain and a least (lowest) antichain. As 
matter of fact, the set of maximum-sized antichains is a 

distributive lattice in which 
  
A B = max( A B)  and 

  
A B = min( A B)  (R. P. Dilworth [1]). A tower of 

height k (or k-tower) is a linear sum of k-comparable 
elements [4]. Obviously, a k-tower is k-critical with 
width two.  

Theorem 2. Let P be a k-jump-critical ordered set 

with width 2 where k >1. Then P is a k-tower. 

Proof: We use induction on k. For k = 2, the only 

poset which satisfies the criteria of the theorem is the 

4-alternating-cycle 2 2 . Thus, the result is true for k = 

 

Figure 1:  
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2, and assume that it is true for jump-critical posets 

with jump-number less than k. Now we want to prove 

that it is true for jump-critical posets with jump-number 

k.  

Since w(P) = 2 then it is the union of two chains C1 

and C2. Put xi = infp Ci for i = 1,2.  

As P is jump-critical then x1  x2. Let ai be the 

maximal accessible element on Ci ; i = 1,2. See Figure 

5.  

 

Figure 5:  

We want to prove that ai = xi, i = 1,2. Suppose not, 

say a1 > x1. Put P` = P - {a1}. As P is jump-critical then 

s (P`) = k -1. Let L be a linear extension of P` with k-1 

jumps, say L = C1` .  C`k where each C`i is a chain, i 

= 1, 2, k. If x1  C`1 then C`1  {a1} is also a chain. So, 

we can replace C`1 on L by C`1  {a1} which gives a 

linear extension of P with only k-1 jumps. This a 

contradiction. So, x1  C`1 which implies that C`1 = x2 

… a2. Now x1  C`2. If C`2  C2 =  then C`2  {a1} is a 

chain. Again, we can replace C`2 by C`2  {a1} to get s 

(P) = k-1; a contradiction. Therefore C`2 has the form 

C`2 = x1 … y2 … m where y2 is the element that covers 

a2 on C2 and  

m = max C`2 is some element in C2 (possibly m = 

y2). Now we can replace C`1 and C`2 respectively by 

C``1 and C``2 where C``1 = x1… a1 and C``2 = x2 …a2 y2 

… m. This gives a linear extension of P with only k-1 

jumps which is a contradiction. We conclude that a1 = 

x1 and similarly a2 = x2. Now P - {x1, x2} has jump 

number k-1 and, by induction, contains a (k-1) tower. 

This (k-1) tower together with {a1, a2} forms a k-tower. 

This must be all of P. This completes the proof of the 

Theorem.  

Theorem 3. There are precisely forty jump-critical 

ordered sets with four maximal elements and s(P) = 4. 

These are, up duality, the ordered sets illustrated in 

Figure 6. 

Proof of Theorem 3. It is straightforward, if 

 

Figure 3:  

 

 

 

Figure 4:  
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somewhat laborious, to verify that each of the ordered 

sets illustrated in Figure 6 has jump number four, four 

maximal elements and that each is jump critical without 

isolated element. 

Let P be 4-jump-critical and has four maximal 

elements (without isolated element). For contradiction, 

suppose that P contains no subset isomorphic to any of 

the posts illustrated in Figure 6. 

Since P is 4-jump-critical with w(P) = 4,then P = C1 

 C2  C3  C4 (disjoint chains). Put ai = infP Ci and bi = 

supP Ci for i = 1, 2, 3, 4. Let us suppose that both {a1, 

a2, a3, a4} is an antichain and {b1, b2, b3, b4} is maximal 

elements antichain. If bi 's is accessible, then ai  bi, | 

D[bi]  {a1, a2, a3, a4}| > 2 and, dually, | D[ai]  {b1, b2, 

b3, b4}| > 2. If follows that {a1, a2, a3, a4, b1, b2, b3, b4} is 

isomorphic to A or B or C or D. Or that {a1, a2, a3, b1, 

b2, b3, b4} contains E (E
d
) or F(F

d
) or G(G

d
) or H(H

d
) or 

J(J
d
).  

Next, we handle the case {a1, a2, a3, a4} is not 

antichain. Let {c1, c2, c3, c4} be infimum of all four-

element antichain in P.  

One of ci's must be less than one of bi's, only, say c1 

< b1, for otherwise the proper subsets 

   

( U[c
i
]

i=1

4

)  of P 

has jump number four. If 
  
(P U[c

1
])  contains four-

element antichain, {x1, x2, x3, x4} then c1 must be 
comparable to one of these xi's (say) x1. But x1 > c1, 
since x1 U(c1) and if  

x1 < c1 then {c1, c2, c3, c4} is not the lowest four-

element antichain in P. Therefore, w 
  
(P U[c

1
])  = 3 

 

Figure 6:  
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and we can assume that, (P U[c
1
])  = C2  C3  C4 so 

that U[c1] = C1. Let {d2, d3, d4} and {b2, b3, b4} be 
respectively, the lowest and highest, three-element 

antichain in C2  C3  C4 where, say, di, bi  Ci for 

both i = 2, 3, 4 since s (C2  C3  C4 = 3) then {d2, d3, 

d4, b2, b3, b4} is isomorphic to the following posets 

 

Neither bi is above c1. Also c1 can not below di 's, 

otherwise c1 < one of bi 's only. Moreover c1 > d2 or c1 > 

d3 or c1 > d4. Otherwise c1 is an isolated element in P. 

Therefore min (P) = min (C2  C3  C4). For otherwise 

P would have a unique minimal element. 

If c1 > d2, c1 > d3 and c1 > d4 then 

{c1, d2, d3, d4,b2, b3, b4} E or {c1, d2, d3, d4,b2, b3, 

b4} G. 

If c1 > the two elements of {d2, d3, d4} then 

{c1, d2, d3, d4,b2, b3, b4} E or {c1, d2, d3, d4,b2, b3, 

b4} H. 

We may then suppose that c1 > d2, c1 > d3 and c1 > 

d4. Since b1 = supP C1, let us suppose that b1 > b2, b1 > 

b3 and b1 > b4 then there exists an element d  C2  

C3  C4 such that d  d2, d < b1 and c1 || d.  

Otherwise, c1 is an accessible in the P
d
, as 

  
(P U[c

1
])  has width three and jump number three so 

it must contain  

 

So that any of these Figures, with ci is a subposet of 

P contains isolated element c1. If b1> one of {d3, d4} 

then {b1,b2,b3,b4,d2,d3,d4} F or H. Otherwise 

(i) d2 < d < b2, d || b3 and d || b4 or  

(ii) d3 < d < b5, d || b2, d || b4 and d || b1 

If (i) satisfies then { b1, c1, d, b2, b3, b4, d2, d3, d4 } is 

isomorphic to L, M, V or X; if (ii) satisfies then { b1, c1, 

b2, b3, b4, d2, d3, d4, d} is isomorphic to U. Now let {f2, f3} 

and {b2, b3, b4} be, respectively, the lowest and height, 

two-element antichain and three-element antichain in 

C2  C3  C4 where fi, bi  Ci for i = 2, 3, 4. Since s(C2 

 C3  C4) = 3 then P contains  

 

Neither bi is above ci. Also ci can't below fi 's 

otherwise, c1 < one of bi 's only. Moreover c1 > f2 or c1 > 

f3 or c1 > f4 or c1 > f5 otherwise c1 is isolated element in 

P. Therefore min (P) = min (C2  C3  C4), for 

otherwise P would have a unique minimal element. 

If c1 > f2 and c1 > f3, then {c1, b2, b3,b4, f2, f3}  K. 

If c1 > f2 and c1 > f4 and c1 > f5; since c1 || b2, c1 || b3 

and c1 || b4 then {c1, b2, b3, b4, f2, f3, f4, f5} P. If c1 > f2, 

c1 > f4 and c1 || f5 since c1 || b2, c1 || b3 and c1 || b4 then 

{c1, b2, b3, b4, f2, f3,f4,f5} R, O or Y. 

Now, if c1 > f2 and c1 > f3; since b1 = supP C1, let us 

suppose that b1 > b2, b1 > b3 and b1 > b4 then there is 

an element f  C2  C3  C4 such that f  f2;  

f < b1 and c1, f are incomparable, otherwise c1 is an 

accessible in the P
d
. As 

  
(P U[c

1
])  has width three and 

jump number three, it must contains  

 

So that any of these Figures with c1 is a subposet of 
P contains isolated element c1. If b1 > f3 then {b1, b2, 
b3,b4, f2, f3}  K and {b1, b2, b3,b4, f2, f3,f4,f5} S 
otherwise f2 < f < b2 and f || b3 and f || b4 then {c1, f, b1, 
b2, b3, b4, f2, f3,f4, f5} T. If f3  c1 or f4  c1 or f5  c1 
and c1 > f2; since f5  f3, f5 > f3 therefore f5 || c1, 

otherwise 

   

P ( U[c
i
])

i=1

4

 has jump number four. Then, if 

b1 > f5 then {b1, b2, b3, b4, c1, f2, f3, f4,f5} W, if f4   c1, b 
> f and f > f4 then {b1, b2, b3, b4, f2, f3, f4,f5, f, c1} V, if f5 

  c1, c1 > f4 and c1 > f2 then { c1, f2, f3, f4,f5, b2, b3, 
b4} N and if f5   c1, f5  f, b1 > f then {b1, b2, b3, b4, f2, 
f3, f4, f5, f, c1} W. Hence this theorem is proved.  

CONCLUSION 

In this paper, we introduced some theorems about 

4-jump-critical ordered sets. In future, we can 

investigate the structure of m-jump-critical ordered sets 

to study the jump-number problem.  
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