
 Journal of Advances in Applied & Computational Mathematics, 2018, 5, 29-36 29

 E-ISSN: 2409-5761/18 © 2018 Avanti Publishers

MILP Models for Scheduling Dynamic Jobs with Sequence
Dependent Setup Times and a Variable Maintenance on a Single
Machine

Costa Antonio1,*, Corsini Roberto2, Cappadonna F. Antonio1 and Fichera Sergio1

1Department of Industrial Engineering, University of Catania, Via S. Sofia, 64, 95125 Catania CT, Italia
2Department of Physics and Astronomy, University of Catania, Via S. Sofia, 64, 95125 Catania CT, Italia

Abstract: The single machine scheduling problem with variable maintenance has been widely investigated by both
academics and practitioners. Differently from most papers proposed so far, and conforming to a real-world process in the
semiconductor industry, in this paper a single variable maintenance task has to be carried out within a specific time
interval. The maintenance duration is an increasing function of its starting time. The objective is to minimize the total
tardiness considering release times and sequence dependent setup times of jobs as well. Since an earlier maintenance
starting time implies a smaller maintenance duration but a higher completion time of the subsequent jobs, the best
schedule including maintenance activity and jobs has to be achieved. In order to optimally solve the scheduling problem
at hand, two distinct mixed integers linear programming models (MILPs) are proposed and compared under the
computational efficiency viewpoint.

Keywords: Mathematical programming, Sequencing, Global optimization, maintenance, Manufacturing.

INTRODUCTION

Investigating the combination of job scheduling and
machine maintenance in manufacturing systems is a
challenging task. Such research areas aim to propose
effective approaches for scheduling jobs when a
production stoppage, due to maintenance, occurs.
Maintenance operations may involve different kinds of
activities such as cleaning, tool replacement,
inspection, recharging, and so on. Two different
research streams, both of them connecting job
scheduling and machine maintenance, have been
investigated by literature so far, namely scheduling with
fixed maintenance and scheduling with variable
maintenance.

In the former case, execution time of maintenance
is precedingly known; in other words, both starting time
and duration of the maintenance task, are determined
in advance. A huge amount of research is ascribable to
the scheduling issue with fixed maintenance on
different configurations of shop floors. The following
two surveys are worthy to be mentioned: Schmidt
(2000) and Ma et al. (2010).

In the latter case, the decision maker has to place
the maintenance operation along the time horizon and,
in addition, the maintenance duration is a
nondecreasing function of its starting time. Hence,

*Address correspondence to this author at the Department of Industrial
Engineering, University of Catania, Via S. Sofia, 64, 95125 Catania CT, Italia;
Tel. +39(0)957382457; E-mail: antonio.costa@dii.unict.it

maintenance is a sort of dummy job to be scheduled so
to optimize a certain performance indicator. The
seminal work of Kubzin and Strusevich (2006) studies
the makespan minimization for a basic two-machine
manufacturing system with variable maintenance.
Notably, they proposed a polynomial time
approximation scheme and a fast 3/2-approximation
algorithm for the problem at hand. Mosheiov and
Sidney (2010) investigated a basic single machine
scheduling problem in which the maintenance duration
is a nondecreasing function of its starting time and the
processing time of the job, immediately after the
maintenance activity, is shorter than the processing
time before the maintenance starts. They demonstrated
a minimization of flowtime and showed that maximum
delays, total earliness, tardiness and tardy jobs are
polynomials. Contemporarily, Xu et al. (2010) proposed
two approximation algorithms for the make-span
minimization on both, parallel machine and single
machine, scheduling problems wherein the
maintenance duration is a nondecreasing function of
the total processing times of jobs preceding the
maintenance operation itself. Luo et al. (2010)
introduced two approximate approaches for the
minimization of the total weighted completion time on a
single machine with maintenance activity having a
starting time greater than a certain deadline and a
duration depending on a nondecreasing function of its
starting time. Luo et al. (2015) and Xu et al. (2015)
provided polynomial time algorithms for the basic single
machine scheduling problem with a variable
maintenance activity and a workload dependent
maintenance duration, respectively. A series of

30 Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 Antonio et al.

objective function namely total completion times,
maximum lateness, makespan and number of tardy
jobs have been considered. As a practical example,
they mentioned the steel strip manufacturing process in
which steel slabs have to pass a re-heat furnace before
being rolled into strips. In order to assure a regular
work, the furnace has to be cleaned and the fuels must
be refilled before a predetermined deadline. Since
cleaning and refilling time depends on the total
processing time of the steel slabs, it can be considered
a valid example of variable maintenance activity.

Single machine problems can be considered as the
building blocks of more complex problems.
Formulations of such problems may refer to bottleneck
machines or an aggregated machine system (Schmidt
2000).

Recently, Wang et al. (2018) presented four
improved mathematical programming models for
scheduling jobs and a variable maintenance activity on
a single machine.

Chen (2006) developed eight mixed integer linear
programming models for addressing both, single
machine and parallel machine, scheduling issues with
variable maintenance. In particular, two distinct
mathematical models have been devised to minimize
the total tardiness on a single machine environment in
case of non-resumable jobs available at time zero and
with no sequence dependent setup times. These two
optimization approaches have been compared to
demonstrate their efficiency in terms of computational
times, at varying sizes of complexity.

Besides the variable maintenance issue, all the
aforementioned research contributions deal with the
regular single machine scheduling issue with no
release times and sequence dependent setup times as
well. For this reason, optimal and approximate
approaches are able to solve the problem that have
been devised by literature.

Pang et al. (2018) addressed the single machine
scheduling problem with job release dates and flexible
maintenance to minimize a bi-objective function based
on total weighted tardiness and total completion time.
The problem was observed in a semiconductor
company where the flexible maintenance activity
derives from the dirt accumulated during the
manufacturing process. In words, cleaning of the so-
called wet machines is required whenever a certain
level of dirt is achieved on a given machine. The
authors proposed a mixed integer linear programming

model and, in addition, they introduced two heuristic
algorithms and a scatter search simulated annealing
(SSA) to cope up with the large-sized instances.

Since the total tardiness minimization for the single
machine scheduling problem with job release dates
and sequence dependent setup times is demonstrated
to be NP-hard (Baker and Triesch 2001), the problem
at hand, in which a variable maintenance task has to
be scheduled along with the set of jobs, surely
deserves the same degree of complexity.

In this paper, two distinct Mixed Integers Linear
Programming (MILP) models have been presented with
the aim of scheduling a set of non-resumable jobs, with
release times and a sequence dependent setup times,
along with a variable maintenance activity. The
objective is the minimization of the total tardiness. The
problem is inspired to a real-world manufacturing issue
which was observed in a semiconductor company. The
maintenance operation must be executed within a
predetermined time window, corresponding to the
availability time of the maintenance workforce. Notably,
the maintenance consists of a cleaning operation as
experienced by Peng et al. (2008) and its duration
varies with the starting time. It is worthy to point out
that, to the best of our knowledge, this is the first
approach investigating such a challenging NP-hard
scheduling issue.

The paper is organized as follows. Section one
deals with the problem statement. Section two presents
the MILP models. Sections 3 deals with the way the
benchmark of test cases has been generated. In
Section 4 the findings from the comparison analysis are
commented. In the last section conclusions and future
research are reported.

1. PROBLEM STATEMENT

The scheduling problem at hand can be described
as follows: A set of N independent non-resumable jobs
have to be processed on a single machine. Each job ‘j’
(j=1,…,n) is available at time rj. Setup times are
sequence dependent, i.e., sij is the setup time of job ‘j’
which is being processed after job ‘i’. Anticipatory
setups as well as pre-emption are not allowed. The
machine must be subject to a prefixed variable
maintenance activity to be executed within a specific
time interval. In fact, maintenance duration increases
with its starting time, i.e., the later it starts, the longer
will be its time duration. Let pj denote the processing
time of job j, ‘ZS’ denote the maintenance starting time
while ‘ZC’ is the completion time; obviously, it holds
ZS! ZC. Maintenance duration ‘R=f(ZS)’ is a positive
nondecreasing function of its starting time. The

MILP Models for Scheduling Dynamic Jobs with Sequence Dependent Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 31

maintenance is a flexible task so that it must be
executed within a prefixed time interval [Umin, Umax];
thus, ZS must be greater than or equal to Umin and ZC
must be lower than or equal to Umax. For a certain
schedule, Cj represents the completion time of job j
while Tj=max[0, Cj-dj] is the tardiness of the same job
whether dj is the corresponding due date. Setup time of
the job scheduled after the maintenance operation is
negligible. The objective is to place the maintenance
operation within the allowed time interval as well as to
find a schedule able to minimize the total tardiness. In
reality, due to its variable duration, an early
maintenance starting time would imply a shorter
duration on one hand, but a higher risk of delay for the
subsequent jobs on the other hand. Conversely, the
later will be the maintenance starting time the longer
will be its duration; as a result, the subsequent jobs will
be subject to a higher risk of delay as well. Figure 1
depicts a twofold Gantt diagram related to two different
schedules, namely S(1) and S(2), for a six-jobs single
machine scheduling problem with variable
maintenance. The two schedules are identical with
exception of what happens after the maintenance
starting time. As mentioned above, the maintenance
duration R is a combination of a constant (γ) and a
variable contribution (δ), whose value is a
nondecreasing linear function of the starting time ZS.
The positive increment of δ as ZS raises as it is
connected with the slope α, pertaining to the linear
function y=f(ZS). Whether a linear increment of the
maintenance activity is considered or not, the duration

of the maintenance activity is

R = ! + tg" ZS #Umin() ,

while the allowed maximum starting time, hereinafter
be denoted by ZSmax, can be computed as follows:

ZSmax =

Umax ! (1! tg") #Umin !$
tg" (1)

Hence, the allowed maintenance time interval can be
also formalized as [Umin, min(ZSmax ,Umax)].

Using the three-field classification scheme proposed
by [Graham et al. 1979], the problem under
investigation can be coded as 1,VM|rj,sij|T, where VM
indicates the variable maintenance activity. 	

2. MILP MODELS

Two distinct Mixed Integer Linear Programming
(MILP) models have been devised for the problem
under investigation. In the following paragraphs both
mathematical models, hereinafter denoted as Model 1
and Model 2, are illustrated. Common notations and
objective are omitted in Model 2. Most MILP
approaches from the relevant literature on the same
scheduling issue (Chen, 2006, Wang et al. 2018)
consider the maintenance activity as an adding job.
Model 1 disregards this conception and makes full use
of some more variables. In particular, it employs two

Figure 1: Example of Gantt Diagram and flexible maintenance activity.

32 Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 Antonio et al.

variables, namely W and V which refer to the first and
the last job to be scheduled, respectively. In addition,
maintenance starting and completion times,
respectively denoted as ZS and ZC, are two further
variables able to strengthen this approach. On the
other hand, similarly being done from the literature,
Model 2 handles the variable maintenance as a dummy
job to be scheduled; thus, N+1 jobs have to be
sequenced along the time horizon. Of course,
motivated by the sequence dependent setup times,
Model 2 significantly differs from the mathematical
models proposed by literature so far.

2.1. Model 1

Notations and Parameters

N number of jobs

i, j = 1,2,…,N job indexes

aj j = 1,2,..., N setup time of job j in case it is
processed as first;

sij j = 1,2,..., N setup time of job i processed just
before job j;

pj j = 1,2,..., N processing time of job j;

rj j = 1,2,..., N release time of job j;

dj j = 1,2,..., N due date of job j;

Umin earliest starting time of the maintenance
activity;

Umax dead line to accomplish the maintenance
activity;

γ maintenance base time;

α slope parameter of the flexible maintenance
function;

M a big number

Optimization variables

Yij
! 0,1{ } i = 1,2,..., N j = 1,2,..., N 1 if job j is

processed immediately after job i, 0 otherwise;

Xj
! 0,1{ } j = 1,2,..., N if job j is processed before the

maintenance interval, 0 otherwise;

Wj
! 0,1{ } j = 1,2,..., N 1 if job j is processed as first,

0 otherwise;

Vi
! 0,1{ }

j = 1,2,..., N 1 if job i is processed as last, 0
otherwise;

Cj j = 1,2,..., N completion time of job j;

Tj j = 1,2,..., N tardiness of job j;

ZS maintenance starting time;

ZC maintenance completion time;

Objective

Minimize

Tj
j=1

N
!

Subject to:

Yij = 1

j=1

N
! "Vi i = 1,2,..., N (1)

Yij = 1!Wj

i=1

N
" j = 1,2,..., N (2)

X j ! 1

j=1

N
" (3)

C j ! Ci + sij + p j " M # (1" Yij) i = 1,2,..., N j = 1,2,..., N

 (4)

C j ! (rj + a j + p j) "Wij j = 1,2,..., N (5)

C j ! (rj + sij + p j) "Yij i = 1,2,..., N j = 1,2,..., N (6)

C j ! ZS + M " (1# X j) j = 1,2,..., N (7)

C j ! ZC + (sij + p j) "Yij # M " X j j = 1,2,..., N (8)

 ZS !Umin (9)

 ZC !Umax (10)

 ZC ! ZS + " + tg(#) $ (ZS %Umin) (11)

Vi

i=1

N
! = 1 (12)

Wj

j=1

N
! = 1 (13)

Tj ! C j " d j j = 1,2,..., N (14)

MILP Models for Scheduling Dynamic Jobs with Sequence Dependent Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 33

Tj ! 0 j = 1,2,..., N (15)

Constraint (1) states that each job must precede
another job, unless it is processed as last. Constraint
(2) states that each job must be preceded by another
job, unless it is processed as first. Constraint (3) sets at
least one job to be processed before the maintenance
interval. Constraint (4) imposes each job to start after
the preceding job is completed. Constraints (5) and (6)
state that each job can be processed after it is released
to the system. Specifically, constraint (5) is referred to
the case the job processed as first, while constraint (6)
works otherwise. In case a job is processed before the
maintenance interval, constraint (7) states that its
completion time must precede the maintenance starting
time. In case a job is processed after the maintenance
interval, constraint (8) states that its starting time must
follow the maintenance completion time. Constraints
(9) and (10) fix bounds for maintenance starting and
completion time, respectively. Constraint (11)
calculates maintenance duration. Constraint (12) and
(13) impose one only job to be processed as first and
as last, respectively. Constraint (14) calculates
tardiness of jobs, which has to be non-negative
according to constraint (15).

2.2. Model 2

Notations and Parameters

N number of jobs (job N + 1 being the maintenance
interval);

i = 0,1,…,N + 1 preceding job index (includes dummy
job 0);

j = 1,2,…,N + 1 job index;

Optimization Variables

Yij
! 0,1{ } i = 0,1,..., N +1 , j = 1,2,..., N +1 ; 1 if job j is

processed immediately after job i, 0 otherwise;

Ij j = 1,2,..., N +1 starting time of job j;

Cj j = 1,2,..., N +1 completion time of job j;

Subject to:

Yij = 1

i=0

N +1

! j = 1,2,..., N +1 (16)

Yij ! 1

j=1

N +1

" i = 0,1,..., N +1 (17)

Y0 j = 1

j=1

N
! (18)

I j ! rj + sij "

i=0

N
Yij j = 1,2,..., N (19)

I j ! rj + sij "

i=0

N
Yi(N +1) $ M " (1$ Y(N +1) j) j = 1,2,..., N

 (20)

I j ! Ci + sij " M # (1" Yij) i = 1,2,..., N j = 1,2,..., N

 (21)

I j ! C(N +1) + sij "Yi(N +1)

i=0

N
$ M " (1$ Y(N +1) j)

 j = 1,2,..., N (22)

C j ! I j + p j j = 1,2,..., N (23)

C(N +1) ! I(N +1) + " + tg(#) $ (I(N +1) %Umin) (24)

I(N +1) ! Ci " M # (1" Yi(N +1)) i = 1,2,..., N (25)

I(N +1) !Umin (26)

C(N +1) !Umax (27)

Tj ! C j " d j

 j = 1,2,..., N (28)

Y(N +1)(N +1) = 0

 (29)

Tj ! 0

 j = 1,2,..., N (30)

Constraint (16) states that each job must have a
predecessor. According to constraint (17), each job can
precede one other job at most. Constraint (18) sets at
least one job to be processed before the maintenance
interval. Constraints (19) and (20) state that each job
can be processed after it is released to the system.
Specifically, constraint (19) is referred to the case the
job is preceded by a real job, while constraint (20)
works in case the job comes immediately after the
maintenance interval. Similarly, constraints (21) and
(22) impose each job to start after the preceding job is
completed, in case the preceding job is real or it
coincides with the maintenance interval, respectively.
Constraint (23) links starting and completion time of

34 Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 Antonio et al.

each job. Constraint (24) calculates maintenance
completion time. Constraint (25) calculates
maintenance starting time. Constraints (26) and (27) fix
bounds for maintenance starting and completion time,
respectively. Constraint (28) calculates tardiness of
jobs. Constraints (29) imposes the maintenance
interval not to precede itself. Finally, constraint (30)
assigns only non-negative tardiness values to tardy
jobs.

3. GENERATION OF TEST CASES

An extended benchmark of test cases has been
generated to investigate how a set of parameters
influences the total tardiness objective function.
Similarly, as done by the other researchers [Allahverdi
et al. 2018, Cui and Li, 2018], job processing times pj
have been extracted from a uniform distribution
U[1,100], setup times from U[1,25], release dates rj
from 0.5!U[1, LB] and due dates from

 U[0.25,0.75]! LB , where

LB = 1.15! pj" . The earliest

maintenance starting time is

UBmin = ! " LB#$ %& , i.e., the

smallest integer value of the product in brackets, where
β is a specific coefficient in the range (0,1). The
allowed maintenance time interval [Umax-Umin] is fixed at
200.

A full factorial experimental plan involving four
factors at different levels was arranged as in Table 1.
The number of jobs was varied at three levels while
parameters α, β and γ were varied at two levels. As a
result, 24 different scenario problems have been
arranged. Finally, ten instances have been randomly
generated for each scenario problem, according to the
aforementioned criteria. Therefore, a total amount of
240 runs has been employed for analyzing the
computational efficiency of the mathematical models.

4. COMPARISON ANALYSIS

The computational efficiency consists of the time
each MILP model takes to converge to global optimum.

Both mathematical models have been solved by IBM®
Cplex Optimization Studio release 12.8.0, installed on a
24Gb Ram DELL® Workstation powered by two
2.40GHz quad-core Intel Xeon® processors. Table 2
resumes the output from both models at varying the
number of jobs. The average (ave), maximum (max)
and minimum (min) computational times (in seconds)
required by each model have been reported in Table 2.
In addition, the same table depicts the standard
deviation (stdev) and the number of times a specific
model assures the minimum computational time (Tmin)
over the provided 80 instances. Findings from Table 2
are emphasized by Figure 2-4, as the number of jobs
changes, respectively. Instances involving six jobs are
not able to emphasize the difference between the
model in terms of computational performance. Model 1
appears to be more efficient than Model 2 with
exception of the Tmin performance indicator. It is worth
pointing out as the two models needed the same time
to converge for six instances out of 80. As for the 8
jobs related instances, a slight outperformance of
Model 2 emerges by observing the average time and
the standard deviation as well. A significant difference
appears when the number of jobs to be scheduled with
a variable maintenance is equal to ten. The
computational efficiency of Model 2 is about two times
better than that required by Model 1. The variability as
the α, β and γ change is smaller for Model 2 which,
according to the Tmin indicator, assure the minimum
time to converge 73 times out of 80.

Findings from Table 2 can be graphically analyzed
by the following figures. Figure 1 refers to the 6 jobs
scheduling problems. Median on the computational
times from Model 2 seems to be lower than Model 1
but the higher outlier related to Model 2 confirm their
equivalence under the computational time viewpoint.
As for the 8 jobs related problems, despite the single
outlier, Figure 3 shows as Model 2 requires a smaller
time to convergence. However, the computational out
performance of Model 2 over Model 1 is definitely
proved by Figure 4. Figure 5 depict the interval plot at
95% confidence interval for the two models, at varying

Table 1: Experimental Plan

Factor Level Low Medium High

N 3 6 8 10

β 2 0.25 - 0.75

γ 2 0.25 - 0.75

α 2 0.25 - 0.75

MILP Models for Scheduling Dynamic Jobs with Sequence Dependent Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 35

the number of jobs. As confirmed by the previous
investigation, the difference of efficiency between
Model 1 (left side) and Model 2 (right side) rises up as
the number of jobs increases too. In addition, Model 2
assures a smaller dispersion around the average
computational time, thus confirming a greater
consistency and robust performance.

Figure 2: Computational time box plots when N=6.

Figure 3: Computational time box plots when N=8.

CONCLUSIONS

In this paper, a single machine scheduling problem
with variable maintenance activity is studied. Differently
from most contribution proposed by literature so far,

release times and sequence dependent setup times
are included in this study. In addition, the maintenance
activity must be completed within a certain due date.
Two distinct Mixed Integer Linear Programming (MILP)
models have been devised and tested under the
computational efficiency viewpoint. The former handles
the maintenance activity as an additional job with
variable length to be sequenced, while the latter just
manages the starting and completion time of the
maintenance operation, regardless of its scheduling
issue. A series of numerical analysis and graphs
confirmed as Model 2 assures a better computational
efficiency as the size of the problem increases. Indeed,
when the number of jobs is equal to 6 the two models
achieve the same performance. On the other hand,
when the number of jobs increases to 10, the
computational time required by Model 2 is
approximately half of than that needed by Model 1 to
converge to the global optimum. For future research,
due to its better time efficiency, Model 2 can be used
for a further analysis involving heuristic or meta-
heuristic algorithms. In addition, Model 2 can be
subject to further refining actions with the aim of further
improving the computational efficiency towards global
optima.

Figure 4: Computational time box plots when N=10.

Table 2: Numerical Results

N 6 8 10

Model 1 2 1 2 1 2

ave 0.24 0.22 3.7 2.8 445.5 222.2

max 1.29 1.84 6.1 6.2 972.9 446.7

min 0.03 0.05 0.9 1.0 96.5 36.1

stdev 0.19 0.22 1.3 1.1 200.9 88.8

Tmin 36 50 17 63 7 73

36 Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 Antonio et al.

REFERENCES

[1] Allahverdi A, Aydilek H and Aydilek A. No-wait flowshop
scheduling problem with two criteria; total tardiness and
makespan. European Journal of Operational Research 2018;
269(2): 590-601.
https://doi.org/10.1016/j.ejor.2017.11.070

[2] Baker K. R and Trietsch D. Principles of sequencing and
scheduling. John Wiley & Sons 2013.

[3] Chen JS. Optimization models for the machine scheduling
problem with a single flexible maintenance activity.
Engineering Optimization 2006; 38(1): 53-71.
https://doi.org/10.1080/03052150500270594

[4] Cui WW, and Lu Z. Minimizing the makespan on a single
machine with flexible maintenances and jobs' release dates.
Computers & Operations Research 2017; 80: 11-22.
https://doi.org/10.1016/j.cor.2016.11.008

[5] Graham RL, Lawler EL, Lenstra JK, and Kan AR.
Optimization and approximation in deterministic sequencing
and scheduling: a survey. In Annals of discrete mathematics
1979; 5: pp. 287-326 Elsevier.
https://doi.org/10.1016/S0167-5060(08)70356-X

[6] Kubzin MA & Strusevich VA. Planning machine maintenance
in two-machine shop scheduling. Operations Research 2006;
54(4): 789-800.
https://doi.org/10.1287/opre.1060.0301

[7] Luo W, Chen L & Zhang G. Approximation algorithms for
scheduling with a variable machine maintenance. In
International Conference on Algorithmic Applications in
Management 2010; (pp. 209-219). Springer, Berlin,
Heidelberg.
https://doi.org/10.1007/978-3-642-14355-7_22

[8] Luo W, Cheng TE & Ji, M. Single-machine scheduling with a
variable maintenance activity. Computers & Industrial

Engineering 2015; 79: 168-174.
https://doi.org/10.1016/j.cie.2014.11.002

[9] Ma Y, Chu C, & Zuo C. A survey of scheduling with
deterministic machine availability constraints. Computers &
Industrial Engineering, 2010; 58(2): 199-211.
https://doi.org/10.1016/j.cie.2009.04.014

[10] Mosheiov G, & Sidney JB. Scheduling a deteriorating
maintenance activity on a single machine. Journal of the
Operational Research Society 2010; 61(5): 882-887.
https://doi.org/10.1057/jors.2009.5

[11] Pang J, Zhou H, Tsai YC & Chou FD. A scatter simulated
annealing algorithm for the bi-objective scheduling problem
for the wet station of semiconductor manufacturing.
Computers & Industrial Engineering 2018; 123: 54-66.
https://doi.org/10.1016/j.cie.2018.06.017

[12] Schmidt G. Scheduling with limited machine availability.
European Journal of Operational Research 2000; 121(1): 1-
15.
https://doi.org/10.1016/S0377-2217(98)00367-1

[13] Wang Q, Liu A & Xiao J. On exact algorithms for single-
machine scheduling problems with a variable maintenance.
Computers & Industrial Engineering 2017; 107: 276-279.
https://doi.org/10.1016/j.cie.2017.03.024

[14] Xu D, Yin, Y & Li H. Scheduling jobs under increasing linear
machine maintenance time. Journal of scheduling 2010;
13(4): 443-449.
https://doi.org/10.1007/s10951-010-0182-0

[15] Xu D, Wan L, Liu A, & Yang DL. Single machine total
completion time scheduling problem with workload-
dependent maintenance duration. Omega 2015; 52: 101-106.
https://doi.org/10.1016/j.omega.2014.11.002

Received on 27-11-2018 Accepted on 21-12-2018 Published on 31-12-2018

DOI: http://dx.doi.org/10.15377/2409-5761.2018.05.5

© 2018 Antonio et al.; Avanti Publishers.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided the work is properly cited.

Figure 5: Computational time interval plots at varying number of jobs.

