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Abstract: The single machine scheduling problem with variable maintenance has been widely investigated by both 
academics and practitioners. Differently from most papers proposed so far, and conforming to a real-world process in the 
semiconductor industry, in this paper a single variable maintenance task has to be carried out within a specific time 
interval. The maintenance duration is an increasing function of its starting time. The objective is to minimize the total 
tardiness considering release times and sequence dependent setup times of jobs as well. Since an earlier maintenance 
starting time implies a smaller maintenance duration but a higher completion time of the subsequent jobs, the best 
schedule including maintenance activity and jobs has to be achieved. In order to optimally solve the scheduling problem 
at hand, two distinct mixed integers linear programming models (MILPs) are proposed and compared under the 
computational efficiency viewpoint. 
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INTRODUCTION 

Investigating the combination of job scheduling and 
machine maintenance in manufacturing systems is a 
challenging task. Such research areas aim to propose 
effective approaches for scheduling jobs when a 
production stoppage, due to maintenance, occurs. 
Maintenance operations may involve different kinds of 
activities such as cleaning, tool replacement, 
inspection, recharging, and so on. Two different 
research streams, both of them connecting job 
scheduling and machine maintenance, have been 
investigated by literature so far, namely scheduling with 
fixed maintenance and scheduling with variable 
maintenance.  

In the former case, execution time of maintenance 
is precedingly known; in other words, both starting time 
and duration of the maintenance task, are determined 
in advance. A huge amount of research is ascribable to 
the scheduling issue with fixed maintenance on 
different configurations of shop floors. The following 
two surveys are worthy to be mentioned: Schmidt 
(2000) and Ma et al. (2010). 

In the latter case, the decision maker has to place 
the maintenance operation along the time horizon and, 
in addition, the maintenance duration is a 
nondecreasing function of its starting time. Hence,  
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maintenance is a sort of dummy job to be scheduled so 
to optimize a certain performance indicator. The 
seminal work of Kubzin and Strusevich (2006) studies 
the makespan minimization for a basic two-machine 
manufacturing system with variable maintenance. 
Notably, they proposed a polynomial time 
approximation scheme and a fast 3/2-approximation 
algorithm for the problem at hand. Mosheiov and 
Sidney (2010) investigated a basic single machine 
scheduling problem in which the maintenance duration 
is a nondecreasing function of its starting time and the 
processing time of the job, immediately after the 
maintenance activity, is shorter than the processing 
time before the maintenance starts. They demonstrated 
a minimization of flowtime and showed that maximum 
delays, total earliness, tardiness and tardy jobs are 
polynomials. Contemporarily, Xu et al. (2010) proposed 
two approximation algorithms for the make-span 
minimization on both, parallel machine and single 
machine, scheduling problems wherein the 
maintenance duration is a nondecreasing function of 
the total processing times of jobs preceding the 
maintenance operation itself. Luo et al. (2010) 
introduced two approximate approaches for the 
minimization of the total weighted completion time on a 
single machine with maintenance activity having a 
starting time greater than a certain deadline and a 
duration depending on a nondecreasing function of its 
starting time. Luo et al. (2015) and Xu et al. (2015) 
provided polynomial time algorithms for the basic single 
machine scheduling problem with a variable 
maintenance activity and a workload dependent 
maintenance duration, respectively. A series of 
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objective function namely total completion times, 
maximum lateness, makespan and number of tardy 
jobs have been considered. As a practical example, 
they mentioned the steel strip manufacturing process in 
which steel slabs have to pass a re-heat furnace before 
being rolled into strips. In order to assure a regular 
work, the furnace has to be cleaned and the fuels must 
be refilled before a predetermined deadline. Since 
cleaning and refilling time depends on the total 
processing time of the steel slabs, it can be considered 
a valid example of variable maintenance activity. 

Single machine problems can be considered as the 
building blocks of more complex problems. 
Formulations of such problems may refer to bottleneck 
machines or an aggregated machine system (Schmidt 
2000). 

Recently, Wang et al. (2018) presented four 
improved mathematical programming models for 
scheduling jobs and a variable maintenance activity on 
a single machine.  

Chen (2006) developed eight mixed integer linear 
programming models for addressing both, single 
machine and parallel machine, scheduling issues with 
variable maintenance. In particular, two distinct 
mathematical models have been devised to minimize 
the total tardiness on a single machine environment in 
case of non-resumable jobs available at time zero and 
with no sequence dependent setup times. These two 
optimization approaches have been compared to 
demonstrate their efficiency in terms of computational 
times, at varying sizes of complexity. 

Besides the variable maintenance issue, all the 
aforementioned research contributions deal with the 
regular single machine scheduling issue with no 
release times and sequence dependent setup times as 
well. For this reason, optimal and approximate 
approaches are able to solve the problem that have 
been devised by literature.  

Pang et al. (2018) addressed the single machine 
scheduling problem with job release dates and flexible 
maintenance to minimize a bi-objective function based 
on total weighted tardiness and total completion time. 
The problem was observed in a semiconductor 
company where the flexible maintenance activity 
derives from the dirt accumulated during the 
manufacturing process. In words, cleaning of the so-
called wet machines is required whenever a certain 
level of dirt is achieved on a given machine. The 
authors proposed a mixed integer linear programming 

model and, in addition, they introduced two heuristic 
algorithms and a scatter search simulated annealing 
(SSA) to cope up with the large-sized instances. 

Since the total tardiness minimization for the single 
machine scheduling problem with job release dates 
and sequence dependent setup times is demonstrated 
to be NP-hard (Baker and Triesch 2001), the problem 
at hand, in which a variable maintenance task has to 
be scheduled along with the set of jobs, surely 
deserves the same degree of complexity. 

In this paper, two distinct Mixed Integers Linear 
Programming (MILP) models have been presented with 
the aim of scheduling a set of non-resumable jobs, with 
release times and a sequence dependent setup times, 
along with a variable maintenance activity. The 
objective is the minimization of the total tardiness. The 
problem is inspired to a real-world manufacturing issue 
which was observed in a semiconductor company. The 
maintenance operation must be executed within a 
predetermined time window, corresponding to the 
availability time of the maintenance workforce. Notably, 
the maintenance consists of a cleaning operation as 
experienced by Peng et al. (2008) and its duration 
varies with the starting time. It is worthy to point out 
that, to the best of our knowledge, this is the first 
approach investigating such a challenging NP-hard 
scheduling issue. 

The paper is organized as follows. Section one 
deals with the problem statement. Section two presents 
the MILP models. Sections 3 deals with the way the 
benchmark of test cases has been generated. In 
Section 4 the findings from the comparison analysis are 
commented. In the last section conclusions and future 
research are reported. 

1. PROBLEM STATEMENT 

The scheduling problem at hand can be described 
as follows: A set of N independent non-resumable jobs 
have to be processed on a single machine. Each job ‘j’ 
(j=1,…,n) is available at time rj. Setup times are 
sequence dependent, i.e., sij is the setup time of job ‘j’ 
which is being processed after job ‘i’. Anticipatory 
setups as well as pre-emption are not allowed. The 
machine must be subject to a prefixed variable 
maintenance activity to be executed within a specific 
time interval. In fact, maintenance duration increases 
with its starting time, i.e., the later it starts, the longer 
will be its time duration. Let pj denote the processing 
time of job j, ‘ZS’ denote the maintenance starting time 
while ‘ZC’ is the completion time; obviously, it holds 
ZS! ZC. Maintenance duration ‘R=f(ZS)’ is a positive 
nondecreasing function of its starting time. The 
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maintenance is a flexible task so that it must be 
executed within a prefixed time interval [Umin, Umax]; 
thus, ZS must be greater than or equal to Umin and ZC 
must be lower than or equal to Umax. For a certain 
schedule, Cj represents the completion time of job j 
while Tj=max[0, Cj-dj] is the tardiness of the same job 
whether dj is the corresponding due date. Setup time of 
the job scheduled after the maintenance operation is 
negligible. The objective is to place the maintenance 
operation within the allowed time interval as well as to 
find a schedule able to minimize the total tardiness. In 
reality, due to its variable duration, an early 
maintenance starting time would imply a shorter 
duration on one hand, but a higher risk of delay for the 
subsequent jobs on the other hand. Conversely, the 
later will be the maintenance starting time the longer 
will be its duration; as a result, the subsequent jobs will 
be subject to a higher risk of delay as well. Figure 1 
depicts a twofold Gantt diagram related to two different 
schedules, namely S(1) and S(2), for a six-jobs single 
machine scheduling problem with variable 
maintenance. The two schedules are identical with 
exception of what happens after the maintenance 
starting time. As mentioned above, the maintenance 
duration R is a combination of a constant (γ) and a 
variable contribution (δ), whose value is a 
nondecreasing linear function of the starting time ZS. 
The positive increment of δ as ZS raises as it is 
connected with the slope α, pertaining to the linear 
function y=f(ZS). Whether a linear increment of the 
maintenance activity is considered or not, the duration 

of the maintenance activity is
  
R = ! + tg" ZS #Umin( ) , 

while the allowed maximum starting time, hereinafter 
be denoted by ZSmax, can be computed as follows: 

  
ZSmax =

Umax ! (1! tg" ) #Umin !$
tg"           (1) 

Hence, the allowed maintenance time interval can be 
also formalized as [Umin,   min(ZSmax ,Umax ) ]. 

Using the three-field classification scheme proposed 
by [Graham et al. 1979], the problem under 
investigation can be coded as 1,VM|rj,sij|T, where VM 
indicates the variable maintenance activity. 	
  

2. MILP MODELS 

Two distinct Mixed Integer Linear Programming 
(MILP) models have been devised for the problem 
under investigation. In the following paragraphs both 
mathematical models, hereinafter denoted as Model 1 
and Model 2, are illustrated. Common notations and 
objective are omitted in Model 2. Most MILP 
approaches from the relevant literature on the same 
scheduling issue (Chen, 2006, Wang et al. 2018) 
consider the maintenance activity as an adding job. 
Model 1 disregards this conception and makes full use 
of some more variables. In particular, it employs two 

 

Figure 1: Example of Gantt Diagram and flexible maintenance activity. 
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variables, namely W and V which refer to the first and 
the last job to be scheduled, respectively. In addition, 
maintenance starting and completion times, 
respectively denoted as ZS and ZC, are two further 
variables able to strengthen this approach. On the 
other hand, similarly being done from the literature, 
Model 2 handles the variable maintenance as a dummy 
job to be scheduled; thus, N+1 jobs have to be 
sequenced along the time horizon. Of course, 
motivated by the sequence dependent setup times, 
Model 2 significantly differs from the mathematical 
models proposed by literature so far. 

2.1. Model 1 

Notations and Parameters 

N number of jobs 

i, j = 1,2,…,N  job indexes 

aj   j = 1,2,..., N  setup time of job j in case it is 
processed as first; 

sij   j = 1,2,..., N  setup time of job i processed just 
before job j; 

pj   j = 1,2,..., N  processing time of job j; 

rj   j = 1,2,..., N  release time of job j; 

dj   j = 1,2,..., N  due date of job j; 

Umin earliest starting time of the maintenance 
activity; 

Umax dead line to accomplish the maintenance 
activity; 

γ maintenance base time; 

α slope parameter of the flexible maintenance 
function; 

M a big number 

Optimization variables 

Yij  
! 0,1{ }    i = 1,2,..., N    j = 1,2,..., N 1 if job j is 

processed immediately after job i, 0 otherwise; 

Xj  
! 0,1{ }    j = 1,2,..., N  if job j is processed before the 

maintenance interval, 0 otherwise; 

Wj  
! 0,1{ }    j = 1,2,..., N 1 if job j is processed as first, 

0 otherwise; 

Vi  
! 0,1{ }    

j = 1,2,..., N 1 if job i is processed as last, 0 
otherwise; 

Cj   j = 1,2,..., N  completion time of job j; 

Tj   j = 1,2,..., N  tardiness of job j; 

ZS  maintenance starting time; 

ZC  maintenance completion time; 

Objective 

Minimize 
  

Tj
j=1

N
!   

Subject to: 

  
Yij = 1

j=1

N
! "Vi    i = 1,2,..., N          (1) 

  
Yij = 1!Wj

i=1

N
"    j = 1,2,..., N           (2) 

  
X j ! 1

j=1

N
"            (3) 

  
C j ! Ci + sij + p j " M # (1" Yij )    i = 1,2,..., N    j = 1,2,..., N

              (4) 

  
C j ! (rj + a j + p j ) "Wij    j = 1,2,..., N          (5) 

  
C j ! (rj + sij + p j ) "Yij    i = 1,2,..., N    j = 1,2,..., N         (6) 

  
C j ! ZS + M " (1# X j )    j = 1,2,..., N         (7) 

  
C j ! ZC + (sij + p j ) "Yij # M " X j    j = 1,2,..., N        (8) 

  ZS !Umin             (9) 

  ZC !Umax          (10) 

  ZC ! ZS + " + tg(# ) $ (ZS %Umin )        (11) 

  
Vi

i=1

N
! = 1          (12) 

  
Wj

j=1

N
! = 1          (13) 

 
Tj ! C j " d j    j = 1,2,..., N        (14) 
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Tj ! 0    j = 1,2,..., N         (15) 

Constraint (1) states that each job must precede 
another job, unless it is processed as last. Constraint 
(2) states that each job must be preceded by another 
job, unless it is processed as first. Constraint (3) sets at 
least one job to be processed before the maintenance 
interval. Constraint (4) imposes each job to start after 
the preceding job is completed. Constraints (5) and (6) 
state that each job can be processed after it is released 
to the system. Specifically, constraint (5) is referred to 
the case the job processed as first, while constraint (6) 
works otherwise. In case a job is processed before the 
maintenance interval, constraint (7) states that its 
completion time must precede the maintenance starting 
time. In case a job is processed after the maintenance 
interval, constraint (8) states that its starting time must 
follow the maintenance completion time. Constraints 
(9) and (10) fix bounds for maintenance starting and 
completion time, respectively. Constraint (11) 
calculates maintenance duration. Constraint (12) and 
(13) impose one only job to be processed as first and 
as last, respectively. Constraint (14) calculates 
tardiness of jobs, which has to be non-negative 
according to constraint (15). 

2.2. Model 2 

Notations and Parameters 

N number of jobs (job N + 1 being the maintenance 
interval); 

i = 0,1,…,N + 1 preceding job index (includes dummy 
job 0); 

j = 1,2,…,N + 1 job index; 

Optimization Variables 

Yij  
! 0,1{ }    i = 0,1,..., N +1 ,   j = 1,2,..., N +1 ; 1 if job j is 

processed immediately after job i, 0 otherwise; 

Ij   j = 1,2,..., N +1  starting time of job j; 

Cj   j = 1,2,..., N +1  completion time of job j; 

Subject to: 

  
Yij = 1

i=0

N +1

!    j = 1,2,..., N +1        (16) 

  
Yij ! 1

j=1

N +1

"    i = 0,1,..., N +1        (17) 

  
Y0 j = 1

j=1

N
!          (18) 

  
I j ! rj + sij "

i=0

N
# Yij    j = 1,2,..., N        (19) 

  
I j ! rj + sij "

i=0

N
# Yi(N +1) $ M " (1$ Y(N +1) j )    j = 1,2,..., N

           (20) 

  
I j ! Ci + sij " M # (1" Yij )    i = 1,2,..., N   j = 1,2,..., N

           (21) 

  
I j ! C(N +1) + sij "Yi(N +1)

i=0

N
# $ M " (1$ Y(N +1) j )

  j = 1,2,..., N          (22) 

 
C j ! I j + p j    j = 1,2,..., N        (23) 

  
C(N +1) ! I(N +1) + " + tg(# ) $ (I(N +1) %Umin )      (24) 

  
I(N +1) ! Ci " M # (1" Yi(N +1) )    i = 1,2,..., N       (25) 

  
I(N +1) !Umin          (26) 

  
C(N +1) !Umax          (27) 

 
Tj ! C j " d j

  j = 1,2,..., N        (28) 

  
Y(N +1)(N +1) = 0

         (29) 

  
Tj ! 0

  j = 1,2,..., N         (30) 

Constraint (16) states that each job must have a 
predecessor. According to constraint (17), each job can 
precede one other job at most. Constraint (18) sets at 
least one job to be processed before the maintenance 
interval. Constraints (19) and (20) state that each job 
can be processed after it is released to the system. 
Specifically, constraint (19) is referred to the case the 
job is preceded by a real job, while constraint (20) 
works in case the job comes immediately after the 
maintenance interval. Similarly, constraints (21) and 
(22) impose each job to start after the preceding job is 
completed, in case the preceding job is real or it 
coincides with the maintenance interval, respectively. 
Constraint (23) links starting and completion time of 
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each job. Constraint (24) calculates maintenance 
completion time. Constraint (25) calculates 
maintenance starting time. Constraints (26) and (27) fix 
bounds for maintenance starting and completion time, 
respectively. Constraint (28) calculates tardiness of 
jobs. Constraints (29) imposes the maintenance 
interval not to precede itself. Finally, constraint (30) 
assigns only non-negative tardiness values to tardy 
jobs. 

3. GENERATION OF TEST CASES 

An extended benchmark of test cases has been 
generated to investigate how a set of parameters 
influences the total tardiness objective function. 
Similarly, as done by the other researchers [Allahverdi 
et al. 2018, Cui and Li, 2018], job processing times pj 
have been extracted from a uniform distribution 
U[1,100], setup times from U[1,25], release dates rj 
from   0.5!U[1, LB] and due dates from 

  U[0.25,0.75]! LB , where 
  
LB = 1.15! pj" . The earliest 

maintenance starting time is 
  
UBmin = ! " LB#$ %& , i.e., the 

smallest integer value of the product in brackets, where 
β is a specific coefficient in the range (0,1). The 
allowed maintenance time interval [Umax-Umin] is fixed at 
200. 

A full factorial experimental plan involving four 
factors at different levels was arranged as in Table 1. 
The number of jobs was varied at three levels while 
parameters α, β and γ were varied at two levels. As a 
result, 24 different scenario problems have been 
arranged. Finally, ten instances have been randomly 
generated for each scenario problem, according to the 
aforementioned criteria. Therefore, a total amount of 
240 runs has been employed for analyzing the 
computational efficiency of the mathematical models. 

4. COMPARISON ANALYSIS 

The computational efficiency consists of the time 
each MILP model takes to converge to global optimum. 

Both mathematical models have been solved by IBM® 
Cplex Optimization Studio release 12.8.0, installed on a 
24Gb Ram DELL® Workstation powered by two 
2.40GHz quad-core Intel Xeon® processors. Table 2 
resumes the output from both models at varying the 
number of jobs. The average (ave), maximum (max) 
and minimum (min) computational times (in seconds) 
required by each model have been reported in Table 2. 
In addition, the same table depicts the standard 
deviation (stdev) and the number of times a specific 
model assures the minimum computational time (Tmin) 
over the provided 80 instances. Findings from Table 2 
are emphasized by Figure 2-4, as the number of jobs 
changes, respectively. Instances involving six jobs are 
not able to emphasize the difference between the 
model in terms of computational performance. Model 1 
appears to be more efficient than Model 2 with 
exception of the Tmin performance indicator. It is worth 
pointing out as the two models needed the same time 
to converge for six instances out of 80. As for the 8 
jobs related instances, a slight outperformance of 
Model 2 emerges by observing the average time and 
the standard deviation as well. A significant difference 
appears when the number of jobs to be scheduled with 
a variable maintenance is equal to ten. The 
computational efficiency of Model 2 is about two times 
better than that required by Model 1. The variability as 
the α, β and γ change is smaller for Model 2 which, 
according to the Tmin indicator, assure the minimum 
time to converge 73 times out of 80. 

Findings from Table 2 can be graphically analyzed 
by the following figures. Figure 1 refers to the 6 jobs 
scheduling problems. Median on the computational 
times from Model 2 seems to be lower than Model 1 
but the higher outlier related to Model 2 confirm their 
equivalence under the computational time viewpoint. 
As for the 8 jobs related problems, despite the single 
outlier, Figure 3 shows as Model 2 requires a smaller 
time to convergence. However, the computational out 
performance of Model 2 over Model 1 is definitely 
proved by Figure 4. Figure 5 depict the interval plot at 
95% confidence interval for the two models, at varying 

Table 1: Experimental Plan 

Factor Level Low Medium High 

N 3 6 8 10 

β 2 0.25 - 0.75 

γ  2 0.25 - 0.75 

α 2 0.25 - 0.75 
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the number of jobs. As confirmed by the previous 
investigation, the difference of efficiency between 
Model 1 (left side) and Model 2 (right side) rises up as 
the number of jobs increases too. In addition, Model 2 
assures a smaller dispersion around the average 
computational time, thus confirming a greater 
consistency and robust performance.  

 
Figure 2: Computational time box plots when N=6. 

 
Figure 3: Computational time box plots when N=8. 

CONCLUSIONS 

In this paper, a single machine scheduling problem 
with variable maintenance activity is studied. Differently 
from most contribution proposed by literature so far, 

release times and sequence dependent setup times 
are included in this study. In addition, the maintenance 
activity must be completed within a certain due date. 
Two distinct Mixed Integer Linear Programming (MILP) 
models have been devised and tested under the 
computational efficiency viewpoint. The former handles 
the maintenance activity as an additional job with 
variable length to be sequenced, while the latter just 
manages the starting and completion time of the 
maintenance operation, regardless of its scheduling 
issue. A series of numerical analysis and graphs 
confirmed as Model 2 assures a better computational 
efficiency as the size of the problem increases. Indeed, 
when the number of jobs is equal to 6 the two models 
achieve the same performance. On the other hand, 
when the number of jobs increases to 10, the 
computational time required by Model 2 is 
approximately half of than that needed by Model 1 to 
converge to the global optimum. For future research, 
due to its better time efficiency, Model 2 can be used 
for a further analysis involving heuristic or meta-
heuristic algorithms. In addition, Model 2 can be 
subject to further refining actions with the aim of further 
improving the computational efficiency towards global 
optima. 

 

Figure 4: Computational time box plots when N=10. 

Table 2:  Numerical Results 

N  6  8  10 

Model 1 2 1 2 1 2 

ave 0.24 0.22 3.7 2.8 445.5 222.2 

max 1.29 1.84 6.1 6.2 972.9 446.7 

min 0.03 0.05 0.9 1.0 96.5 36.1 

stdev 0.19 0.22 1.3 1.1 200.9 88.8 

Tmin 36 50 17 63 7 73 

 



36    Journal of Advances in Applied & Computational Mathematics, 2018, Vol. 5 Antonio et al. 

REFERENCES 

[1] Allahverdi A, Aydilek H and Aydilek A. No-wait flowshop 
scheduling problem with two criteria; total tardiness and 
makespan. European Journal of Operational Research 2018; 
269(2): 590-601. 
https://doi.org/10.1016/j.ejor.2017.11.070 

[2] Baker K. R and Trietsch D. Principles of sequencing and 
scheduling. John Wiley & Sons 2013. 

[3] Chen JS. Optimization models for the machine scheduling 
problem with a single flexible maintenance activity. 
Engineering Optimization 2006; 38(1): 53-71. 
https://doi.org/10.1080/03052150500270594 

[4] Cui WW, and Lu Z. Minimizing the makespan on a single 
machine with flexible maintenances and jobs' release dates. 
Computers & Operations Research 2017; 80: 11-22. 
https://doi.org/10.1016/j.cor.2016.11.008 

[5] Graham RL, Lawler EL, Lenstra JK, and Kan AR. 
Optimization and approximation in deterministic sequencing 
and scheduling: a survey. In Annals of discrete mathematics 
1979; 5: pp. 287-326 Elsevier. 
https://doi.org/10.1016/S0167-5060(08)70356-X 

[6] Kubzin MA & Strusevich VA. Planning machine maintenance 
in two-machine shop scheduling. Operations Research 2006; 
54(4): 789-800. 
https://doi.org/10.1287/opre.1060.0301 

[7] Luo W, Chen L & Zhang G. Approximation algorithms for 
scheduling with a variable machine maintenance. In 
International Conference on Algorithmic Applications in 
Management 2010; (pp. 209-219). Springer, Berlin, 
Heidelberg. 
https://doi.org/10.1007/978-3-642-14355-7_22 

[8] Luo W, Cheng TE & Ji, M. Single-machine scheduling with a 
variable maintenance activity. Computers & Industrial 

Engineering 2015; 79: 168-174. 
https://doi.org/10.1016/j.cie.2014.11.002 

[9] Ma Y, Chu C, & Zuo C. A survey of scheduling with 
deterministic machine availability constraints. Computers & 
Industrial Engineering, 2010; 58(2): 199-211. 
https://doi.org/10.1016/j.cie.2009.04.014 

[10] Mosheiov G, & Sidney JB. Scheduling a deteriorating 
maintenance activity on a single machine. Journal of the 
Operational Research Society 2010; 61(5): 882-887. 
https://doi.org/10.1057/jors.2009.5 

[11] Pang J, Zhou H, Tsai YC & Chou FD. A scatter simulated 
annealing algorithm for the bi-objective scheduling problem 
for the wet station of semiconductor manufacturing. 
Computers & Industrial Engineering 2018; 123: 54-66. 
https://doi.org/10.1016/j.cie.2018.06.017 

[12] Schmidt G. Scheduling with limited machine availability. 
European Journal of Operational Research 2000; 121(1): 1-
15. 
https://doi.org/10.1016/S0377-2217(98)00367-1 

[13] Wang Q, Liu A & Xiao J. On exact algorithms for single-
machine scheduling problems with a variable maintenance. 
Computers & Industrial Engineering 2017; 107: 276-279. 
https://doi.org/10.1016/j.cie.2017.03.024 

[14] Xu D, Yin, Y & Li H. Scheduling jobs under increasing linear 
machine maintenance time. Journal of scheduling 2010; 
13(4): 443-449. 
https://doi.org/10.1007/s10951-010-0182-0 

[15] Xu D, Wan L, Liu A, & Yang DL. Single machine total 
completion time scheduling problem with workload-
dependent maintenance duration. Omega 2015; 52: 101-106. 
https://doi.org/10.1016/j.omega.2014.11.002 
 

 
Received on 27-11-2018 Accepted on 21-12-2018 Published on 31-12-2018 
 
DOI: http://dx.doi.org/10.15377/2409-5761.2018.05.5 

© 2018 Antonio et al.; Avanti Publishers. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, 
provided the work is properly cited. 
 

 

Figure 5: Computational time interval plots at varying number of jobs. 


