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Abstract: In this research paper, we investigate some novel soliton solutions to the perturbed Fokas-Lenells equation by 
using the 1

'
m

G
⎛ ⎞+⎜ ⎟
⎝ ⎠

-expansion method. Some new solutions are obtained and they are plotted in two and three 

dimensions. This technique appears as a suitable, applicable, and efficient method to search for the exact solutions of 
nonlinear partial differential equations in a wide range. All gained optical soliton solutions are substituted into the Fokas-
Lenells equation and they verify it. The constraint conditions are also given. 
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1. INTRODUCTION 

The study of soliton solutions and its application has 
been noticeable in recent decades. New achievements 
of optical soliton solutions and their applications in the 
study of topological solitons and transformation phenol- 
mena in polyacetylene chains with the action of an 
electrical field are noted continuously [1]. The connec- 
tion between nonlinear complex physical phenomena 
and nonlinear partial differential equations (NLPDEs) is 
involved in many fields of sciences such as plasma 
physics, optical fibers, nonlinear optics, fluid mechan- 
ics, biology, chemistry kinetics, geochemistry, engineer 
ing, and so on [2]. NLPDEs have different analytical 
approaches used to find analytical solutions [11-13,17-
19]. Different analytical approaches used to find the 
soliton solutions of the Fokas-Lenells equation as well 
as thecoupled Fokas-Lenells equation like the −! !  
function approach toobtain soliton solutions to 
perturbed Fokas-Lenells equation [3]. Bright, dark, and 
singular soliton solutions are obtained by applying the 
extended trial function approach to find the soliton 
solutions to the Fokas-Lenells equation [4]. Optical 
soliton solutions to the Fokas-Lenells equation in 
birefringent fibers via the application of an extended 
trial function method [5]. Darboux transformation with 
using a limiting process was used to study all kinds of 
one-soliton solutions, including the bright-dark soliton, 
the dark-anti-dark soliton, and the breather-like 
solutions [6]. In [7], the authors investigated the Fokas-
Lenells equation describing the propagation of ultra- 
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short pulses in optical fibers. In [8], via Darboux trans- 
formation, the general couplednonlinear Fokas-Lenells 
system was studied. Optical soliton perturbation with 
Fokas-Lenells equation using three exotic and efficient 
integration schemes were investigated in [9]. Optical 
soliton perturbation with Fokas-Lenells equation by 
mapping methods were constructed in [10]. 

In this paper, we study some new soliton solutions 
of the Fokas-Lenells equation by using the 1

'
m

G
⎛ ⎞+⎜ ⎟
⎝ ⎠

-

expansion method. The variable approach of the 
traveling wave will convert the NLPDEs tononlinear 
ordinary differential equations and we solvethis 
equation analytically for different values of nonzero-
constants. 

1. The 1
'

m
G

⎛ ⎞+⎜ ⎟
⎝ ⎠

-Expansion Method 

The mainly modified steps of these techniques can 
be taken as follows [16]: 

!"#$  !: Assuming a nonlinear partial differential 
equation (NLPDE) as follows: 

P u ,ux ,ut ,uux ,  …( ) = 0 ,         (1) 

and using the traveling wave transformation, 

( ) ( ), , .x t U x tφ ξ αξ β= = −        (2) 

Using Eq. (2) to Eq. (1) yields a nonlinear ordinary 
differential equation (NLODE) as following: 

N U , !U ,U !!,  !( ) = 0 .         (3) 
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!"#$  !:Take trial equation of solution for Eq. (3) as 
following: 

U !( ) =
i =!n

n

"!i m + F( )
i
=m !0 + !1 m + F( )+

!2 m + F( )
2
+…+ !n m + F( )

n
,

      (4) 

where , 0,1,...,n n nρ =  and m are nonzero constants. 
According to the principles of balance, we find the 
value of n . In this manuscript, we let  

1 ,
'

F
G

=
           (5) 

where ( )G ξ  verify ( )'' 2 ' 0.G m Gλ µ µ+ + + =  

!"#$  !: Putting the Eq. (4) into Eq. (3) and using 
Eqs. (5), then collecting all terms with the same order 

of the ( )nm F+ , we get the system of algebraic 

equations for , 0,1,...,n n nρ = , α  and .β  

!"#$  !:  As a result, we solved the obtained system 
and substituted ,α β , , 0,1,...,n n nρ =  and inserted a 
general solution of the LODE Eq. (5) into Eq. (4) to get 
the explicit and exact solution of Eq. (1). 

2. Governing Model and Mathematical Analysis 

The Fokas-Lenells equation (FLE) besides its 
complex terms in non-dimension form is [14-15]: 

iut +a1uxx +a2uxt x ,t( )+ u x ,t( )
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!

"

#
#

$

%

&
&
=

i
!ux x ,t( )+! u x ,t( )

2m
u x ,t( )!

"
#

$

%
&x +

! u x ,t( )
2m!

"
#

$

%
&
x

u x ,t( )

!

"

#
#
#
#

$

%

&
&
&
&

. (6) 

Setting 1,m =  we get  

iut +a1uxx +a2uxt x ,t( )+ u x ,t( )
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!

"

#
#

$

%

&
&
=

i
!ux x ,t( )+! u x ,t( )

2
u x ,t( )!

"
#

$

%
&x +

! u x ,t( )
2!

"
#

$

%
&
x

u x ,t( )

!

"

#
#
#
#

$

%

&
&
&
&

, (7) 

here ( ),u x t  symbolizes a complex field envelope, x, t 
symbolizes spatial and temporal variable. the 
coefficients 1a , b  represent velocity dispersion and 

2a  is spatiotemporal dispersion while σ and δ are the 
nonlinear dispersion term that provides the additional 
dispersive effect. Moreover, α provides the inter-modal 
dispersion, γ is the self-steepening term that prevents 
the formation of shock waves. The complexity terms 
with γ  and δ  comes with full nonlinearity where m
provides the full nonlinearity parameter. 

To start and apply the sine-Gordon expansion 
method, we let wave transform as 

( ) ( ) ( ),, ,i x tu x t U e θξ= ,x tξ υ= −         (8) 

( ) 0, .x t k x tθ ω θ= − + +          (9) 

Where ( )U ξ  and ( ),x tθ symbolize the shape of 

the pulse and the phase component, respectively. ,υ
,k ω  and 0θ  represents the velocity of the soliton, the 

frequency, the soliton wave number, and phase 
constant, respectively. Using (8) and (9) with (7) and 
separating the minto imaginary and real parts, the 
following pair of equations respectively gives 

( ) ' 2
2 2 12 ( 3 2 ) ' 0a k a a k U U Uυ ω υ α σ γ δ+ − − − + − − =

           (10) 

Equaling the linear coefficients of independent 
functions to zero gives 

2 1

2

2 ,
1

a a k
a k

ω α
υ

− −
=

−        (11) 

3 2 .σ γ δ= +         (12) 

These symbolize the speed of the wave and a 
couple of constraint relations on the parameters as 
well. On the other side, the real part yields 

( ) ( ) ( )'' 2 3
1 2 1 2 0a a U w a k a k k U b k k Uυ ω α σ γ− − + − + + + − =

           (13) 

After evaluating the balance between the highest 
order and the highest power of nonlinear terms of Eq. 
(13), we obtain 1.n =  

Using the value of balance and putting it into Eq. 
(4), we obtain 
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( ) ( ) ( )1
1 0 1 ,U m F m m Fξ ρ ρ ρ

−

−= + + + +    (14) 

and 

1
'

F
G

=
         (15) 

Using Eq. (14) along with Eq. (15), and implement- 
ting it to Eq. (13), we get a trigonometric equation. 
Solving the resultant equation, we discuss the following 
cases: 

Set1: when we choose

( ) ( )
1 1

2 2

, ,
2 2

a a b bk
a a

α ω
γ δ γ δ

= − = − = −
+ +

,  
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(16) 

 

 

Figure 1 (contd….) 

 

Figure 1: The optical solitonsolutionsof 16), when
A1 = !2,a1 =1,a2 = 2,! = 3," = 2,b =1,!0 =1,!1 =
1,!

!1 = 3," = !1,m =1,µ = 2  

and for 2-D 2.t =  
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(17) 
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Figure 2 (contd….) 

 

 

Figure 2: The optical solitonsolutions of (17), when 
A1 = !2,a1 =1,a2 = 2,! = 3," = 2,b =1,!0 =1,!1 =
1,!

!1 = 3," = !1,m =1,µ = !2
  

and for 2-D 2.t =  

Set 3: When we choose 
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Figure 3: The optical solitonsolutions of (18), when 
A1 = 2,a1 =1,a2 = 2,! = 3," = 2,b =1,!0 =1,!1 =
1,!

!1 = 3," = 2,m =1,µ = 2,k =1   

and for 2-D 2.t =  

CONCLUSION 

In  this  manuscript,  via  the  
1m
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Fokas–Lenells equation with Kerr law nonlinearity are 
constructed and the obtained results satisfy the eq. (1). 
Based on the results, the suggested method is useful, 
efficient, and replicable for taking out the soliton solu- 
tions of strong nonlinear partial differential equations. 
The Mathematica software to find the exact solutions 
and plotting them in two- and three-dimensions are 
utilized. The results obtained in this research may be 
available with time in some sciences like applied 
mathematics, physics, and engineering. 
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