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Abstract: The Kardar-Parisi-Zhang (KPZ) equation with different initial conditions has been investigated in this paper. 
The numerical solutions using fixed data are performed without noise term and with two kinds of noise terms, i.e., 
Gaussian noise term and white noise term. The solutions to the equation have been simulated with different initial 
conditions of the form !  sin !

!"
. Our study introduces the obtained shape of the solutions to the KPZ equation 

according to noise terms with three different amplitudes !. The effect of the noise and the amplitude of the noises are 
presented and investigated. 
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INTRODUCTION  

The concept of surface formation was first used in 
the context of studying the motion of growing interfaces 
by Kardar, Parisi and Zhang [1, 2] in 1986. After 
introducing the equation, it started to take much 
attention from different science areas. The reason for 
this popularity is its applicability to surface growth 
phenomena in various contexts. Also, the equation in 
the non-equilibrium statistical mechanical models with 
the noise effect is nonlinear. Moreover, the equation 
shows an infinite number of degrees of freedom at the 
same time. This nonlinear generalization of the 
ubiquitous diffusion equation is the so-called 
Kardar-Parisi-Zhang model obtained from the Langevin 
equation 

!"
!"
= !∇!! + !

!
(∇!)! + !(!, !), 

where !(!, !, !)  stands for the height profile of the 
local growth. The first term on the right-hand side 
describes the relaxation of the interface by surface 
tension, which prefers a smooth surface. The second 
term is the lowest-order nonlinear term that can appear 
in the surface growth equation justified by the Eden 
model and originates from the fact that the surface 
tends to grow locally normal to itself, and it has a 
non-equilibrium in origin. The last term is the Langevin 
noise that mimics the stochastic nature of any growth 
process and usually has a Gaussian distribution [3-7]. 
The KPZ equation best describes the physical problem 
as the stochastic nature of the surface increases. The 
basics of the physics of surface growth can be found in 
the book of Barabasi and Stanley [8]. Hwa and Frey [9, 
10] investigated the KPZ model using the 
self-mode-coupling method and renormalization group 
theory. When Green’s functions are being used, it is an 
exhausting and sophisticated method. Many  different  
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forms of dynamic scaling have been observed in one 
spatial dimension 

!!
!"
= !∇!ℎ + !

!
(∇ℎ)! + !(!, !),      (1) 

with ℎ !, ! = ! − 2!  !(!";   !!!)   as a correlation 
function, where !, ! and ! are real constants. Later, 
Lässig showed that how the theoretical approach for 
the KPZ model can be investigated [11]. Kriecherbauer 
and Krug [12], in their review paper, derived the KPZ 
model from hydrodynamical conservation equations 
with a general current density relation.  

Previously, in the paper [13], Quastel and Remenik 
used droplet initial conditions in order to obtain large 
deviations at a large time with half-Brownian initial 
conditions. This provided a remarkable relation 
between some solutions on the finite time of the 
Kardar-Parisi-Zhang (KPZ) equation and the 
Kadomtsev-Petviashvili (KP) equation. Also, Prolhac 
and Spohn [14] obtained a convolution between the 
Gumbel distribution and pointed out the difference 
between two Fredholm determinants existing for the 
KPZ equation. While sharp wedge initial conditions 
were used, the height function was of the 
time-dependent probability distribution function. In 
addition, in the papers [15-27] Brownian, flat and 
random initial conditions were investigated.  

We are interested in our paper to obtain and 
investigate the numerical solution to KPZ equation (1) 
with Gaussian noise, white noise and without noise 
terms. The importance is to point out the morphology of 
the initial surface of the substrate and the results 
obtained show different surface formations. In our 
investigations, the parameter values are chosen as 
!   = 1 and !   = !

!
 when we refer to the KPZ equation.  

THE NOISE TERMS AND INITIAL CONDITIONS 

In some of our previous studies [28-35], the role of 
the additional noise term makes the KPZ solutions 
interesting. However, when we conducted experiments 
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without noise term in literature [36, 37, 38], it 
introduced the phenomenal effect of different initial 
conditions to the surface. Now, our aim is to look for the 
solutions of (1) with initial condition !  sin !

!"
  applying 

various amplitudes. Furthermore, we will see numerical 
results with Gaussian noise and white noise terms with 
all physical parameters (!, !,!). Here, ! is the initial 
condition parameter. 

In the simulations, the solutions to equation (1) with 
various noise terms have been presented. Also, the 
case without noise term effect is studied. Furthermore, 
three different amplitudes are applied for the initial 
condition of the form  

ℎ !, 0 = Asin !
!"

        (2) 

with amplitude A. The numerical analyses have been 
conducted on the MATLAB R2019b with parameters 
given below (3). In the calculations, the initial time ! 
has been chosen as 0.01 until 100. The following 
values are fixed throughout the study 

!   ∈    −100, 100 , !   ∈    0.01, 100 ,!   =   100,∆!   =
  0.01/100.         (3) 

In the process of the simulation obtaining the 
solution of the KPZ equation (1), the initial conditions 
which mimic the initial surface structure are chosen as 
in equations (4)-(6). The amplitude parameters are 
taken in a maximally simple form to determine 
relational changes of the initial conditions and the noise 
term differences. To get a better understanding first, we 
determine the solution (1) without noise term with 
different amplitude values  

ℎ !, 0 = 10  sin  (!/16) ,       (4) 

ℎ !, 0 = sin  (!/16),       (5) 

ℎ !, 0 = 0.1 sin !
!"

  .        (6) 

The Case: Without Noise Term ! !, ! = ! 

The research result using the traveling wave Ansatz 
with closed forms to obtain analytic solutions to KPZ 
equation (1) without noise term was presented in paper 
[3]. The KPZ partial differential equation (1) with 
!(!, !)   =   0 leads to the ordinary differential equation 
(ODE) of  

!!!! ! + !! ! !   !
!
!! ! = 0.       (7) 

The solution to equation (7) can be given as  

! ! = !
!
ln

! !!!!
!"
!

!!"
!,       (8) 

where !! and !! are the constants of the integration. 
It should be noted that this is a linear function equation 
!(!)   =   !" + ! which is presented in a complicated 
form. The parameters for !! is set, and it equals  0, 
which gives a constant solution. Physically it means 
that there is a continuous surface growing till infinity 
which is quite unphysical. Therefore, some additional 
noise is needed to have physically realistic surface 
growing phenomena. However, in our situation, when 
there is no noise term (!(!, !)   =   0), the surface is flat 
without any wavy effect.  

When there is an initial condition effect, and its 
amplitude difference is investigated, then the wavy 
surface of the graph appears as Figure 1 without any 
curve or wedge surface effect. 

 
Figure 1: The solution graph to (1) without noise term and 
with given values (3) and various initial conditions (4)-(6). 

As it is presented in Figure 1, the amplitude of the 
initial condition is an important parameter for the 
formation of the surface even without noise term. When 
the amplitude parameter of the initial condition equals 
10, the starting part of the wavy surface fluctuates 
between given values. After a certain time, this surface 
becomes flat; see details on the results and numerical 
data in paper [10].  

The Case: With Noise Term ! !, ! ≠ ! 

Gaussian Noise Term 

Kinetic roughening is an important part of 
universality classes. For this reason, we pay attention 
to the time-dependent noise affecting the surface 
growth. Generally, these surface fluctuations occur by 
driving flux or atoms acting on the system. However, 
this does not mean that its amplitude is directly the 
square root of the average external flux. For example, 
research on beam molecular epitaxy growth for 
electrochemical or chemical vapor deposition showed 
that the noise term from the Langevin equation for the 
interface is more affected. However, it cannot be 
overemphasized. Universal behavior refers to 
asymptotic properties, far exceeding all existing 
transients (induced by, e.g., physical instability acting 
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on the system) and crossovers (due to competition 
among various physical mechanisms, each of which is 
dominant for a different range in time and space). 
Considering the type of system and the asymptotic 
properties, the equations containing the additive noise 
term adequately describe the phenomenon. The 
Gaussian-type noise is uncorrelated in time and space 
[12]. Applying similarity transformation ℎ !, ! = ! !  
and ! = !

!
 to (1) with Gaussian noise, one gets the 

ODE of 

!!!! ! + 0.5!! ! ! + !!! ! + !"
!!!
! = 0,    (9) 

where value !  is chosen as 1. There is no general 
formula available for the solution to (9) for arbitrary 
parameters !, !, !. Fortunately, if two parameters are 
fixed, e.g., !   = 1, !   = !

!
 and !   =   1, then there is a 

closed expression (an analytical solution) available  

! ! = − !
!!
ln 1 + tan !!! ∙ erf !

!
+ !!

!

+ !! , 

        (10) 

where erf means the error function and !! and !!  are 
integration constants, see [39, 40]. 

We will consider the case of sharp wedge initial 
condition for positive, small ! as 

ℎ! !, 0 = − !
!

 with ! > 0, ! → 0.     (11) 

The solution to equation (1) with (11) is presented 
as follows  

ℎ !, ! = − !
!"
− !!

!!
+ !

!

!
! ! !, ! .     (12) 

The flattening parabola should be viewed as the top 
part of the droplet in the experiment of [28, 29] and 
!(!, !)  represents the superimposed fluctuations. 
Eventually, the KPZ equation holds in greater 
generality. In particular, it is also applied for interface 
motion and growth models in higher dimensions. For 
surveys on the earlier developments, we refer to [8, 42, 
43, 44]. Recently, the KPZ equation has been used as 
a challenging test ground for non-equilibrium 
renormalization group techniques [46].  

The subtraction !
!

!!
 from equation (12) is uniquely 

fixed by the requirement that !(!, !) is independent of 
!  for any given !   >   0. In fact, by the scaling invariance 
of the KPZ equation, for fixed !,  higher-order 
correlations also depend only on the relative distance 
in !. Noise term !(!, !) depends on !. However, to 
find out its value is less obvious. Because a diverging 
uniform shift in h-direction is the construction of the 
solution. This is most easily explained for the initial 
condition ℎ!(!, 0).  The construction of the solution 
requires  

lim!→! !!!(!,!) = ! ! ,      (13) 

which presents that   ℎ! !, 0 = −!!! ! − log 2!  with 
log 2!   diverging as ! → 0 (see [18]). 

 
Figure 2: Solutions to (1) with Gaussian noise term with 
values (3) and initial conditions (4)-(6) for ! = 100. 

Figure 2 represents the so-called bell curve 
Gaussian surface. On the one hand, in the graph for 
the amplitude of the initial condition between 0.1 and 1 
(in equations (5) and (6)) the same curves are obtained 
in spite of initial surface differences. Alternatively, while 
initial condition amplitude equals 10, the wavy surface 
affects the Gaussian noise term curve edge resulting in 
a decrease in the noise term appearance.  

White Noise Term 

The white noise term for !(!, !) is not a regular 
function. The solution ℎ(!, !)  partially inherits this 
roughness of the surface due to the noise and 
therefore, the function (!ℎ/!")! is not studied till now. 
Nevertheless, more reliable solutions can be 
formulated by suitable approximation schemes, which 
are explained in detail in [47]. The most direct one can 
be easily stated. One smoothens ! to !! as 

!! !, ! = !!! !" ! ! − !! ! !!, ! = !! ∙ !(!, !) , 
!   →   ∞       (14) 

with some smooth function ! , a localized and 
normalized smearing function. Then !!   →   !  as 
!   →   ∞  and equation (1) has well-defined solutions 
ℎ!(!, !) with noise terms !!. They move with a uniform 
background velocity !!  along the ℎ -direction. Then 
!!   →   ∞  as !   →   ∞ , but ℎ!(!, !)   −   !!!  has a limit. 
Since !! sets merely the choice of a reference frame, 
the claim is that under this limit procedure, the 
fluctuation properties remain intact [45].  

While understandable solutions are thus ensured, 
little is known about their properties. To make !! !,!

!"
 

stationary, one has to start the solution to the KPZ 
equation with two-sided Brownian motion. With this 
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input, one argues that the height fluctuations will grow 
as !

!
!, while the transverse correlation length increases 

as !
!
!   . Very recently, it has been proved that the 

variance of the stationary two-point function increases 
as !

!
!   by providing suitable upper and lower bounds 

[48].  

If we choose as initial function the narrow wedge  

ℎ(!, 0)   =   −|!|/!      (15) 

with ! ≪ 1, it leads to following representation  

ℎ(!, !)
− !!

!!"
  for   ! ≤ !!"

!
,

− !
!
  for   ! > !!"

!
.
      (16) 

The initial condition may look artificial. In spite of 
short times, the nonlinearity dominates, and ignoring 
the other terms in the equation (16), ℎ spreads very 
fast into the parabolic profile. It can be seen as the top 
part of a growing surface. Physically one thereby 
covers the case of macroscopically curved height 
profiles [48, 49, 50, 52].  

 
Figure 3: Solutions to (1) with white noise term with values 
(3) and initial conditions (4)-(6). 

The solution (16) for the distribution of ℎ(!, !) for all 
!   >   0 is exact in the properly normalized limit !   →   0. 
A further explanation has been presented in the paper 
[48, 49, 50, 52].  

At the beginning of time t, there is an angled surface 
as an effect of the noise term. Despite the difference in 
amplitude of the initial condition, the primary form of the 
graph is the same. Figure 3 represents the initial 
condition amplitude effect only to the surface but not 
the noise itself.  

DISCUSSION AND RESULTS 

To introduce visible differences between the noise 
terms and amplitude, the impact of them is presented 

in Figure 4. It is obvious that the initial condition effect 
is the same in all the simulations. However, at the 
beginning of the time !, the parts of each graph are 
differently formed due to the effect of the noise terms. 
Without noise term, the graph started with the straight 
wave surface and smoothed after a certain time. The 
second simulation result presented for the white noise 
term graph started with an edge surface at the 
beginning and took effect of the initial condition to itself. 
Also, in the third graph with Gaussian noise term, the 
surface has the same wavy surface formation. 
However, it can be seen in the middle of the graph that 
a bell curve shape appeared due to the Gaussian noise 
term.  

 
Figure 4: Cross-section of ℎ(!, !)  and ! with the effect of 
initial condition (4) to all three cases for ! = 100.  

CONCLUSION 

The height distribution function of the 
one-dimensional KPZ equation with different initial 
condition amplitudes and different noise terms is 
numerically analysed. It can be concluded that for fixed 
parameters of KPZ equation (1), the noise terms 
represented similar shapes on the surface with the 
same initial condition. However, the noise term effect 
remained at the same level in every simulation despite 
different amplitudes. Moreover, when the initial 
condition was high enough, then the presence of 
Gaussian noise cannot be observed on the surface 
(see Figure 2).  
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