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Abstract: In this paper, a high-efficiency numerical algorithm based on shifted Chebyshev polynomials is given to solve 
a set of variable-order fractional partial differential equations. First, we structure the differential operator matrix of the 
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1. INTRODUCTION 

As an important module of mathematical theory [1], 

fractional calculus theory has been successfully applied 

to various fields, such as physics and statistical 

mechanics [2-5], viscoelastic material [6-10], signal 

processing, control theory [11-16], and so on. However, 

more and more researchers have found that the 

fractional differential operators can be used to solve 

complex dynamic problems, such as the model of 

linear and nonlinear viscoelastic oscillators [17, 18], the 

change of the fractional-order with time [19, 20], the 

physics experiment of the fractional-order operator [21], 

and so on. In [22], the fractional derivative is used to 

model percolation equations, which can describe the 

time-dependent percolation process more effectively. 

So far, many scholars have proposed different define- 

tions of variable-order fractional differential operators, 

including Riemann-Liouvile definition, Caputo definition, 

Marchaud definition, and Coimbra definition [23-29]. 

In recent years, more and more numerical methods 

for fractional partial differential equations have been 

studied to approximate analytical solutions. Many 

scholars have proposed numerical methods for various 

types of fractional differential equations, including the 

Chebyshev and Legendre polynomials methods [30-35, 

40], Wavelet analysis method [36-39], piecewise 

constant function methods [41, 42], differential transfor- 

mation method [43], traveling wave transformation 

method [44], spectral methods [45, 46], Adomian 

decomposition method [47] etc. Due to the complexity 

of variable-order fractional partial differential equations 
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are hard to obtain. Most researchers used different 

methods to solve the variable-order fractional partial 

differential equations. For example, in [48] the authors 

proposed the Legendre polynomials method to solve 

the variable order linear fractional partial differential 

equation. Shen S [49] and others employed the finite 

difference method to solve the variable-order fractional 

convection-diffusion equation with a nonlinear source 

term on a finite field. A method of accurate spectral 

collocation to solve one-dimensional and two-

dimensional variable-order fractional nonlinear cable 

equations was proposed in [50]. 

In this paper, the shifted Chebyshev polynomials 

are applied to obtain the numerical solutions for a 

system of variable-order fractional partial differential 

equations. Indeed, Chebyshev polynomials have a 

wide variety of applications and play an indispensable 

role in solving integral equations and differential 

equations. 

The following forms of a system of variable-order 

fractional partial differential equations are discussed: 

{  
  𝜕𝛼(𝑥)𝑢(𝑥,𝑡)𝜕𝑥𝛼(𝑥) + 𝜕𝑢(𝑥,𝑡)𝜕𝑥 + 𝑔1(𝑢,𝑣) = 𝑓1(𝑥, 𝑡),𝜕𝛽(𝑡)𝑣(𝑥,𝑡)𝜕𝑡𝛽(𝑡) + 𝜕𝑣(𝑥,𝑡)𝜕𝑡 + 𝑔2(𝑢,𝑣) = 𝑓2(𝑥, 𝑡),     (𝑥, 𝑡) ∈[0, 𝑋]× [0, 𝑇],                                                                            (1) 

which satisfy the following initial conditions and 

boundary conditions: 𝑢(0, 𝑡) = ℎ1(𝑡),𝑢(𝑥, 0) = 𝜑1(𝑥),𝑣(0, 𝑡) = ℎ2(𝑡), 𝑣(𝑥, 0) = 𝜑2(𝑥),                             (2) 
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 txf ,1 , 
 txf ,2  are square 

integrable functions on    TX 0,0,  . And 
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 vug ,2 , 
 txf ,1 , 

 txf ,2  are known functions, 
 txu ,

, 

 txv ,
 are pending functions. 

The structure of this paper is as follows: In Section 

2, we introduce some definitions of shifted Chebyshev 

polynomials and variable-order fractional differential 

operators. In Section 3, we present the algorithm and 

differential operator matrix. Error analysis of 

approximate solutions is mainly investigated in Section 

4. Three illustrative numerical examples are shown to 

demonstrate the accuracy and efficiency of the 

proposed method in Section 5. Finally, conclusions are 

given in Section 6. 

2. PRELIMINARIES 

2.1. Fractional Calculus and Shifted Chebyshev 
Polynomials 

Definition 1 The Riemann - Liouville fractional 

derivative of the variable order 𝛼(𝑡) is defined as 
follows:  

𝑅𝐿𝐷𝑡𝛼(𝑡)𝑓(𝑡) = 1𝛤(𝑛−𝛼(𝑡)) 𝑑𝑛𝑑𝑡𝑛 ∫𝑡0 𝑓(𝜏)(𝑡−𝜏)𝛼(𝑡)−𝑛+1𝑑𝜏, 𝑛 − 1 <𝛼(𝑡) < 𝑛.                                                               (3) 

Definition 2 The Caputo fractional derivative of the 

variable order 𝛼(𝑡) is defined as follows:  

𝐶𝐷𝑡𝛼(𝑡)𝑓(𝑡) = 1𝛤(𝑛−𝛼(𝑡))∫𝑡0 𝑓(𝑛)(𝜏)(𝑡−𝜏)𝛼(𝑡)−𝑛+1𝑑𝜏, 𝑛 − 1 <𝛼(𝑡) < 𝑛.                                                           (4) 

Definition 3 The Chebyshev polynomials on the 
interval [−1,1] are defined as follows:  𝐺𝑖+1(𝑥) = 2𝑥𝐺𝑖(𝑥)− 𝐺𝑖−1 ,   𝑖 = 1,2,3,⋯𝐺0(𝑥) = 1,  𝐺1(𝑥) = 𝑥.        (5) 

The shifted Chebyshev polynomials are defined on [0, 𝑅] by taking transformation 𝑥 = 2𝑡𝑅 − 1 in the ones 

obtained on [−1,1]. Therefore, the shifted Chebyshev 

polynomials on the interval [0, 𝑅] are given by:  𝑇𝑖+1(𝑡) = 2 (2𝑡𝑅 − 1)𝑇𝑖(𝑡) − 𝑇𝑖−1(𝑡),𝑖 = 1,2,3⋯𝑇0(𝑡) = 1, 𝑇1(𝑡) = 2𝑡𝑅 − 1.        (6) 

The explicit form of the shifted Chebyshev 

polynomials 𝑇𝑛(𝑡) of degree 𝑛 is given as follows:  

    (7) 

The shifted Chebyshev polynomials are orthogonal 

on [0, 𝑅] with respect to the weight function 𝜔(𝑡) =1√𝑅𝑡−𝑡2. The orthogonality conditions are presented by 

the following relations: 

∫ 𝑇𝑛(𝑡)𝑇𝑚(𝑡)𝜔(𝑡)𝑑𝑡𝑅0 = {0,𝜋,𝜋2 , 𝑛 ≠ 𝑚,𝑛 = 𝑚 = 0,𝑛 = 𝑚 ≠ 0.                   (8) 

Now, we define:  𝛷(𝑡) = [𝑇0(𝑡),𝑇1(𝑡),⋯ ,𝑇𝑛(𝑡)]𝑇,                              (9) 

then we get: 𝛷(𝑡) = 𝐴𝑅𝑇(𝑡),                                                     (10) 

where 𝑇(𝑡) = [1, 𝑡, 𝑡2 ,… , 𝑡𝑛]𝑇,                                         (11) 

𝐴𝑅 = [  
 𝑃0,0 0 ⋯ 0𝑃1,0 𝑃1,1 ⋯ 0⋮ ⋮ ⋱ ⋮𝑃𝑛,0 𝑃𝑛,1 ⋯ 𝑃𝑛,𝑛]  

 ,                                  (12) 

where  

{ 𝑃0,0 = 1,𝑃𝑖,𝑗 = 2(2𝑅𝑃𝑖−1,𝑗−1− 𝑃𝑖−1,𝑗)− 𝑃𝑖−2,𝑗,𝑃𝑖,𝑗 = 0,for 𝑖 < 𝑗 or 𝑖 < 0 or 𝑗 < 0.   
Obviously, 𝐴𝑅 is full rank and reversible. 

2.2. Function Approximation 

The approximation function based on the families of 

SCPs of 𝑥 and 𝑡 was applied to replace the Unknown 

function. The collocation method was used to discretize 

the variables 𝑥 and 𝑡 to transform the set of variable-

order fractional partial differential equations into a set 

of algebraic equations. The numerical algorithm is 

summarized in Figure 1. 

For arbitrary functions 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) ∈ 𝐿2([0, 𝑋]×[0, 𝑇]), they can be developed in terms of the shifted 

Chebyshev polynomials. By taking the (𝑛 + 1)2 first 

shifted Chebyshev polynomials, we get:  
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𝑢(𝑥, 𝑡) ≈ 𝑢𝑛(𝑥, 𝑡) = ∑ ∑ 𝑢𝑖,𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑡)𝑛𝑗=0𝑛𝑖=0 =𝛷𝑇(𝑥)𝐶𝛷(𝑡),                                                                        (13) 𝑣(𝑥, 𝑡) ≈ 𝑣𝑛(𝑥, 𝑡) = ∑𝑛𝑖=0 ∑𝑛𝑗=0 𝑣𝑖,𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑡) =Φ𝑇(𝑥)𝐾Φ(𝑡),                                                                    (14) 

where 𝑢𝑖,𝑗 , 𝑣𝑖,𝑗(𝑖 = 0,1,⋯ , 𝑛; 𝑗 = 0,1,⋯ , 𝑛) are called 

two-dimensional functions, 𝐶 and 𝐾 are the shifted 
Chebyshev polynomials approximation coefficients of 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡), respectively. 

3. SHIFTED CHEBYSHEV POLYNOMIALS 
DIFFERENTIAL OPERATOR MATRIX 

3.1. First Order Differential Operator Matrix of 
Shifted Chebyshev Polynomials 

Definition 4 If there are matrices 𝐷 and 𝑃, 

satisfying 𝛷′(𝑡) = 𝐷𝛷(𝑡) and 𝛷′(𝑥) = 𝑃𝛷(𝑥), then 𝐷 

and 𝑃 are called the first-order differential operator 

matrices of shifted Chebyshev polynomials.  

By calculating the first-order derivative of 𝛷(𝑡), we 

get:  𝛷′(𝑡) = (𝐴𝑇𝑇(𝑡))′ = 𝐴𝑇𝑇′(𝑡)
= 𝐴𝑇 [ 1′𝑡 ′⋮(𝑡𝑛)′] = 𝐴𝑇 [

01⋮𝑛𝑡𝑛−1] = 𝐴𝑇𝑉(𝑛+1)×𝑛𝑇∗(𝑡),      (15) 

where 𝐴𝑇 is obtained by replacing 𝑅 by 𝑇 in Eq. (12), 
and 

𝑉(𝑛+1)×𝑛 = [   
 0 0 ⋯ 01 0 ⋯ 00 2 ⋯ 0⋮ ⋮ ⋱ 00 0 ⋯ 𝑛]  

  , 𝑇∗(𝑡) = [   
 1𝑡⋮𝑡𝑛−2𝑡𝑛−1]  

  .            (16) 

By using Eq. (10), we obtain: 𝑇∗(𝑡) = 𝐵𝑇∗𝛷(𝑡),                                                   (17) 

where  𝐵𝑇∗ = [𝐴𝑇,[1]−1 , 𝐴𝑇,[2]−1 ,⋯ , 𝐴𝑇,[𝑛]−1 ]𝑇. 

According to Eq. (15) and (17), we get:  𝛷′(𝑡) = 𝐴𝑇𝑉(𝑛+1)×𝑛𝐵𝑇∗𝛷(𝑡) = 𝐷𝛷(𝑡),                 (18) 

where 𝐷 = 𝐴𝑇𝑉(𝑛+1)×𝑛𝐵𝑇∗  is a first-order differential 

operator matrix of the shifted Chebyshev polynomials. 

The similar result can be obtained:  𝛷′(𝑥) = 𝑃𝛷(𝑥),                                            (19) 

where 𝑃 = 𝐴𝑋𝑉(𝑛+1)×𝑛𝐵𝑋∗. 
Now, using Eqs. (13), (14), (18) and (19), we get: 

     

                      (20) 

         (21) 

Furthermore, the higher-order differential operator 
matrices derived from SCPs by mathematical induction 
have the following form:  𝑑𝑛𝑑𝑥𝑛𝛷(𝑥) = (𝑃)𝑛𝛷(𝑥).                                           (22) 

3.2. Variable order differential operator matrix of 
the shifted Chebyshev polynomials 

Definition 5 If there are matrices )(t
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Figure 1: A schematic illustration of the proposed numerical algorithm. 
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           (23) 

where 𝑖 = 𝛽(𝑡),𝛽(𝑡) + 1,⋯ ,𝑛, 𝑃𝑡𝛽(𝑡) = 𝐴𝑇𝑉(𝑛+1)×(𝑛+1)∗ 𝐴𝑇−1, and 𝑉(𝑛+1)×(𝑛+1)∗ =

[  
   
   
 0 ⋯ 0 ⋯ 0 ⋯ 0⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮0 ⋯ 𝛤(𝛽(𝑡)+1)𝑡−𝛽(𝑡)𝛤(𝛽(𝑡)+1−𝛽(𝑡)) ⋯ 0 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮0 ⋯ 0 ⋯ 𝛤(𝑖+1)𝑡−𝛽(𝑡)𝛤(𝑖+1−𝛽(𝑡)) ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮0 ⋯ 0 ⋯ 0 ⋯ 𝛤(𝑛+1)𝑡−𝛽(𝑡)𝛤(𝑛+1−𝛽(𝑡))]  

   
   
 
.  

                                                                    (24) 

The fractional-order differential operator matrix 𝑃𝑡𝛽(𝑡) 
is:  𝑃𝑡𝛽(𝑡) =

[  
   
   0 ⋯ 0 ⋯ 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮0 ⋯ 0 ⋯ 0 ⋯ 0𝑆𝛽(𝛽(𝑡),0) ⋯ 𝑆𝛽(𝛽(𝑡), 𝛽(𝑡)) ⋯ 0 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮𝑆𝛽(𝑖, 0) ⋯ 𝑆𝛽(𝑖, 𝛽(𝑡)) ⋯ 𝑆𝛽(𝑖, 𝑖) ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮𝑆𝛽(𝑛, 0) ⋯ 𝑆𝛽(𝑛, 𝛽(𝑡)) ⋯ 𝑆𝛽(𝑛, 𝑖) ⋯ 𝑆𝛽(𝑛,𝑛)]  

   
   .  

          (25) 

The similar result can be obtained: 

   
 

      
 

   
   

 
    ,3)(=

))x((=

3=

3
,

T)(T

T1**
1)(1)(

T

T

extCPx

tCAVA

extC
x

x

ex
x

tCx

x

txu

x
x

XnnX

x

x

x

x

x

x















































      (26) 

where 𝑖 = 𝛼(𝑥), 𝛼(𝑥) + 1,⋯ , 𝑛, 𝑃𝑥𝛼(𝑥) = 𝐴𝑋𝑉(𝑛+1)×(𝑛+1)∗∗ 𝐴𝑋−1, and 𝑉(𝑛+1)×(𝑛+1)∗∗ =

[  
   
   
0 ⋯ 0 ⋯ 0 ⋯ 0⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮0 ⋯ 𝛤(𝛼(𝑥)+1)𝑥−𝛼(𝑥)𝛤(𝛼(𝑥)+1−𝛼(𝑥)) ⋯ 0 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮0 ⋯ 0 ⋯ 𝛤(𝑖+1)𝑡−𝛼(𝑥)𝛤(𝑖+1−𝛼(𝑥)) ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮0 ⋯ 0 ⋯ 0 ⋯ 𝛤(𝑛+1)𝑥−𝛼(𝑥)𝛤(𝑛+1−𝛼(𝑥)) ]  

   
   
  

              (27) 

The fractional-order differential operator matrix 𝑃𝑥𝛼(𝑥) 
is:  𝑃𝑥𝛼(𝑥) =

[  
   
  0 ⋯ 0 ⋯ 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮0 ⋯ 0 ⋯ 0 ⋯ 0𝑆𝛼(𝛼(𝑥),0) ⋯ 𝑆𝛼(𝛼(𝑥), 𝛼(𝑥)) ⋯ 0 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮𝑆𝛼(𝑖, 0) ⋯ 𝑆𝛼(𝑖, 𝛼(𝑥)) ⋯ 𝑆𝛼(𝑖, 𝑖) ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮𝑆𝛼(𝑛, 0) ⋯ 𝑆𝛼(𝑛, 𝛼(𝑥)) ⋯ 𝑆𝛼(𝑛, 𝑖) ⋯ 𝑆𝛼(𝑛, 𝑛)]  

   
  
   

          (28) 

 
           (29) 

Eqs. (20), (21), (27) and (28) are substituted into 
Eq. (1): 

then the initial conditions and boundary conditions 

are converted into:  𝑢(0, 𝑡) ≈ 𝛷𝑇(0)𝐶𝛷(𝑡),𝑢(𝑥, 0) ≈ 𝛷𝑇(𝑥)𝐶𝛷(0),𝑣(0, 𝑡) ≈ 𝛷𝑇(0)𝐾𝛷(𝑡),𝑣(𝑥, 0) ≈ 𝛷𝑇(𝑥)𝐾𝛷(0).      (30) 
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Divide the variable order  tx,  by the points 

(,=),( ji tx    )
22

12











n

j
T    )

22

12











n

j
T  Ni ,1,2,=(  , 

),1,2,= Nj   in Eqs. (29) and (30). We can get the 

coefficients matrices C  and K  by using Matlab, so 

that the approximate solutions of  txu ,  and  txv ,  can 

be found. 

4. ERROR CORRECTION 

In this section, the error analysis of the approxi- 

mate solutions for the considered system of variable-

order fractional partial differential equations is carried 

out based on the shifted Chebyshev polynomials. First, 

with the aid of the residual functions and the error 

functions, the estimation errors for approximate 

solutions are obtained. Then, the approximate error 

functions are considered to correct the approximate 

solutions. Finally, we obtain the correction solutions 

and improve the accuracy of approximate solutions. 

We consider the following sets of residual functions 𝑅𝑛𝑢(𝑥, 𝑡) and 𝑅𝑛𝑣(𝑥, 𝑡):  𝑅𝑛𝑢(𝑥, 𝑡) = 𝐿[𝑢𝑛(𝑥, 𝑡)] + 𝑓1(𝑥, 𝑡),      (31) 𝑅𝑛𝑣(𝑥, 𝑡) = 𝐿[𝑣𝑛(𝑥, 𝑡)] + 𝑓2(𝑥, 𝑡),      (32) 

where 𝑢𝑛(𝑥, 𝑡), 𝑣𝑛(𝑥, 𝑡) are the approximate solutions, 
and 𝐿[𝑢𝑛(𝑥, 𝑡)] and 𝐿[𝑣𝑛(𝑥, 𝑡)] are defined by:  𝐿[𝑢𝑛(𝑥, 𝑡)] = 𝜕𝛼(𝑥)𝑢𝑛(𝑥,𝑡)𝜕𝑥𝛼(𝑥) + 𝜕𝑢𝑛(𝑥,𝑡)𝜕𝑥 + 𝑔1(𝑢𝑛, 𝑣𝑛),     (33) 

and  𝐿[𝑣𝑛(𝑥, 𝑡)] = 𝜕𝛽(𝑡)𝑣𝑛(𝑥,𝑡)𝜕𝑡𝛽(𝑡) + 𝜕𝑣𝑛(𝑥,𝑡)𝜕𝑡 + 𝑔2(𝑢𝑛, 𝑣𝑛).     (34) 

Then, 𝐿[𝑢𝑛(𝑥, 𝑡)] and 𝐿[𝑣𝑛(𝑥, 𝑡)]) can be expressed 

as:  𝐿[𝑢𝑛(𝑥, 𝑡)] = 𝑅𝑛𝑢(𝑥, 𝑡) − 𝑓1(𝑥, 𝑡),      (35) 𝐿[𝑣𝑛(𝑥, 𝑡)] = 𝑅𝑛𝑣(𝑥, 𝑡) − 𝑓2(𝑥, 𝑡).      (36) 

Define the following error functions: 𝑒𝑛𝑢 = 𝑢(𝑥, 𝑡) − 𝑢𝑛(𝑥, 𝑡), 𝑒𝑛𝑣 = 𝑣(𝑥, 𝑡) − 𝑣𝑛(𝑥, 𝑡),      (37) 

where  txu ,  and  txv ,  are the exact solutions of the 

set of variable-order fractional partial differential 

equations. Thus, the differential equations of the error 

functions are obtained as follows: 

   (38) 

and 𝐿[𝑒𝑛𝑣(𝑥, 𝑡)] = −𝑅𝑛𝑣(𝑥, 𝑡).                    (39) 

Then, we obtain: 𝐿[𝑒𝑛𝑢(𝑥, 𝑡)] = 𝜕𝛼(𝑥)𝑒𝑛𝑢(𝑥,𝑡)𝜕𝑥𝛼(𝑥) + 𝜕𝑒𝑛𝑢(𝑥,𝑡)𝜕𝑥 + 𝑔1(𝑒𝑛𝑢, 𝑒𝑛𝑣) =−𝑅𝑛𝑢(𝑥, 𝑡),                                                                  (40) 𝐿[𝑒𝑛𝑣(𝑥, 𝑡)] = 𝜕𝛽(𝑡)𝑒𝑛𝑣(𝑥,𝑡)𝜕𝑡𝛽(𝑡) + 𝜕𝑒𝑛𝑣(𝑥,𝑡)𝜕𝑡 + 𝑔2(𝑒𝑛𝑢, 𝑒𝑛𝑣) =−𝑅𝑛𝑣(𝑥, 𝑡),         (41) 

where 𝑒𝑛𝑢(𝑥, 𝑡) and 𝑒𝑛𝑣(𝑥, 𝑡) can be approximated by 𝑒𝑢∗(𝑥, 𝑡) and 𝑒𝑣∗(𝑥, 𝑡) using the algorithm proposed in the 

previous section. 

Therefore, the correct solutions can be obtained:  𝑢′(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + 𝑒𝑢∗(𝑥, 𝑡), 𝑣′(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡) +𝑒𝑣∗(𝑥, 𝑡).           (42) 

Furthermore, we can get:  

         
     ,,,,=

,,=,,=,
*

*

txetxutxu

txutxutxetxetxE

vn

u
u
nu




     (43) 

         
     ,,,,=

,,=,,=,
*

*

txetxvtxv

txvtxvtxetxetxE

vn

v
v
nv




     (44) 

where 𝐸𝑢(𝑥, 𝑡) and 𝐸𝑣(𝑥, 𝑡) are called correct error 

functions. 

5. NUMERICAL SIMULATION 

In this section, we apply the proposed method to 

solve three systems of variable-order fractional partial 

differential equations.  

Example 1 Let us consider the following system of 

partial differential equations with variable-order 

fractional derivatives:  

{  
  𝜕1+cos𝑥3 𝑢(𝑥,𝑡)𝜕𝑥1+cos𝑥3 + 𝜕𝑢(𝑥,𝑡)𝜕𝑥 + 𝑢(𝑥, 𝑡) − 2𝑣(𝑥, 𝑡) = 𝑓1(𝑥, 𝑡),

𝜕𝑡+25 𝑣(𝑥,𝑡)𝜕𝑡𝑡+25 + 𝜕𝑣(𝑥,𝑡)𝜕𝑡 + 2𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡) = 𝑓2(𝑥, 𝑡),    (45) 

with the following initial and boundary conditions on [0,2] × [0,3]: 𝑢(𝑥, 0) = 10𝑥(1 − 𝑥),𝑢(0, 𝑡) = 0,𝑣(𝑥, 0) =0,𝑣(0, 𝑡) = 10𝑡(𝑡 − 1),                                               (46) 

where       
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  (47) 

The exact solutions of the equations are given by: 

{𝑢(𝑥, 𝑡) = 10𝑥(1 − 𝑥)(1+ 𝑡)2,𝑣(𝑥, 𝑡) = 10𝑡(1− 𝑡)(1 + 𝑥)2 .               (48) 

Taking t = 1.5, the approximate and exact solutions 

are given in Figure 2. Figure 3 shows the absolute 

errors between approximate and exact solutions on 

   0,30,2  . Absolute errors and correct errors are 

presented at different times in Figure 4 to 5. 

From Figure 2 and 3, we can conclude that the 

approximate solutions of the system converge to the 

exact solutions very well. Figure 4 to 5 also show that 

the correct errors are smaller.  

Example 2 Let us consider the following set of 

variable order fractional partial differential equations: 

{  
  𝜕𝑥−13 𝑢(𝑥,𝑡)𝜕𝑥𝑥−13 + 𝜕𝑢(𝑥,𝑡)𝜕𝑥 − 𝑢(𝑥, 𝑡) = 𝑓1(𝑥, 𝑡),
𝜕cos𝑡+15 𝑣(𝑥,𝑡)𝜕𝑡cos 𝑡+15 + 𝜕𝑣(𝑥,𝑡)𝜕𝑡 − 𝑣(𝑥, 𝑡) = 𝑓2(𝑥, 𝑡),                   (49) 

subject to the initial and boundary conditions on [0,3] × [0,4]:  𝑢(𝑥, 0) = 5𝑥(𝑥2− 1),𝑢(0, 𝑡) = 0,𝑣(𝑥,0) =0,𝑣(0, 𝑡) = 5𝑡(𝑡2− 1),        (50) 

 
 
Figure 2: Approximate and exact solutions for Example 1, when 2=n . 

 

 
 
Figure 3: Absolute errors between approximate and exact solutions for Example 1, when 2=n .  
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where                                               

  (51) 

The exact solutions for the set of equations are: 

{𝑢(𝑥, 𝑡) = 𝑥(𝑥2− 1)(5+ 𝑡2 + 𝑡3),𝑣(𝑥, 𝑡) = 𝑡(𝑡2− 1)(5+ 𝑥2+ 𝑥3).       (52) 

Figure 6 presents the approximate and exact 

solutions at 𝑡 = 2. The absolute errors and correct 

errors for some nodes on [0,3] × [0,4] are shown in 

Figure 7 to 9. The absolute errors and correct errors 

with 𝑛 = 3, 𝑛 = 4, 𝑛 = 5 at 𝑡 = 0.8,1.6,2.4,3.6 are 

computed in Table 1. 

   
 

Figure 4: Absolute errors and correct errors of  txu ,  for Example 1, when 2=n . 

   
 

Figure 5: Absolute errors and correct errors of  txv ,  for Example 1, when 2=n . 

  

Figure 6: Approximate and exact solutions for Example 2, when 3=n . 
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Figure 6 shows that the approximate solutions 

approach to the exact solutions. It is obvious from 

Figure 7 to 9 and Table 1 that the absolute errors and 

correct errors can be reduced by increasing the values 

of 𝑛. 

Example 3 Consider the following equations:  

{𝜕𝛼(𝑥)𝑢(𝑥,𝑡)𝜕𝑥𝛼(𝑥) + 𝜕𝑢(𝑥,𝑡)𝜕𝑥 + 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) = 𝑓1(𝑥, 𝑡),𝜕𝛽(𝑡)𝑣(𝑥,𝑡)𝜕𝑡𝛽(𝑡) + 𝜕𝑣(𝑥,𝑡)𝜕𝑡 + 𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡) = 𝑓2(𝑥, 𝑡),      (53) 

with the initial conditions and boundary conditions 𝑢(𝑥, 0) = 𝑢(0, 𝑡) = 0, 𝑣(𝑥, 0) = 𝑣(0, 𝑡) = 0 on [0,2] ×[0,3], where  

 
 

Figure 7: Absolute errors between approximate and exact solutions for Example 2, when 3=n . 

 

 
 

Figure 8: Absolute errors and correct errors of  txu ,  for Example 2, when 3.=n . 
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     (54) 

The exact solutions of the equations for 𝛼(𝑥) = 𝑥3, 𝛽(𝑡) = 𝑡4 are:  

{𝑢(𝑥, 𝑡) = 𝑥𝑡(𝑥 − 1),𝑣(𝑥, 𝑡) = 𝑥𝑡(𝑡 − 1).                 (55) 

Figure 10 presents the approximate and exact 

solutions at 𝑡 = 1.5. Figure 11 to 13 show the absolute 

 
 

 
Figure 9: Absolute errors and correct errors of  txv ,  for Example 2, when 3=n . 

Table 1: The Comparisons between Absolute Errors  txeu , ,  txev ,  and Correct Errors  txeu ,
*

,  txev ,
*

 for Example 2 

t x 

3=n  4=n  5=n  

 txeu ,    txeu ,
*

   txev ,    txev ,
*

   txeu ,    txeu ,
*

   txev ,    txev ,
*

   txeu ,    txeu ,
*

   txev ,    txev ,
*

 

0.8   0.6   1.02e-07  4.07e-10   9.35e-09  4.11e-09   1.82e-08  6.25e-10   3.45e-09  2.37e-10  2.27e-11  4.11e-12  1.72e-09  1.16e-09  

  1.8   1.18e-07  3.67e-09   1.99e-09  8.09e-09  1.99e-08  2.19e-09   6.79e-09  4.64e-10  9.68e-11  1.82e-11  3.48e-09  2.29e-09 

  2.7   4.02e-08  8.99e-10   4.73e-08  1.12e-08  1.51e-09  1.31e-12   9.44e-09  6.49e-10  2.22e-10  5.67e-12  4.90e-09  3.17e-09 

1.6   0.6   1.39e-07   5.35e-10   1.83e-08  1.62e-10  2.37e-08   8.60e-10   5.04e-10  2.98e-11  5.74e-11  5.66e-12  2.18e-10  9.38e-10 

 1.8   1.58e-07  4.95e-09   3.73e-08   3.72e-10  2.73e-08  2.96e-09   8.39e-10   5.94e-11  5.37e-11  2.51e-11  4.26e-09  1.85e-09 

  2.7   5.48e-08  1.23e-09  5.17e-08  5.59e-10  1.44e-09  2.06e-11  1.04e-09  8.57e-11  3.30e-10  7.79e-12  5.83e-09  2.56e-09 

2.4  0.6   1.77e-07  6.61e-10  3.32e-08  5.33e-09   2.96e-08  1.10e-09  2.55e-09  1.22e-10  9.37e-11  7.20e-12  4.78e-09  2.05e-09 

  1.8  2.01e-07  6.31e-09  6.53e-08  1.05e-08  3.52e-08  3.77e-09  3.41e-09  2.45e-10  8.92e-12  3.19e-11  9.92e-09  4.05e-09 

  2.7  6.97e-08  1.60e-09  9.18e-08  1.46e-08  9.11e-10  8.19e-11  7.69e-09  3.44e-10  4.45e-10  9.97e-12  1.41e-09  5.60e-09 

3.6   0.6   2.54e-07  9.30e-10  7.43e-09  1.74e-09   4.17e-08  1.56e-09  1.64e-10  2.92e-12  1.72e-10  1.03e-11  4.57e-10  4.48e-10 

  1.8  2.89e-07  9.09e-09  1.25e-08  3.51e-09  5.16e-08  5.41e-09  1.88e-09  1.19e-11  4.61e-11  4.61e-11  8.79e-09   8.87e-10 

  2.7  1.01e-07  2.26e-09  1.58e-08  4.88e-09  5.52e-10  1.68e-10  3.88e-11  4.54e-12  1.48e-11  1.48e-11  1.21e-09  1.20e-09  
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errors and correct errors for some values of 𝑡 =0.8,1.6,2.4 with 𝑛 = 2. The absolute errors and correct 

errors for 𝑛 = 3 are shown in Figure 14 and 15. 

From Figure 10 to 15, we can obtain that the 

approximate and correct solutions agree with the exact 

solutions. 

6. CONCLUSIONS 

In this paper, an efficient numerical algorithm was 

presented based on the combination of shifted 

Chebyshev polynomials and variable-order fractional 

differential properties. It was applied to solve a set of 

variable-order fractional partial differential equations. 

And the relevant theoretical knowledge of error 

correction was proposed. In fact, we transformed the 

original equation sets into the products of some 

matrices, then used Matlab to solve the problem. The 

errors of approximate results were corrected so that the 

absolute errors can be reduced. Finally, three 

numerical examples were presented to illustrate the 

efficiency of the proposed method. Only small values of 

 
 

Figure 10: Approximate and exact solutions for Example 3, when 2=n . 

 

 

 

Figure 11: Absolute errors between approximate and exact solutions for Example 3, when 2=n . 

 
 

Figure 12: Absolute errors and correct errors of  txu ,  for Example 3, when 2=n . 
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n were appropriately selected so that a high conver- 

gence precision can be reached to 10−9 and 10−8 . 
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