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ABSTRACT 

The availability of potable water is reducing day by day due to rapid growth in the 

human population and un-planned industrialization around the globe. Although 

human beings cannot think of survival in the absence of water, the global leadership 

can still not implement their pacts in reality. Solar still is one of the prominent ways 

of getting potable water from contaminated water. This manuscript reports the 

experimental evaluation and developed ANN model for the single basin solar stills 

having augmentations with the sand-filled cotton bags and ferrite ring permanent 

magnets. Root mean square error (RMSE), efficiency coefficient (E), the overall index 

of model performance (OI), and coefficient of residual mass (CRM) values are in good 

agreement with the proposed developed model of ANN. The proposed ANN model 

can be utilized to predict distillate yield with a variation of 5% for the reported 

modified stills. Overall correlation coefficient of CSS, MSS-1&2 are 0.98171, 0.9867, 

and 0.99542, respectively. 
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1. Introduction 

The water crisis is one of the biggest challenges for human beings, and the situation is worsening with every 

passing year. The exponential population, deforestation, and industrial growth are the major reason for the 

potable water crisis. Although we are surrounded by two-thirds of water, less than 1% of it is potable. Industries 

are not only creating air but also water pollution, resulting in a potable water crisis. Researchers nowadays have 

started thinking in the direction of how to convert salty/brackish water into potable water by adopting sustainable, 

cost-effective, and environmentally friendly ways. Solar energy is one such perpetual source of energy that meets 

the entire above criterion. The device which uses solar energy as the input for converting brackish/salty water into 

potable water is called a conventional solar still (CSS). The device works on the greenhouse principle. The working 

and construction of CSS are very simple and easy. The major concern is the low productivity and efficiency of this 

device. So, to enhance the overall performance of CSS, several modifications have been reported by many 

researchers. Ayoub and Malaeb have reported a detailed review on the novel solar designs still for enhancing their 

performance [1]. Dumka and Mishra [2] have reported that the optimum solar performance can still be achieved 

with a salt concentration of 1% due to surface tension and heat capacity break-even at this value. Xiao et al. [3] 

have reported a review on different heat, and mass transfer approaches for the overall understanding of design 

parameters of solar still. Muftah et al. have talked of different ambient, design, and operating parameters that 

affect the distillate output from a conventional solar still [4]. An extensive review of different design and operating 

parameters, which still influence the productivity of conventional solar, has been reported by Panchal and Patel 

[5]. An extensive review of different changes to enhance conventional solar performance has still been reported 

by Kabeel et al. [6]. Dumka and Mishra [7, 8] have reported the use of solar earth stills which utilize ground energy 

for the performance improvement of solar stills. Kabeel et al. [9] have reported the influence of mass and height 

of the water and its flow rate on the performance of CSS, inclined distiller unit, and CSS integrated with inclined 

distiller unit. They have observed that the highest distiller yield is obtained for a basin water mass of 6.2 kg for CSS 

augmented with an inclined distiller unit viz 46.23% more than CSS. To increase the distillate output from a CSS, 

Zanganeh et al. [10] have applied a transparent nano coat solution on the inner side of condensing cover so that 

the condensing mechanism shifts from film to dropwise. They have reported a distillate increase of 23% higher in 

the presence of nano coats. Das et al. [11] have reviewed the current trends for distillate improvement of CSS. 

They have focused more on PV and Peltier modules, external condensers, sensible and latent heat-absorbing 

materials, nanoparticles, humidifiers, and external reflectors. To increase the heat transfer rate within the solar 

still Mevada et al. [12] have reported the use of fin. Moreover, they have also observed that the distillate output is 

weakly dependent on the fin thickness. Hansen et al. have reported an experimental endeavor in which they have 

used different types of wicks (wood pulp paper, polystyrene sponge, and water coral fleece) and absorber plate 

(wire mesh, flat, and rectangular stepped) to increase the overall performance of CSS. They have observed that 

coral wick along with wire mesh gives the highest distillate (viz. 4.28 l/day) in comparison to the other 

combinations. Saleh et al. [13] have reported the performance of solar distiller units augmented with a blend of 

phase change material and Al2O3. An impact of sand-filled glass bottles on the performance improvement of CSS 

has been reported by Dumka et al. [14]. They have reported an increase of 21.32% more distillate output due to 

the augmentations compared to the CSS. The use of solar power fountains to enhance the surface area of water 

and, ultimately, the evaporation rate has been reported by Dumka et al. [15]. Mahmood and Ansari [16] have 

reported a novel approach to enhance the performance of solar still by integrating it with a greenhouse. Due to 

this augmentation, the distiller unit has yielded 4.03–5.20 m3/day. 

Predictive and forecasting models give a new dimension to the research and development of novel solar still 

designs by acting as a pivot upon which future design projects can be built. The outcome of these models will help 

in giving an initial guess of distillate output before actual experiments can be performed on the site. This will 

strengthen the planning, design, and execution of actual experiments and save a lot of effort and money. In this 

regard, different heat and mass transfer based distillate predictive models have been proposed by several 

researchers. Dunkle [17] was the first to give a semi-empirical model to predict the distillate output from a 

conventional solar still. But his model is restricted to a mean and operating temperature range of 50 and 17ºC, 

respectively. Based on the indoor simulations, Clark [18] corrected Dunkle’s model by giving a new value of the 

coefficients (C and n), and his model can predict up to a range of 55ºC. Kiatsiriroat [19] followed an entirely 
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different approach to tackle the problem of distillate prediction; instead of going from heat transfer, he modified 

Spalding's mass transfer theory and gave a new distillate prediction model based on mass transfer. Working on 

the initial assumptions of Dunkle, Tsilingiris [20, 21] proposed a modified Dunkle model to predict the distillate 

output. He used the Chilton-Colburn analogy to arrive at the modified model with an operating range of more 

than 55 ºC. The prime drawback of these forecasting techniques is the complex maths involved on the one hand 

and the requirement of rigorous calculations on the other.  

Moreover, the distillate predicted by these models is sometimes unrealistic, as mentioned by Dumka and 

Mishra [8]. They have shown that Dunkle, Clark, and Spalding’s mass transfer theory predicts the distillate output 

59.8%, 165.2%, and 50% higher than the experimental results, respectively. Here comes the importance of the 

Artificial Neural Network (ANN), which is capable of predicting the distillate output from CSS easily, and the results 

thus obtained are also promising and reliable as compared to other heat transfer based models [22]. The 

thermodynamic modeling of complex and ill-posed problems is very difficult, but a trained ANN model can easily 

handle such problems [23, 24]. It doesn’t matter much to a robust ANN model that the problem is linear or non-

linear; moreover, its prediction speed is very fast. The ANN, its architecture, and its application in the field of 

renewable energy have been explained in great depth by Kalogirou [25]. 

Gao et al. [23] have proposed an ANN model to model seawater desalination. They have taken the dry and wet 

bulb temperature of the air, the sprinkler temperature of seawater, and the inlet and outlet cooling water 

temperature as the input variables and the distillate yield as the output. They have reported a high degree of 

prediction accuracy of the developed ANN model. A Competition Algorithm-based ANN model to predict the 

distillate output, exergy efficiency, and energy efficiency of a CSS has been reported by Nazari et al. [26]. They have 

observed that a hidden neuron number of five gives the best performance. Sohani et al. [27] have compared the 

different types of ANN models (Feed-Forward, Radial Basis, and Back Propagation) to predict the hourly yield from 

a solar distiller unit. They have observed that the ANN model based on a Radial basis gives the best result 

compared to the others as it shows the highest value of coefficients of determination, viz. 0.977057. With an 

objective to know the minimum inputs to predict the solar still output (distillate), Santos et al. [28] have proposed 

an ANN model. The model they have reported has been in good agreement with the experimental results. Dumka 

et al. [22] have proposed an ANN model to predict the performance of solar stills augmented with jute-covered 

plastic balls and compared the results with the experimental data. They have reported that the results are very 

close to the experimental data with less than 5% error. Chauhan et al. [29] have proposed a neural network model 

to predict the distillate output of solar earth still.  

To find the best algorithm for predicting the distillate from a solar still under the influence of a hyper-arid 

environment, Ahmed et al. [30] have performed a comparative study on Resilient backpropagation, Levenberg-

Marquardt (LM), and conjugate gradient backpropagation with Fletcher-Reeves restart algorithms. They have 

reported that out of all the algorithms, the physics of the problem is captured well by the LM algorithm. Mashaly 

and Alazba [31, 32] have utilized an ANN technique to predict the solar still distillate, which uses agricultural drains 

as feed water. Hidouri et al. [33] have developed an ANN model to predict the distillate output of a novel single 

slope hybrid solar still integrated with a heat pump (SSDHP). Moreover, they have also provided a way to initially 

guess the number of hidden layers and neurons to start the ANN simulation. To predict the thermo-physical 

properties of moist air within the CSS, Chauhan et al. [34] have reported an ANN model based on the LM 

algorithm. They have compared the ANN result with analytical results and have reported that the LM algorithm 

predicts the properties with a confidence level of more than 95%. 

Modified solar still integrated with ferrite ring magnets and sand-filled cotton bags have been reported by 

Dumka et al. [35, 36]. They have observed that the magnets have reduced the surface tension of water and have 

acted as sensible energy storage pockets, leading to an increase in the distillate output of modified still compared 

to the conventional solar still. At the same time, the sand-filled cotton bags will enhance the evaporation area and 

nocturnal distillate output by storing sensible energy. They have used heat and mass transfer models to predict 

the distillate output of still, but the theoretical results were not very close to the experimental results due to the 

complex non-linear nature of the problem. The literature has already mentioned that ANN is capable of modeling 

very complex non-linear problems well. Therefore, the objective of the current research is to design and develop 

artificial neural network models to predict the distillate output of modified stills augmented with the permanent 
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ferried ring magnets (16 in number) and sand-filled cotton bags (100 in number) and develop ANN Model based 

on the LM algorithm is reported in this manuscript. 

2. Experimental Setup 

For experimentation, three identical single basin single slope conventional solar (CSS) were designed and 

fabricated for the experimental analysis. Fabricated solar stills are made with the help of 5 mm thick fiber 

reinforced plastic (FRP) material with a 1 m2 basin area and longer and shorter wall heights of 0.48 and 0.2 m, 

respectively. For increasing the absorptivity of solar radiations, the stills were painted black from the inside. The 

condensing cover comprises an iron transparent glass of 4 mm thickness, inclined at an angle of 15.5º with the 

horizontal. For carrying basin water black painted GI tray is placed in the still. Fig. 1 shows the schematic 

representation of CSS. 

 

Figure 1: Schematic representation of CSS. 

One CSS is kept as such, whereas modifications were done in the other two stills. In one of the stills, 100 sand-

filled cotton bags were placed of 4 cm internal diameter and 12 cm height each. A total of 20 kg of sand (of 40 

GFN) was filled in the bag up to the height of 11 cm, and the remaining 1 cm was filled with charcoal for the better 

absorption of incident solar radiations. In the manuscript, the still is named as MSS-1 (Modified solar still -1). The 

schematic of MSS-1 is shown in Fig. 2. 

 

Figure 2: Schematic representation of solar still augmented with the sandbag (MSS-1). 

In the other CSS, 16 permanent ferrite ring magnets were placed at equal distances, resulting in effective 

magnetic field strength of 90 mT. The internal diameter, external diameter, and thickness of magnets are 3.2, 6.0, 

and 0.93 cm, respectively. This still is called MSS-2 (Modified solar still -2) in this manuscript. The schematic of 

MSS-2 is shown in Fig. 3. 
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Figure 3: Schematic representation of the solar still augmented with the ferrite ring permanent magnet (MSS-2). 

The placement and arrangement of sandbags and magnets are shown in Fig. 4a and 4b, respectively. The 

actual photograph of MSS-1 and MSS-2 is shown in Fig. 5. 

  

(a) Sandbags in MSS-1 (b) Magnets in MSS-2 

 

Figure 4: Schematic representation of sandbags and magnets within the solar stills. 

 

  

(a) MSS-1 (b) MSS-2 

 

Figure 5: Actual photograph of MSS-1 and MSS-2. 
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For the measurement of different temperatures, K-type thermocouples (K 7/32-2C-TEF) have been used, 

whereas the DTC324A-2 is used as a temperature indicator. For the measurement of solar radiation intensity, LX-

107 has been used. Digital Gaussmeter (OMEGA) has been used to measure magnetic field strength. The distillate 

output is measured with the help of a Borosil graduated cylinder. The accuracy and range of different types of 

equipment are tabulated in Table 1. The standard uncertainties are evaluated by considering linear variation in the 

data, and for that matter, it is considered to be 𝑎/√3 where a is the accuracy of the instrument [37, 38]. 

Table 1: Instrument details. 

Instrument  Accuracy  Range Standard Uncertainties 

Solar power meter  ±10 W/m2  0–2000 W/m2 5.77 W/m2 

Thermocouple  ±0.1°C  −100–500°C 0.06°C 

Graduated cylinder  ±1 ml  0–250 ml 0.6 ml 

Gauss meter  ±1 G  0–2000 G 0.6 G 

 

3. ANN Fundamentals 

The human brain is the source of inspiration behind neural networks. The idea behind the neural network is to 

mimic human thinking capability viz. neurons [37] numerically. Like the human brain, the basic element of neural 

nets is artificial neurons, which may be why they are called artificial neural networks (ANN) [39, 40]. Fig. 6 shows 

the schematic of an artificial neuron. 

 

Figure 6: Artificial neuron model. 

These neurons are interconnected in a network and interact with other neurons through weights and operate 

in parallel. For neurons to learn, recall, and generalize the data, the fine-tuning of pertinent network parameters is 

done. It is the responsibility of incoming connections to provide the weighted input signal (𝑤𝑖 × 𝑥𝑖) to the neuron. 

All the weighted inputs summed (Σ𝑤𝑖 × 𝑥𝑖) are supplied to an activation function, which returns the final output 

[41]. The activation function used in this article is sigmoid (1/(𝑒−𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 + 1)) which returns output in the range 

of 0 to1 [42]. The term training is given to the process of adjusting weights according to some stipulated algorithm. 

Three basic types of learning mechanisms, viz. supervised, unsupervised, and reinforcement, are used to train the 

network by making subtle network parameter adjustments.  

In supervised learning, the desired and network output are compared, and the difference between them is 

utilized for the network parameter adjustments (viz. 𝑤 and 𝑏). In the case of unsupervised learning, the desired 

output is unknown, so the parameters are adjusted on the basis of input associations. The environmental 

feedback is taken in the case of reinforcement learning that’s why it is similar to the supervised one. These 

feedbacks are responsible for the network parameter adjustments. 
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Feed-forward and feedback are the major classes of ANN. In feed-forward ANN, the network information 

travels from input to output, i.e., unidirectional. The layer in an ANN model depends on the type of problem, i.e., 

one (for simple problem) to multi (for complex problem). For α input nodes, the hidden nodes (M) number in 

multilayer ANN varies between α and α + 1 [33]. 

In this research article, a multilayer perceptron network based on supervised learning has been used, which 

has been trained by using the Backpropagation (BP) algorithm. BP utilizes gradient/steepest descent for error 

function minimization. This algorithm minimizes the error by error functions backward propagation for the 

weights adjustments.  

3.1. Backpropagation Learning Algorithm Based on Levenberg Marquardt (LM) Algorithm 

For obtaining an optimum solution to complex non-linear problems from an ANN model, the Levenberg 

Marquardt (LM) [43] is one of the popular algorithms. This is called a hybrid algorithm, a blend of steepest descent 

and Gauss-Netwon [44]. The LM algorithm does not require the computation of the Hessian matrix for the 

updation of weights, and still, it approaches second-order training speed [45]. Hence, it is an efficient method of 

weight updation. In the LM algorithm, the step size reduces as the iteration increases, i.e., the largest step size in 

the first iteration (according to gradient descent) and then gradual reduction (according to Gauss-Newton in 

successive iterations [46]. 

The Hessian matrix (𝐻) and the gradient (𝑔) are evaluated as [46]: 

𝐻 = 𝐽𝑇𝐽 (1) 

𝑔 = 𝐽𝑇𝑒 (2) 

The following update is used to approximate the Hessian matrix by LM algorithm [47, 48]: 

𝑥𝑘+1 = 𝑥𝑘 − (𝐽𝑇 𝐽 + 𝜇 𝐼)−1𝐽𝑇 𝑒 (3) 

The smaller value of 𝜇 corresponds to Gauss-Network, whereas the larger one corresponds to gradient descent. 

Therefore, LM combines both gradient descent and Gauss-Newton and takes their best part by rejecting their 

drawbacks. 

3.2. Performance Evaluation of LM Algorithm 

The performance of the LM algorithm is evaluated based on the below-mentioned parameters[30,49,50]: 

Root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = √∑ (𝑎𝑝,𝑖 − 𝑎𝑜,𝑖)
𝑁

𝑖=1

2

𝑁
 

(4) 

Efficiency coefficient (E): 

𝐸 = 1 −
∑ (𝑎𝑝,𝑖 − 𝑎𝑜,𝑖)

𝑁

𝑖=1

2

∑ (𝑎𝑝,𝑖 − �̅�𝑜)
𝑁

𝑖=1

2  (5) 

The overall index of model performance (OI): 

𝑂𝐼 =
1

2
( 1 −

𝑅𝑀𝑆𝐸

𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛

+ 𝐸) (6) 

Coefficient of residual mass (CRM): 
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𝐶𝑅𝑀 =
∑ 𝑎𝑝,𝑖

𝑁

𝑖=1
− ∑ 𝑎𝑜,𝑖

𝑁

𝑖=1

∑ 𝑎𝑜,𝑖
𝑁

𝑖=1

 (7) 

The RMSE is the efficiency indicator of the ANN model; lower RMSE means better prediction [51]. The perfect fit 

between observed and predicted is given by OI and E values which are 1.0. Over and underprediction of the model 

is dictated by the value of CRM (0 means perfect fit). 

3.3. ANN Model and Methodology Used  

In this research, feed-forward BP ANN consists of 3 layers (viz. 1 input, 1 hidden, and 1 output layer) has been 

used. To train the model LM algorithm has been adopted. The following table depicts the input and output 

variables for CSS, MSS-1, and MSS-2: 

Table 2: ANN’s input and output variables. 

 Input Variable Output Variable 

𝑇𝑤 𝑇𝑐𝑖 𝑇𝑎 𝑇𝑠𝑏 𝐼′ �̇�𝑒𝑤 

CSS       

MSS-1       

MSS-2       

 

ANN with (12,1) neuron numbers has been built, and to train, test, and validate the network, MATLAB (R2019) 

has been used. The schematic of the developed ANN model is shown in Fig. 7. 

 

Figure 7: Developed ANN model. 

4. Observations, Results, and Discussions 

The proposed neural network is trained using the LM algorithm. The variation in gradient error, step size, and 

validation checks are shown in Fig. 8. The gradient error observed in CSS, MSS-1 and MSS-2 is 0.0019497, 

0.0022731, and 0.003229, respectively. At epoch 8, the step size is 1e-05 in CSS and 1e-06 in MSS-1, while the value 

of u in MSS-2 is 1e-05 at epoch 11. The validation checks in all three are 6, and the scattered points show 

increased validation error. With increasing validation error, training stops, and the weights with the lowest error 

are taken as final weights are shown in Fig. 9. 

Fig. 10 shows the mean square error performance observed in CSS, MSS-1, and MSS-2. The best validation 

performance is noticed at epoch 2 in CSS and MSS-1, and MSS-2 gives the best validation performance at epoch 5. 
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(a) CSS 

 

(b) MSS-1 

 

(c) MSS-2 

Figure 8: Gradient error, μ, and validation check variations for CSS, MSS-1, and MSS-2. 
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(a) CSS 

 

(b) MSS-1 

 

(c) MSS-2 

Figure 9: MSE Variation for CSS,MSS-1, and MSS-2. 
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(a) CSS (b) MSS-1 

 

(c) MSS-2 

Figure 10: Regression analysis using LM algorithm in CSS, MSS-1, and MSS-2. 

Regression plots with training, testing, and validation are shown in Fig. 11. The solid line represents the perfect 

correlation between the predicted and targeted values, and the data points are specified using small circles. The 

overall value of the correlation coefficient in CSS, MSS-1, and MSS-2 is 0.98171, 0.9867, and 0.99542, respectively. It 
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is clear that different correlation coefficients clearly reveal the developed model's excellent performance in 

predicting the targeted values perfectly.  

The statistical parameters performance of the LM algorithm for CSS, MSS-1, and MSS-2 are listed in Table 3. 

Table 3: RMSE, E, OI, and CRM values for CSS, MSS-1, and MSS-2. 

 CSS MSS-1 MSS-2 

RMSE 0.0546 0.0462 0.0299 

E 0.9591 0.9711 0.9903 

OI 0.9520 0.9620 0.9795 

CRM -0.0742 0.0114 0.0131 

 

Comparing the statistical parameters for CSS, MSS-1, and MSS-2, the value of RMSE is low, and the value of E 

and OI is high for MSS-2. The value of CRM is negative for CSS, which depicts that the curve is under-fitted. The 

ideal value of CRM is zero, which shows the best fit between predicted and targeted values. From Table 3, it is 

realized that MSS-2 provides the best performance. 

Fig. 11 shows the % error variation for CSS, MSS1, and MSS2 for the proposed ANN model. It has been 

observed that the proposed model predicts the distillate output of different stills with a confidence level of more 

than 95%. 

 

Figure 11: Variation of % error of the ANN with respect to the concerned data set. 

5. Conclusions  

Based on the obtained results from the ANN model and experimental data following conclusions can be 

drawn: 

• Once knowing the input parameters, one can quickly obtain the performance of CSS, MSS-1, and MSS-2 by 

applying the proposed ANN model. 

• The proposed ANN model is giving promising results based on obtained RMSE, E, OI, R2, and CRM values 

for CSS, MSS-1, and MSS-2. 

• The predicted distillate from CSS, MSS-1, and MSS-2 has less than 5% variation compared to the 

experimental data. 

• The developed ANN model based on the LM algorithm will be helpful in forecasting distillate from new 

solar still plants integrated with sandbags and magnets, as it eliminates the requirement of solving 

complex heat and mass transfer equations. 



Artificial Neural Network Model for the Solar Stills Augmented Chauhan et al. 

 

21 

Nomenclatures 

𝑎𝑝,𝑖  Predicted value 

𝑎𝑜,𝑖  Observed value 

�̅�𝑜  Average observed value 

𝑎𝑚𝑎𝑥  Maximum observed value 

𝑎𝑚𝑖𝑛  Minimum observed value 

b  Bias 

e  Network error vector 

E   Efficiency coefficient 

g  Gradient 

H   Hessian matrix 

I(t)   Incident solar radiation on inclined cover surface (W/m2) 

I’  Identity matrix 

J  Jacobian matrix 

𝐽𝑇  Transpose of Jacobian matrix 

m ew  Distillate output (ml) 

N  No of samples 

R  Correlation coefficient 

R2  Coefficient of determination 

Ta  Ambient temperature (ºC) 

Tci  Inner glass cover temperature (ºC) 

Tsb  Sand bag temperature (ºC) 

Tw  Temperature of water surface (ºC) 

𝑤𝑖   Weight 

𝑥𝑖  Input variable 

Greek Letter 

𝜇  Damping factor 

Abbreviations  

ANN  Artificial neural network 

CRM  Coefficient of residual mass 

CSS   Conventional solar still 

FRP  Fiber reinforced plastic 

LM   Levenberg Marquardt 

MSSIE  Modified solar still integrated with sand bed earth 

OI   Overall index of model performance 

RMSE  Root mean square error 
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