
SUPPORTING INFORMATION  

S1. Experimental Data Acquisition 

The water vapor flux and salt rejection data used for training the machine learning (ML) models 

was obtained from the 36 h membrane distillation (MD) operation. The membrane distillation was 

enabled by three different flat sheet membranes labelled PVDF, CNF/PVDF, and Cu+CNF/PVDF. The 

membranes were fabricated using the phase separation technique. The thickness of the membranes 

was maintained at 50±5 𝜇m. The fabricated membranes performance was tested using a custom 

designed membrane distillation module with an active membrane area of 4 cm2. The feed containing 

3.5 wt% NaCl solution was maintained at 70°C and the permeate was deionized water maintained at 

20°C. The feed and the permeate were separated inside the MD module using the fabricated 

hydrophobic membranes. The weight of the permeate overflow and conductivity was collected real 

time for the duration of the experiment using a weigh scale and conductivity meter respectively. This 

real time data was used to calulate the water vapor flux and salt rejection rate. 

S2. Non-stationary Behavior of MD Experimental Data 

The Cu+CNF/PVDF water vapor flux data obtained from MD experiments is shown in Fig S1 as an 

example to demonstrate the non-stationarity of the data being trained for statistical forecasting. 

Augmented Dickey-Fuller (ADF) was adopted to examine the stationarity using null and alternative 

hypothesis. Null hypothesis, wherein, water and salt flux time series (TS) data were assumed non-

stationary (α=1) while alternate hypothesis assumed data to be stationary in accordance to the 

equation: 

𝑌𝑡 = 𝐶 + β𝑡 + 𝑎𝑌𝑡−1 + 𝜙𝛥𝑌𝑡−1 + 𝜙2𝛥𝑌𝑡−2….. + 𝜙𝑝𝛥𝑌𝑡−𝑝….. + 𝑒𝑡                        (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1)  

where 𝑌𝑡 , is the value of the TS  at time t, α is a constant, β is the coefficient on a time trend and p is 

the lag order of α. Based on the resultant p values  that were lower than the leading to elimination of 

the null hypothesis, the data series were inferred to be stationary. Table S1 reports the results of the 

Augmented Dickey Fuller Test (ADF Test) and computed p-values that were greater than the 

significance level (>=0.05) leading to non-stationarity.  

 

Figure S1: Non-stationary behavior of water vapor flux data obtained from Cu+CNF/PVDF MD experiments and 

collected for 36 hours. 



Table S1: Summary of ADF test parameters for water vapor flux and salt rejection of Cu+CNF/PVDF 

membrane. 

Test Parameters Value 

ADF test statistics 
Vapor flux 3.19 

Salt rejection -0.57 

P-value 
Vapor flux 1 

Salt rejection 0.87 

#Lags used 
Vapor flux 17 

Salt rejection 13 

Stationary 
Vapor flux No 

Salt rejection No 

 

S3. Statistical Forecasting: Autoregressive Integrated Moving Average Model 

An ARIMA (p, d, f) model was then built to convert the data to stationary by defining autoregressive 

(AR) represented as p, moving average (MA) denoted by q and the number of times of differencing, d 

performed for water vapor flux and salt rejection data. ARIMA model was implemented using (Seabold 

and Perktold 2010) and Auto_arima in Python library to obtain an optimal size of ARIMA. Table S2 

summarizes ARIMA model parameters (p,d,f) and the resultant error metrics based on probabilistic 

statistical measures: Akaike information criterion (AIC) (Bozdogan 1987) and the Bayesian information 

criterion (BIC) for  method scoring and model selection.  The lower AIC BIC value indicates a better fit. 

The log-likelihood value is a simpler representation of the maximum likelihood estimation. 

Table S2:  Optimal ARIMA parameters (p, d, f.) for training water vapor flux and salt rejection data. 

Target 
Cu+CNF/PVDF 

Vapor Flux Salt Rejection 

ARIMA (3,2,1) (3,2,1) 

Log likelihood 33.68 2775.39 

AIC -53.36 -5538.70 

BIC -24.86 -5514.33 

 

S3.1 Akaike Information Criterion (AIC) and size of ARIMA  

The “size” of an ARIMA model referred to by the order of its components: AR (autoregressive), I 

(integrated), and MA (moving average) or ARIMA(p, d, q) are enlisted in Table S3. Where, p  specifies 

the number of lags; d, the degree of differencing; and q, the order of the moving average part. This is 

the number of lagged forecast errors that are used to predict the future values. These were calculated 

fitting AIC model to compare the fit of ARIMA model as summarized in Table S3. As observed, AIC can 

be positive or negative. The negative AIC value obtained for all salt rejection rates simply means that 

the likelihood of the model is greater than 1 which happen when the number of data points is much 

larger than the number of parameters in the model. The absolute value of the AIC are insignificant, 

but the lower AIC values are desirable for the better fitting model, and therefore, ARIMA is not suited 

for this study. 



Table S3: Different size of ARIMA and the AIC error associated with ARIMA model. 

Quantity ARIMA AIC 

Vapor flux 

(1,0,1) 535.01 

(2,0,1) 272.86 

(3,0,2) 109.42 

(2,0,2) 58.30 

(1,0,2) 394.81 

(1,0,3) 106.56 

Salt rejection 

(1,1,1) -4999.80 

(0,1,0) -5300.03 

(1,1,0) -5317.36 

(3,1,2) -4692.67 

(2,1,2) -5400.91 

(3,1,1) -5533.40 

 

S4. Statistical Forecasting: Exponential Smoothing (ES) 

Additionally, a triple Exponential Smoothing comprising: value, trend, and seasonality components 

was also tested based on Overall, Trend and Seasonal smoothing represented by following 

correlations: 

𝑠𝑡 =  𝑎 
𝑦𝑡

𝐼𝑡−𝐿

+ (1 − 𝑎)(𝑠𝑡−1 + 𝑏𝑡−1)                                 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑆2) 

𝑏𝑡 =  𝛾(𝑠𝑡 − 𝑠𝑡−1) + (1 − 𝛾)𝑏𝑡−1
                                         (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑆3) 

𝐼𝑡 = β 
𝑦𝑡

𝑆𝑡

 + (1 − 𝐵)𝐼𝑡−𝐿
                                                           (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑆4) 

Where, y is the observation, L is the period, s is the smoothed observation, b corresponding to 

trend factor. I and t represent the seasonal and time indices respectively Additionally, α, β, γ are the 

parameters that need to be determined through estimation. Fig 2b shows the comparison between 

the water vapor flux test data of Cu+CNF membrane and water vapor flux obtained by tuning α, β, and 

γ. The closest prediction to test data was with α and β equal to 0.3 and γ equal to 0.5.  

Grid search technique was used to compute Mean Absolute Error (MAE) to measure the average 

magnitude of the errors in a set of forecasts without considering their direction. Three  parameters 

were used to quantify the exponential smoothing. α determined the level of  smoothing coefficient, 

whereas β represents the smoothing coefficient trend, and γ represents the seasonal smoothing 

coefficient by adjusting repeating patterns, of the time series data. The lowest values obtained for all 

three parameters and MAE confirms the suitability of exponential smoothing for time series 

forecasting studies of water vapor flux and salt rejection data. 

 

 



Table S4: Summary of α, β, and γ parameters used for Exponential Smoothing and resulatant MAE 

Target 
Cu+CNF/PVDF 

α, β, and γ MAE 

Vapor flux 

(0.1, 0.1, 0.1) 0.01 

(0.1, 0.1, 0.7) 0.02 

(0.1, 0.7, 0.1) 0.03 

(0.3, 0.7, 0.1) 0.08 

(0.3, 0.9, 0.1) 0.1 

Salt rejection 

(0.1, 0.7, 0.1) 0.01 

(0.3, 0.9, 0.9) 0.03 

(0.7, 0.7, 0.5) 0.1 

 

S5. Outliers in MD experimental data 

Time-series data mostly contains outliers due to the influence of unusual and non-repetitive 

events. The impact of these outliers can be significant which can cause the reduction of the predictions 

accuracy, or bias in our models(Chen and Liu 1993). In order to study the significance of outlier’s data 

points in this study, we used a method called Z testing. The Z-score is a statistical measurement that 

describes a value’s relationship to the mean of a group of values. It is measured in terms of standard 

deviations from the mean. Z score can be formulated as follow:  

𝑍 =
𝑋 −  𝜇

𝜎
                                                     (equation 𝑆5) 

where X indicates our experimental value, μ is the mean and σ stands for Standard Deviation. If a Z-

score is 0, it indicates that the data point’s score is identical to the mean score. A Z-score of 1.0 would 

indicate a value that is one standard deviation from the mean. Z-scores may be positive or negative, 

with a positive value indicating the score is above the mean and a negative score indicating it is below 

the mean. The Z-score is being used to identify outliers in the dataset. If a data point has a Z-score 

that is too high (for example, greater than 3 or -3 in absolute value), it could be considered an outlier 

because it is too far from the mean compared to the other data points (Aggarwal, Gupta et al. 2019). 

The Z-scores for water vapor flux and salt rejection experimental data is shown in figure S2 

demonstrates the deviation of experimental observations from the most likely outcome, the mean. 

Based on the Z-scores the impact on accuracy is low due to the low number of outliers observed in 

the experimental data. 



 

Figure S2: Outlier (Red) identification based on Z-scores for water vapor flux and salt rejection dataset of 

Cu+CNF/PVDF membrane used for training the time series models. 
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