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Thermal Convexity of Tubular Heat Exchangers in Steady State 
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Abstract: This paper deals with the thermal convexity of heat exchangers in steady state: (Th,c(x)=γh,c(x)Tc,in+(1-
 γh,c(x))Th,in with 0 ≤ γh,c(x) ≤ 1). This method assesses the spatial distribution of the thermal convexity factors of both fluids 
along a tubular heat exchanger in counter-current flow and co-current flow arrangement. Analytical expressions of the 
thermal convexity coefficients are in exponential form. According to the flow configuration two linear functions are 
proposed for the hot and the cold fluid. The slope of these two functions corresponds to the exponential factor. The 
estimations of the exponential factor thanks to the steady state convexity coefficient profile provide results that are in 
good agreement with those obtained from correlations. 
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1. INTRODUCTION 

Heat exchangers are widely used in all kinds of 
industries to control heat transfer and or thermal 
equipment temperature. They are most often 
connected to other equipment that can cause changes 
in parameters such as inlet temperatures and mass 
flow rates. Generally, heat exchangers design is based 
on the calculation of their characteristics in steady 
state. In the open literature, the steady state solutions 
are commonly based on global heat transfer coefficient 
(Kakaç and Liu [1]; Shah [2], Serth [3]). As explained 
by Claesson [4], the Logarithmic Mean Temperature 
Difference (LTMD) method is simple to use when the 
inlet temperatures are known and the outlet 
temperatures are specified. A Modified LMTD method 
has been recently proposed to study indirect 
evaporative heat exchangers (Cui et al. [5]). If the 
outlet temperatures are unknown, the effectiveness- 
Number of Transfer Unit (ε-NTU) method should be 
used (Noie [6]; Ranong and Roetzel [7]). This method 
is based on calculation of the maximum possible heat 
transfer rate and the number of transfer units. Fakheri 
[8, 9] proposed a simplified concept based on the 
efficiency of heat exchangers obtained from a single 
algebraic expression. These methods give a global 
approach for heat exchangers analysis. The spatial 
temperature distribution is required in some 
applications, particularly when local temperature 
calculation is necessary for safety analysis. In this 
case, the usual techniques are not sufficient to analyze 
this kind of assessment of this thermal equipment. 
Indeed, the spatial temperature distribution can be 
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useful for thermal analysis of such a device. In this 
sense, a modelling approach with partial differential 
equations is needed. In this paper, a new steady state 
method based on the thermal convexity property of 
heat exchangers is presented. This method is based on 
the assessment of the steady state thermal convexity 
coefficients for both fluids along a tubular heat 
exchanger. Analytical expressions of the convexity 
coefficients for both fluids are presented. Validation of 
these expressions with experimental results is also 
illustrated. The exponential factor, strongly dependent 
of convective heat transfer coefficients of both fluids, is 
obtainable from the best fitting of two proposed 
functions according to the flow axis. It is also 
obtainable from the outlets convexity coefficients. This 
alternative method represents the linear link between 
the outlet temperatures and the inlet temperatures and 
the nonlinear relation to the flow rates through the 
thermal convexity coefficients. 

2. DESCRIPTION AND FORMULATION 

2.1. Experimental Device and Description 

In order to characterise the spatial distribution of the 
steady state convexity coefficients of the two fluids, the 
experimental device is sufficiently instrumented.  
Figure 1 shows the experimental set-up used to 
validate the theoretical results. Temperature probes are 
alternatively placed along the insulated tubular heat 
exchanger and are spaced of 0.36 m for both fluids. 
The sensors are connected to a data acquisition card 
inserted in a computer that allows the recording of the 
temperatures along the heat exchanger. The inner tube 
is in copper and the outer one is in steel. The physical 
and geometrical characteristics of the tubes are report-
ed on Table 1. The two streams are water-water flow.  
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2.2. Assumptions and Modelling 

The mathematical model used in this study is 
proposed by Patankar et al. [10]. The assumptions 
made in our case are: 

- Fluids are in turbulent flow 

- Heat conduction along the flow axis is neglected 

- Fluids are incompressible and single phased 

- Thermo physical properties of the fluids are 
assumed to be constant 

- Separating wall is assumed to be isothermal 
along the radial axis. The Biot numbers of both 

sides, Bi
h,c
=

h
h,c

 a

k
w

, corresponding to 

experimental conditions are lower than 0.01  
(hh,c < 5000 W.m-2.K-1). 

In order to obtain the equations that govern the 
thermal behaviour, the heat exchanger is subdivided in 
several elementary volumes with a length of dx as 
indicated on Figure 2. While crossing elementary 
volume, the hot fluid transfers heat to the wall by the 
convection. This contributes to the reduction in its 
outlet enthalpy and internal stored thermal energy. 
Energy balance applied to a differential volume of hot 

fluid leads to the first equation of system (1) after 
simplification and rearrangement. Similar energy 
balance applied to the cold fluid and the separating wall 
gives the second and the third equations of system (1). 

 
Figure 2: Elementary energy balance taking into account 
convective heat transfer.  
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The ±  expresses the co-current or counter current 
flow.  

 
Figure 1: Experimental set up. 

 

Table 1: Physical and Geometrical Characteristics of Inner and Outer Tubes 

 k 
[W.m-1.K-1] 

Cp 
[J.kg-1.K-1] 

ρ  
[kg.m-3] 

D  
[m] 

a 
[m] 

L 
[m] 

Inner tube 384 394 8900 2 10-2 10-3 4.5 

Outer tube 45 490 7850 4 10-2 3 10-3 4.5 
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Let us define the following parameters: 

- Dimensionless axial position 

x
*
 =  x / L            (2) 

- Thermal rate ratio 

 

C
*
 =  

!mh  Cph

!mc  Cpc

           (3) 

 

Nh  =  
hh  Ah

!mh  Cph

           (4) 

 

Nc  =  
hc  Ac

!mc  Cpc

           (5) 

Using the above parameters, system (1) can be 
rewritten in the following form: 

± 
d T

h
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h
(x)( )   =  0

 
d T

c

d x*
 +  N

c
 T

w
(x)!T

c
(x)( )  =  0

C
*
 N

h
 T

h
(x)!T

w
(x)( )   +  N

c
 T

c
(x)!T

w
(x)( )  =  0

"

#

$
$
$

%

$
$
$

  (6) 

The heat exchanger is subject to the following 
boundary conditions: 

• In counter-current flow configuration: 

T
h
(x

*
= 1) =  T

h,in

T
c
(x

*
= 0) =  T

c,in

!

"
#

$#
          (7) 

• In co-current flow configuration: 

T
h
(x

*
= 0) =  T

h,in

T
c
(x

*
= 0) =  T

c,in

!

"
#

$#
          (8) 

Th,in and Tc,in are the inlet temperatures of the hot and 
the cold fluids respectively. 

In this formulation, the groups Nh and Nc are very 
similar to the number of transfer units used in the 
steady-state NTU method (Kakaç and Liu [1]; 
Rohsenow et al. [11]. The NTU is linked to the global 
heat transfer while Nh and Nc depend on the convective 
heat transfer coefficients. 

Determination of the convective heat transfer 
coefficients hh and hc constitutes an important point of 
this model. These coefficients can be assessed in two 
ways. The first one consists in determining the best fit 

between the experimental and theoretical steady state 
results according to the good values of hh and the hc. 
The second one corresponds to the use of the Nusselt 
number correlations that are linked to the heat transfer 
coefficients. 

3. THERMAL CONVEXITY PROPERTY 

Heat transfer follows the conservation law of energy 
and mass. Let us consider for instance the single 
phase mixing of two identical fluids with different flow 
rates and temperatures as depicted in Figure 3. The 
following relations could be then obtained:  

 
Figure 3: Mixing of two fluids. 
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 +  !m
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T
out
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where the thermal convexity coefficient is:  

 

!  =   
1

1  +   
!m

c

!m
h

        (11) 

with: 0 ! " !  1          (12) 

The relation (12) is valid for any values of the flow 
rates. γ depends on the flow rates through a non linear 
(hyperbolic) function and T depends linearly on 
temperatures Th,in and Tc,in. The outlet temperature is 
convex with regard to the inlet temperatures as long as 
the relation (12) is valid. 

Let us now consider the heat transfer from a fluid 
through a surface A with a flow rate  !m . U is the global 
heat transfer coefficient. Its inlet and outlet temperature 
are respectively Th,in and Th,out. The other side is 
assumed to be at uniform temperature Tc. The classical 
"one compartment" representation (Incopera and 
DeWitt [12]; Kays and London [13]) gives: 

U A (Tc – Th,out) + m
.

 Cp (Th,in – Th,out) = 0      (13) 
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Equations (13) can be rearranged in the following form: 

Th,out  = γ Th,in + ( 1 - γ ) Tc       (14) 

Where the thermal convexity coefficient is given as: 

!  =   
1

1 +  NTU
,  with 0 ! "  !  1       (15) 

Figure 4 shows the variation of the convexity 
coefficient as function of the number of transfer units 
NTU. 

 
Figure 4: Thermal convexity coefficient of one classical 
compartment heat transfer as function of the number of 
transfer units. 

A similar structure to describe the heat exchangers 
is also possible. Indeed, the exact steady state 
solutions of the system of equations (6) are obtained, 
after rearrangement, by the following expressions: 
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The thermal convexity coefficients of the hot and 
cold fluid are given as follows:  

• In counter-current flow configuration: 
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The exponential factor is given the expression: 

!
1
  =  N C

*
 -  1( )          (19) 

• In co-current flow configuration: 
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The exponential factor is given as follows: 

!
2
  =  N C

*
 +  1( )          (22) 

The parameter N is defined with the same expression 
for both co-current and counter-current configuration 
and is given as follows: 

N =   
N

h
 N

c

N
c
 +  N

h
C

*
         (23) 

It is worth noting that, the thermal convexity property is 
valid for each position along the heat exchanger. 
( 0 ! "

h
(x

*
) !  1  and 0 ! "

c
(x

*
) !  1 ) These relations 

show the influence of the convective heat transfer 
coefficients on the thermal convexity coefficient 
profiles. They appear through the dimensionless 
groups Nh and Nc. The best fit of experimental results 
in steady state enables a good estimation of the 
exponential factor but cannot give separately Nh and 
Nc. One way to distinguish the heat transfer 
coefficients is the use of correlation for the hot fluid 
flowing in the inner tube, what makes it possible to 
extract the hh and to thereafter deduce the hc from the 
exponential factor. In this case, the modified Colburn 
correlation widely used in the literature for circular 
ducts was given by Sieder and Tate [14] as follows:  

Nuh = ,,h-h.,D-i.-,k-h.. = 0.027, 
Re-h-4/5., Pr-h-1/3.,,,µ-,µ-...-0.14. 

(24) 

where µ / µw is the ratio of dynamic viscosity at the flow 
center and at the wall proximity. The Reynolds number 
Reh of the hot fluid is given by the following expression: 

  

Re
h
 =  

4 !m
h

!  D
i
 µ  

         (25) 

The Prandtl number Prh is widely tabulated in the 
literature for different liquids.  

Many correlations exist in the literature for the 
circular and annular ducts (Jacob [15]). As mentioned 
before, the modified Colburn correlation for the circular-
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ducts is usually employed in the literature while for the 
annular ducts, other kind of correlations are 
investigated. Kawamura [16] proposed two 
correlations for turbulent annular flow according to 
the radius ratio (r* = re/ri). The first one concerning 
the radius of maximum velocity rm is used in the 
second treating the Nusselt number Nu. These 
relations are: 

r
m
= r

m! + r
ml
" r

m!( )
2300

Re
c

#
$%

&
'(

0.8

       (26) 

where rml is the radius of maximum velocity in laminar 
flow: 

r
ml
=

r
*

2

!1

2 ln(r
*
)

         (27) 

rm∞ is the radius of maximum velocity for fully 
developed turbulent annular flow and is expressed as: 

r
m!

=
r
*
n

+ r
*

r
*
n

+1

          (28) 

The empirical constant n is n = 0.415. 

The second correlation corresponding to the Nusselt 
number is given by: 

 
Nu

c
= 0.022 !

i
Re

c

0.8
Pr

c

0.5        (29) 

where ϕi is given by the following expression: 

! =
r
m

2
"1

r
*
2

"1
         (30) 

This accommodation factor ϕi represents the ratio of 
the shear stress on the inner wall to the average shear 
stress on the inner and outer walls. 

4. RESULTS AND DISCUSSION 

In this section, the thermal convexity coefficients 
calculation is given for both fluids in several 
configurations. 

4.1. Counter-Current Configuration 

Figure 5 illustrates the convexity coefficients of 
tubular heat exchangers in counter-current flow 
configuration for different values of C* with N = 1. 
Figure 5a relates to the hot fluid and Figure 5b 
corresponds to the cold fluid. The thermal convexity 
coefficients increase with the thermal rate ratio. The 
singularity appears when C* = 1. In this case, the 
thermal convexity coefficients are linear according to 
the axial position along the heat exchanger. When C* 
tends towards very high values (C* >> 1), the convexity 
coefficient of the hot fluid tends uniformly towards 1 
along the heat exchanger. The hot fluid enters with the 
inlet temperature and remains at this temperature 
almost along the exchanger of heat. The convexity 
coefficient of cold fluid attains its maximum profile. 
When C* >> 1, the thermal convexity coefficients 
become: 

!
h
(x

*
) "   1

!
c
(x

*
) "   1  #   e

#N
c

  x
*

$
%
&

'&
       (31) 

On the other hand, when C* << 1, the convexity 
coefficient of the cold fluid tends towards 0. So the 
temperature of the cold fluid is quasi constant along the 
heat exchanger. The convexity coefficients can be 
approximated by the following expressions: 

 
           (a)            (b) 
Figure 5: Thermal convexity coefficient along counter-current tubular heat exchanger for different values of thermal rate ratio 
with N = 1. (a) Hot fluid – (b) Cold fluid. 
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Figure 6 shows the heat exchanger thermal 
convexity coefficients for different values of C* with N=10. 
The curves of Figure 6a relate to the hot fluid and the 
curves of Figure 6b correspond to the cold fluid. The 
convexity coefficient seems to be more sensitive to the 
variation of the thermal rate ratio when N increases. 
The assessment of the heat exchangers convexity 
coefficients gives the exponential factor, which is linked 
to the convective heat transfer coefficients. For that, we 
define in the present paper two linear functions 
extracted from the steady state convexity coefficients: 
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h
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  +  1
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The slopes of Γh and Γc as function of x* correspond 
precisely to the exponential factor α1 given in relation 
(19). The steady state best fit of the linear functions 
(33) and (34) with experimental results gives the 
exponential factor α1. The results obtained by this 
method are compared with those deduced from the 
correlations discussed in the previous section. Figure 
7a shows an example of experimental Γh along the heat 
exchanger for the hot fluid. Figure 7b corresponds to 
the cold fluid. The best linear fitting with the 
experimental points of Γh and Γc allows the evaluation 
of the slopes, which correspond to α1. Results obtained 
by this method and those deduced from correlations 

 
          (a)              (b) 
Figure 6: Thermal convexity coefficient along counter-current tubular heat exchanger for different values of thermal rate ratio 
with N = 10. (a) Hot fluid – (b) Cold fluid. 

 

 
          (a)               (b) 

Figure 7: Experimental Γ as a function of x* with its linear fitting. (a) Hot fluid. (b) Cold fluid. 
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presented previously are shown in Table 2. The 
convective heat transfer coefficients obtained from the 
correlations are in agreement with those extracted from 
the best fit. Figure 8a shows the agreement between 
the experimental and theoretical thermal convexity 
coefficient of the hot fluid along the tubular heat 
exchanger in steady state. Also, the agreement is 
illustrated on Figure 8b for the cold fluid.  

It is important to note that in the industrial 
applications of the heat exchangers, measurements of 
the temperatures are usually taken only at the inlets 

and the outlets. In this case, the experimental 
exponential factor α1 can be extracted from the 
following expression: 

!
1
  =  - ln

1 - C
*

1 "  #
h,out( )$% &'  #

h,out
 +  C

* #
h,out

 "  #
c,out( )$% &'

C
*#

h,out

2

(
)
*

+*

,
-
*

.*
 (35) 

The expression (35) corresponds to an average 
value of α1 deduced from the measured steady state 
outlet thermal convexity coefficients of the hot and cold 
fluids. 

Table 2: Exponential Factor Extracted from Linear Fitting and Correlations 

Linear Fitting Correlations 

C* αh αc α1  Nh Nc N α Δα1/α1 

0.162 0.94 0.86 0.90 1.52 0.53 1.038 0.89 1.1 % 

 

 
          (a)              (b) 

Figure 8: Experimental and theoretical steady state thermal convexity coefficient along the heat exchanger. (a) Hot fluid. (b) 
Cold fluid. 

 
    (a)        (b) 

Figure 9: Thermal convexity coefficient along co-current tubular heat exchanger for different values of thermal rate ratio with  
N = 1. (a) Hot fluid – (b) Cold fluid. 



Thermal Convexity of Tubular Heat Exchangers in Steady State Journal of Advanced Thermal Science Research, 2015, Vol. 2, No. 2      61 

4.2. Co-Current Configuration 

In the same way as the counter-current 
configuration, Figure 9 shows the steady state 
convexity coefficients along the heat exchanger in the 
co-current flow configuration with N = 1. The curves (a) 
of this Figure are relative to the hot fluid and the curves 
(b) correspond to the cold fluid. The convexity 
coefficients of the hot and cold fluids increase 
according the thermal rate ratio. When C* attains high 
values, the convexity coefficient of the hot fluid tends to 
1. The convexity coefficient of the cold fluid takes the 
following expression: 
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$
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&
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When C* is negligible, the convexity coefficient of the 
cold fluid tends to 0 and that of the hot fluid tends 
towards a limiting profile. The expressions of the 
convexity coefficients can be approximated by: 
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Figure 10 illustrates the steady state convexity 
coefficients along the heat exchanger with N = 10. 
When N increases, the span of the convexity coefficient 
increases. 

The same analysis for determination of the 
exponential factor can be applied to co-current 
configuration by defining the two following linear 
functions: 
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The slopes of the linear functions (38) and (39) 
represent the exponential factor when the heat 
exchanger is in co-current configuration. 

When the only outlets convexity coefficients are 
accessible, the experimental exponential factor α 2 can 
be extracted from the following expression: 
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*( )  " h,out
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It is worth noting that this steady state method gives 
an alternative approach to the well known procedures 
for sizing and rating heat exchangers in industrial 
applications like ε-NTU and LMTD methods. It is based 
on the average convective heat transfer coefficients of 
both sides while the other methods are based on the 
overall heat transfer coefficient. The thermal convexity 
property shows the linear relation between the inlet and 
outlet temperatures and the nonlinear link to the flow 
rates through the thermal convexity coefficients. It 
represents a convenient steady state formulation for 
the heat exchanger networks analysis and optimization. 
Note that this method can be extended to other kinds of 
heat exchangers by introducing the Fin Analogy 
number well defined in the open literature for the 
practical use for all common multipass, shell-and-tube 
and cross flow heat exchangers. 

     
           (a)            (b)  
Figure 10: Thermal convexity coefficient along co-current tubular heat exchanger for different values of thermal rate ratio with  
N = 10. (a) Hot fluid – (b) Cold fluid. 



62     Journal of Advanced Thermal Science Research, 2015, Vol. 2, No. 2 Abdelghani-Idrissi et al. 

5. CONCLUSION 

In this paper, a new steady state formulation 
introducing thermal convexity coefficients of the heat 
exchangers is presented. This method assesses the 
spatial profile of the thermal convexity coefficients 
along the tubular heat exchanger in counter-current 
flow and co-current flow. Two linear functions 
corresponding to the hot and cold fluids are proposed 
according to the flow configuration. This method, based 
on estimating the exponential factor of steady state 
convexity coefficients profile, is in good agreement with 
those obtained from correlations. Based on the 
average convective heat transfer coefficients, this 
method gives an alternative approach to the well 
known procedures for sizing and rating heat exchange-
rs in industrial applications. 

NOMENCLATURE 

a wall thickness [m] 

A heat transfer area [m2] 

Bi Biot number 

C* thermal rate ratio 

Cp specific heat [J.kg-1.K-1] 

D diameter [m] 

h heat transfer coefficient [W.m-2.K-1] 

k thermal conductivity [W.m-1.K-1] 

L heat exchanger length [m] 

 !m  mass flow rate [kg.s-1] 

N dimensionless number 

NTU Number of Transfer Units 

Nu Nusselt number 

Pr Prandtl number 

r radius [m] 

Re Reynolds number 

T temperature [K] 

U overall heat transfer coefficient 

x axial position [m] 

GREEK SYMBOLS 

α dimensionless exponential factor 

γ convexity coefficient 

ϕ accommodation factor 

µ  dynamic viscosity [kg.m-1.s-1] 

Γ logarithmic law 

SUBSCRIPT 

c cold fluid 

e external tube 

h hot fluid 

i inner tube 

in input stream 

m maximum 

ml maximum in laminar flow 

m∞ maximum for fully developed turbulent annular 
flow 

out output stream 

w separating wall 

SUPERSCRIPT 

* dimensionless form 
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