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Abstract: The pollution of the aquatic ecosystems with heavy metal ions has become a global problem in recent years. 
Heavy metals normally occur in nature and are essential to life at trace levels. However, they can be toxic when their 
concentrations exceed the upper permissible limits. Heavy metal contaminated habitats have the ability to bioaccumulate 
in aquatic ecosystems, which, in turn, may enter into the food chain and lead to health problems. Therefore, it is 

necessary to remove these heavy metals from aquatic ecosystems. Several technologies are already in operation, but 
these conventional technologies involve high operational costs and may produce harmful impacts on aquatic 
ecosystems. Micellar enhanced ultrafiltration (MEUF) is an alternative technique to remove the trace concentrations of 
heavy metals from aquatic ecosystems. The uniqueness of MEUF is that it requires less energy due to low membrane 
cost and working pressure. Although various researchers have been carried out the MEUF study on the removal of 
heavy metal ions, few review papers indicate the factors on MEUF technique. That is the reason why this article focuses 

on reviewing of different parameters such as membranes, surfactants, operating conditions in the MEUF technique. In 
this technique, heavy metal ions’ removal even at lower concentrations has reached over 99%, which is evidently 
demonstrated in the presented review. The use of water-soluble ligands in combination with MEUF is a hybrid process to 
remove selectively and enhance the recovery of heavy metals. As understood in this study, an investigation is needed to 
treat highly concentrated solutions and real wastewater.  

Keywords: Critical micelle concentration, Heavy metal ions, Membrane types, Micellar-enhanced ultrafiltration, 

Surfactant. 

1. INTRODUCTION 

Heavy metals not only have seriously threatened 

human health but also severe impacts on aquatic 

ecosystems due to their non-biodegradable nature, 

toxicities, etc [1]. In natural aquatic ecosystems, heavy 

metals are present in low concentrations, generally at 

the nanogram to microgram per liter level. However, 

the occurrence of heavy metal contaminant has be- 

come a problem of increasing concern in recent times. 

This situation has arisen as a result of the rapid growth 

of population, increased urbanization, expansion of 

industrial activities, exploration, and exploitation of 

natural resources, an extension of irrigation, and other 

modern agricultural practices.  

Various techniques have been employed for remov- 

ing heavy metals from wastewater, such as precipita- 

tion, ion exchange, evaporation, reverse osmosis, ad- 

sorption. When used singularly, conventional chemical 

techniques generally generate toxic sludge or pollu- 

tants that are unable to settle within industries, while 

the biological techniques are prolonged slow and time-

consuming. At the same time, these techniques need 

large areas and proper maintenance and operation. 

Therefore, economical and effective water treatment is 

still a serious problem [2-9]. Hence to overcome them,  
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newly applicable treatment techniques are recently 

developed. 

In the last two decades, micellar-enhanced 

ultrafiltration (MEUF) as a surfactant-based pressure-

driven membrane separation technique has gained 

great notice for heavy metals removal from aqueous 

ecosystems. MEUF technique was initially introduced 

by Leung [10] in 1979 to treat industrial effluents laden 

with toxic heavy metal ions and organic compounds 

[11-15]. The main idea of this technique is to increase 

the size of metal ions by forming a complex with 

surfactant. When the surfactant is added to aqueous 

streams at a concentration higher than its critical 

micelle concentration (CMC) level, they form large 

amphiphilic micellar aggregates. These aggregates 

have a hydrodynamic diameter significantly larger than 

the pore diameter of ultrafiltration membrane. The 

metal ions and inorganic pollutants form a bond with 

the head group of the ionic micelles, which is 

oppositely charged through electrostatic interaction, as 

organic contaminants will entrap in micelles via Van der 

Waals force and will solubilize in the micelle interior 

[16]. Then, the micellar solution is passed through an 

appropriate molecular weight cut-off (MWCO) 

ultrafiltration membrane enough to reject the micelles. 

The micelles containing pollutants shall be rejected by 

the membrane, and in this way, the permeate side 

contains unbound ions, organic molecules in micelles  
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and surfactant monomers. This results in a clean 

permeate that can be recycled or discarded [17].  

The major advantages of MEUF compared to other 

techniques are relatively low energy consumption, high 

removal efficiency, high flux, small space requirement 

and convenience to recover surfactants [17,19-29]. The 

efficiency of the MEUF technique on heavy metals 

removal depends on various parameters, such as 

operating conditions, surfactant properties, membrane 

characteristics, additives, and competing metals to be 

removed, and so on [30]. Many research groups have 

studied the aforementioned parameters and their 

effect on MEUF performance. However, universal 

experimental conditions that can be applied to MEUF 

experiments do not exist. Experimental parameters 

have to be selected based on the individual system. 

Also, this technique must be used for the real treatment 

of wastewater not just in laboratories on a small scale.  

This paper aims to provide an overview of the state-

of-the-art MEUF technique. In the following sections, 

the effects of various parameters such as membrane, 

surfactant, and operating properties on MEUF 

performance are summarized. Published studies of 91 

cited references (2000–2020) are reviewed.  

2. PARAMETERS AFFECTİNG EFFİCİENCY OF 
MEUF TECHNIQUE  

Micellar-Enhanced Ultrafiltration technique has 

been shown to be a promising technique for the 

removal of multivalent  heavy metal ions in a 

solution. The MEUF technique involved the combined 

use of surfactant and ultrafiltration membrane. In this 

technique, the surfactant is added to an aqueous 

solution at a concentration higher than its CMC. The 

CMC is the minimum concentration at which micelles of 

the surfactant start to form. Micelle has a high electrical 

potential on its surface, where pollutants can be 

trapped depending on the charge characteristic of the 

pollutants. Therefore, the heavy metal cations electro- 

statically adsorb on the micellar surface formed by 

anionic surfactants. Similarly, cationic surfactants are 

effective in removing hazardous anions. When the 

solution containing micelle is passed to the ultrafilter 

membrane, micelle retains on the membrane surface. 

Unbound ions and surfactant monomers pass through 

the ultrafilter membrane to the permeate side. The sep- 

aration principle of the MEUF is illustrated in Figure 1. 

The performance of MEUF depends upon the 

material selection of ultrafiltration membranes and 

other characteristics, surfactant properties, operating 

conditions, and dissolved ions in the solution, as shown 

in Figure 2.  

2.1. Surfactant Properties 

2.1.1. Surfactant Type 

The literature studies presented 54.5% of Pb
2+

 

removal [31] by using regenerated cellulose membrane, 

15% chromate (CrO4
2−

) rejection of when PES mem- 

 

Figure 1: Schematic representation of the MEUF technique (adapted from [17]). 
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brane was used [32], rejection of polyphenols was 

between 5 and 28% by hydrophobic poly(vinylidene 

fluoride) (PVDF) membrane [33] in the absence of 

surfactants. These findings revealed the importance of 

surfactant application in the MEUF process. For this 

reason, the appropriate surfactant selection is one of 

the foremost parameters considered in the MEUF 

technique. Basically, the surfactant can be classified 

into four main types; anionic, cationic, non-ionic, and 

amphoteric surfactant [34]. Nevertheless, most of the 

researchers prefer ionic surfactants in the MEUF 

technique due to their ion-pair complex formation ability 

with oppositely charged ions for the removal of metal 

ions from aqueous solution via ultrafiltration. Usually, 

anionic surfactants have been utilized for the removal 

of metal ions, while cationic surfactants have been 

used for anions and organics. For example, sodium 

dodecyl sulfate (SDS) as an anionic surfactant in 

removing heavy metal ions from wastewater has been 

widely used by researchers. Samper et al. proved that 

100% removal of ion Pb
2+

 was achieved using SDS. 

They had also investigated the removal of other metal 

ions, Cd
2+

, Cu
2+

, Ni
2+

, Zn
2+

 using SDS and linear 

alkylbenzene sulfonate (LAS) as surfactants by MEUF. 

They found that metal retention is higher than 90%, 

except for Ni
2+

, for both SDS and LAS surfactant [35]. 

Taşcıoglu et al. found that the Cu
2+ 

ion was completely 

removed by MEUF performed at pH 5 in the presence 

of SDS [36]. Baek et al. demonstrated that 99 % of 

CrO4
2− 

removal was achieved using Cetylpyridinium 

chloride (CPC) as surfactant [37]. The potential of CPC 

also has been tested for the removal of organic 

materials from wastewater by MEUF. Luo et al. 

obtained that the removal of phenol using CPC is 

higher (93.8%) than with the use of other cationic 

surfactants; hexadecyltrimethylammonium bromide 

(CTAB) (85.9%) and octadecyl trimethyl ammonium 

bromide (OTAB) (92.4%), which is attributed to the 

structural similarity caused by CPC and phenol that 

have an aromatic ring [38]. 

2.1.2. Surfactant Concentration 

The CMC defines micellar aggregates formation 

over which surfactant solutions show an abrupt change 

in physical properties such as electrical conductivity 

and surface tension. Aoudia et al. reported that feed 

SDS concentration below CMC has Cr
3+

 removal 

efficiency of 33%. On the other hand, a marginal 

increase in rejection (99%) was observed at CMC [21].  

A study for the removal of zinc from aqueous solu- 

tions by using SDS indicated that an effective removal 

(97%) was noted when the initial SDS concentration 

goes beyond 6 mM, although the CMC of SDS is 8.27 

mM. The rejectionis attributed to the concentration 

polarization (CP) and adsorption of surfactant mono- 

mers at the membrane/solution interface [39]. Liu et al. 

reported Cu
2+

 removal efficiency of 93% at the molar 

ratio of SDS to Cu
2+

 of 5 and SDS concentration equal 

to CMC [40]. Juang et al. investigated the removal of 

single metal ions, including Cs
+
, Sr

2+
, Mn

2+
, Co

2+
, Cu

2+
, 

Zn
2+

, and Cr
3+

 from aqueous solutions by using SDS. 

They showed that complete removal of metal ions 

except for Cs
+ 

could be achieved as long as the SDS 

micelles were formed [23]. Beolchini et al. mentioned 

an effective removal of arsenic (As-V) (98%) [41]. Baek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: MEUF operating parameters block diagram. 
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et al. demonstrated that at the molar ratio of 1:5, 98% 

of CrO4
2−

 removal was achieved. In addition, increasing 

molar ratio to 1:5 and 1:10 CrO4
2−

 removal efficiency 

through MEUF increased from 98% to over 99% [37]. 

Gzara et al. studied permeate flux and CrO4
2−

 rejection 

as a function of CTAB surfactant concentration in the 

feed solution at a fixed CrO4
2−

 concentration 2.10
-4

 M of 

feed solution. They illustrated that CrO4
2−

 rejection was 

above 80%, even below the CMC of surfactant. The 

higher surfactant concentration causes a micelle 

aggregation layer (MAL) on the membrane surface 

which shows micelles presence and results in 

concentration polarization as mentioned in previous 

studies [42].  

2.1.3. Surfactant Size, Shape, and Mixed 
Surfactants 

The micelles size has an important role in the 

removal of a targeted ion in the MEUF technique. Xu et 

al. expressed that normal micelle size is 5.07 nm at 

CMC of SDS, while beyond CMC value, micelle size 

decreased, and its shape was also changed [43]. 

Linear molecule passes through a membrane that will 

retain globular molecules of the same molecular mass. 

Several factors affect the CMC of a surfactant, 

including temperature, pressure, presence of non-ionic 

surfactant, and inorganic salt. Ionic surfactants have 

much higher CMC than non-ionic ones even though 

Table 1: Basic Properties of Surfactants Mentioned in the Article 

Surfactant Acronym General Structural Formula 
Molecular 

Weight 
CMC  
(mM) 

Type 

Sodium dodecyl sulfate SDS 

 

288.37 8.27 Anionic 

Sodium dodecylbenzene-

sulfonate 
SDBS 

 

348.48 1.5 Anionic 

Sodium hexadecyl diphenyl 
oxidedisulfonate 

DPDS 

 

598.72 0.601 Anionic 

Cetylpyridinium chloride CPC 

 

358.01 0.90 Cationic 

Hexavalent trimethyl  
ammonium bromide 

CTAB 

 

364.46 0.92 Cationic 

Octadecyl trimethyl  
ammonium bromide 

OTAB 

 

392.50 0.28 Cationic 

P-tertiaryoctylphenoxy 
polyethyl alcohol 

Triton X-
100/TX100 

 

628 0.28 Non-ionic 

Polyethylene glycol lauryl ether  Brij-35 

 

298 0.28 Non-ionic 

Polyoxyethylene  
sorbitan monooleate 

Tween 80 

 

1310 0.03 Non-ionic 

Nonylphenyl ether NP-12 

 

230 0.078 Non-ionic 
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they contain equivalent hydrophobic groups in an 

aqueous medium [44]. Theoretically, less removal of 

ionic contaminants by the MEUF technique can be 

expected using nonionic surfactants. Yenphan et al. 

studied on removing Pb
2+

 ion using TX-100 and nonyl 

phenyl ether (NP12) as nonionic surfactants and found 

that the removal of the Pb
2+

 ions was low, about 9% to 

18% for TX-100 and 30% to 37% for NP12. They 

explained that the low rejection of ions was due to the 

complex formation between the Pb
2+

 ions and ethylene 

oxide (EO) groups of TX-100 and NP12 [45].  

These findings supported the importance of surfact- 

ant selection with large size micelles formation, low 

CMC, the high solubility of the solute, lower adsorption 

ability to the membrane surface, and biodegradable are 

considering properties for better MEUF performance. 

However, all at the same time is not possible, therefore, 

a strong interaction between solute and surfactant is 

considered to be the basic criteria. Furthermore, 

surfactants with lower CMC and readily biodegradable 

are preferred in the MEUF technique in order to reduce 

the surfactant concentration in permeate. For example, 

Lee et al. reported that CrO4
2−

 removal reduced from 

93.7% to 84.8% when the concentration of Tween 80 

increased from 10 to 25 mM in CPC and CrO4
2− 

solution [46]. This aspect of the technique could be 

managed by reducing the CMC of ionic surfactant by 

adding anon-ionic surfactant, but the removal efficiency 

decreases slightly [47,48]. Zhang et al. demonstrated 

that removal efficiencies of Cu
2+

 were up to the 

maximum values 98.3 and 95.8% when the molar 

ratios of Brij 35 and TW80 to SDS were 0.3, and it was 

93.5% given 0.7 molar ratio of TX100 to SDS. They 

also revealed the concentration of SDS in the permeate 

decreased dramatically with the addition of these 

nonionic surfactants [49]. Xu et al. showed that at ahigh 

molar ratio of non-ionic surfactant Brij in the solution 

not only the CMC of anionic surfactant (SDS), decre- 

ased but Cd
2+

 removal efficiency was also decreased 

[43].  

2.2. Membrane Properties 

Choosing the appropriate membrane is one of the 

main parameters to efficiently link reaction and metal 

rejection by the MEUF technique. Important factors in 

membrane selection include membrane material, 

surface charge, and MWCO/pore size. An ideal 

membrane should have high hydraulic permeability to 

water, which enables high permeate flux under a 

moderate transmembrane pressure (TMP), molecular 

sieving features so that the membrane can completely 

retain solutes with molecular weight higher than a 

particular MWCO value and completely release those 

with lower ones, high stability against chemical/thermal 

changes, and solute types or concentrations changes, 

high fouling resistance to ensure longer membrane life, 

and high manufacturing reproducibility for better 

performance of MEUF technique. Organic MEUF 

membranes are made of polyethersulfone (PES), 

regenerated cellulose (RC), polysulfone (PS), cellulose 

acetate (CA), polyvinylidene difluoride (PVDF), 

polyacrylonitrile (PAN), polytetrafluoroethylene (PTFE), 

and polyamide (PA). In addition, ceramic membranes 

are also a desirable system because they are capable 

of withstanding under high temperatures and highly 

acidic or basic environment [23,26].  

2.2.1. Membrane Material  

Metal rejection and permeate flux can vary 

depending on the nature of membrane material that is 

hydrophilic or hydrophobic. These membranes studies 

have demonstrated that micelles adsorb preferably on 

the hydrophilic surface of PA membranes rather than 

on the hydrophobic surfaces of ceramic or PS 

membranes [50]. Hydrophilic membranes consist of 

capillaries large enough to display for more than one 

layer; thus, either a second layer is adsorbed on the 

first one, or adsorbed clusters are formed on the 

surface. In both these structural models, hydrophilic 

head groups are in the outer layer and make the 

surface more hydrophilic. On the other hand, the 

surface aggregates consist either of monolayer or 

semi-spherical clusters in a hydrophobic membrane. 

The tail groups are adsorbed to the surface. In contrast 

to a hydrophilic membrane, head groups arrange in the 

outer coat so that they are in direct contact to the 

aqueous medium as shown in Figure 3 [51]. 

Chung et al. investigated the effect of membrane 

hydrophilicity on the performance of the MEUF 

process. They were prepared from polysulfone blends 

containing various amounts of a hydrophilic copolymer, 

poly(1-vinylpyrrolidone-co-acrylonitrile) (P(VP-AN)). An 

increase in the permeate flux was observed with an 

increase in the membrane hydrophilicity [52]. Taşcıoglu 
et al. found that the Cu

2+ 
ion was entirely removed by 

(with) hydrophilic (RC) membrane and SDS as 

surfactant [36]. 

2.2.2. Membrane MWCO 

Larger pore-sized membranes are known to cause 

earlier development of the concentration polarization 

and reduce the surfactant’s release at the permeate 

https://pubmed.ncbi.nlm.nih.gov/?term=Zhao+B&cauthor_id=23676382
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[21]. Şahin et al. demonstrated that Pb
2+ 

ion was almost 

wholly removed from aqueous solution at pH 6 in the 

presence of SDS at relatively low concentrations using 

RC membrane. In their experiment, they further ob- 

served two times increase in permeate flux with an 

increase in the membrane porosity by 1000 Da to 5000 

Da [31]. Karate and Marathe explained that Ni
2+ 

and 

Co
2+

 were simultaneously removed from aqueous 

solution using cross-flow micellar enhanced ultrafiltra- 

tion. They used 20 kDa PS membrane and obtained 

the rejection of more than 99% [53]. Rafique and Lee 

reported average Cd
2+ 

removal (74.6%) using PAN 

membrane [54]. In another study, Rafique et al. 

obtained higher Ni
2+

 rejection (83.0%) using membrane 

MWCO of 300 kDa than that of 100 kDa (72.3%) [55]. 

Similar results were reported by Landaburu-Aguirre et 

al., reporting that the ultrafiltration membrane with 3-

kDa pore size exhibited more Zn
2+

 removal than the 

10-kDa pore size membrane [56]. 

2.3. Operating Conditions 

The MEUF can be applied in two operating modes: 

a dead-end (unstirred batch system, stirred batch, 

stirred batch with feed reservoir) or crossflow mode 

(with and without retentate recycling), which can be a 

pressure (or vacuum)-driven system (Figure 4). A feed 

solution is applied perpendicular to a membrane in 

dead-end mode without any flow along the membrane. 

As the process proceeded, an accumulation of rejected 

solutes occured near the membrane surface, which 

decreased permeate flux. Therefore, the feed solution 

was stirred to reduce polarization effects. In crossflow 

mode, shear forces are applied on the membrane 

 

Figure 3: Surfactant adsorption on hydrophilic and hydrophobic membrane surfaces (adapted from [51]). 

 

Figure 4: Schematic representation of operating modes; dead-end (A-unstirred batch system, B-stirred batch, C-stirred batch 
with feed reservoir) or cross-flow mode (E-with and F-without retentate recycling) (adapted from [17]). 



40     Journal of Chemical Engineering Research Updates, 2020, Vol. 7 Deniz ŞAHİN 

surface through a flow of the feed along the membrane 

[17].  

For example, Xiarchos et al. investigated the 

removal of Cu
2+

 from aqueous solutions via batch 

stirred cell mode MEUF. They obtained the maximum 

rejection coefficient of 98.4% for the following optimal 

conditions: stirrer speed: 100 rpm, applied pressure: 3 

bar which was adjusted by pressurized air, and operat- 

ing temperature: 25±2 °C [57]. Kim et al. reported that 

the order of removal efficiency was Cd>Cu>Co≈Zn by 
using a solvent-resistant stirred cell filtration [58]. Das 

et al. treated an aqueous solution containing copper 

and potassium permanganate (MnO4
2-

) by cross-flow 

mode ultrafiltration using a mixed micellar system 

comprising of SDS and CPC. They reported that the 

retention of Cu
2+

 was in the range of 90-100% and that 

of potassium permanganate was 96-99% [59]. While 

cross-flow filtration has been used widely in industrial 

applications, the stirred batch system has been 

preferred in laboratory studies because it is easy to set 

up and requires less equipment of feed volume. 

2.3.1. Operating Pressure  

MEUF, a pressure-driven membrane separation 

technique, uses less pressure than other filtration 

techniques for the removing of small-sized molecules, 

which makes MEUF a good removing process. Various 

studies were conducted to investigate the effect of 

operating pressure on MEUF performance for removing 

inorganic and organic pollutants. Muthumareeswaran 

et al. found no such significant effect of pressure on 

CrO4
2−

 removal, which suggests that there may be 

negligible CP [60]. Another study done by Juang et al. 

the removal of a single metal ion by using SDS 

presented similar results as aforementioned [23]. 

Huang et al. reported that the TMP and feed concentra- 

tion of SDS had significanty influenced on the perme- 

ate flux. They discovered that increase in TMP resulted 

in higher flux while SDS retention was decreased [61]. 

Ghazi et al. found that the permeate flux increased 

almost linearly with operating pressure, within the 

range from 0.35 L m-
2 

min
-1

 at 1 bar to 1.79 L m-
2
 min

-1
 

at 4 bar. They also showed that the Mn
2+

 rejection 

increased slightly with an increase of the operating 

pressure, ranging from 89.658 at 1 bar to 97.971 at 4 

bar [62]. Rafique and Lee investigated the effect of 

input pressure on Cd
2+

 removal under different initial 

pressures. Cd
2+

 removal increased with an increase in 

initial retentate pressure, similar to previous studies 

[54]. With an increase in retentate pressure, TMP also 

increased. At higher pressure, micelles might be 

compacted and would cause more retention of a 

broken micelle [63]. Hence, as a result of pressure 

increase, secondary resistance to the solutes 

transporting through the membrane to the permeate 

solutions was increased [64]. Luo et al. obtained that 

the retention of phenol remains almost independent of 

pressure nearly within the range of 0-0.15 MPa [38]. In 

conclusion, a very high operating pressure is not 

necessary for a high permeate flux. The operation of 

the MEUF technique at low TMP is an important issue 

in terms of minimizing operating costs. 

2.3.2. pH 

The pH affects the interaction of solute and micelle; 

thereby, pH of the solution has a significant influence 

on solute removal through the MEUF technique. The 

influence of pH variations in the MEUF technique is 

dependent on the nature of solute and surfactant. 

Juang et al. reported that the removal efficiency of 

cationic metals (Mn
2+

, Co
2+

, Cu
2+

, Zn
2+

, and Cr
3+

) was 

increased at higher pH values with the help of SDS 

[41]. The removal efficiency was decreased at lower pH 

due to the competition between H
+
 ions and cationic 

metal ions to get adsorbed on the micelle surface. Xu 

et al. observed that there was no effect of pH on the 

removal efficiency of Sr
2+

 and Cr
3+

, but rejection of Cd
2+

 

increased from 83 to 99% when the pH increased from 

3 to 11 in the feed solution at a fixed Cd
2+

 and SDS 

concentration of 100 mg/L and 8 mM, respectively [43]. 

Şahin et al. reported that the removal of Pb
2+

 sharply 

increased with the increase of pH (3-7). The increase in 

the removal was mainly due to the formation of metal 

hydroxides at the higher pH. The Pb(OH)
+
 begins to 

form at pH 5; the percentage of its formation gradually 

increases with the increase of pH and reaches its 

maximum value at pH 8.5. At higher pH, Pb(OH)2 and 

Pb(OH)3
-
 and Pb(OH)4

2-
 complexes are formed, 

respectively. They have also achieved that Pb
2+ 

ion was 

almost completely removed from a battery plant’s 

wastewater by adding 0.1 mM SDS at pH 6 [31]. Chen 

et al. observed the effect of pH on arsenate As (V) 

removal by adding 20 mM CPC prior to UF. Rejection of 
As (V) increased from 0.39 to 0.89 as the pH increased 

from 5.0 to 8.2. Higher pH leads to a higher As removal 

because As (V) is increasingly present as a divalent 

anion with a higher binding capacity to the micelles of 

surfactant [65]. 

2.3.3. Operating Temperature 

From previous literature, it is known that tempera- 

ture influences the CMC of the surfactant, the in 

viscosity of solution, solubility, and micelle properties 
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likethe size of the micelles. The CMC of surfactants is a 

function of temperature. Kowalska et al. reported that 

the temperature increase of SDS solutions resulted in 

an increase CMC of the SDS due to the demicellization 

occuring at a higher temperature because of the 

breakage of the palisade layer of the micelle, and thus, 

detachment of surfactant ions from micellar bulks 

occurred [66]. As the temperature is raised, the solu- 

bility increases until the CMC is reached at the Krafft 

temperature. Below the Krafft temperature, precipita- 

tion of the ionic surfactant occurred. For nonionic 

surfactant, when the temperature is increased to a 

spesific value, the nonionic surfactant solution will 

separate into surfactant-rich and water-rich phases and 

will become turbid. The temperature at which the 

solution becomes turbid is termed cloud point (CP). 

The cloud-point temperature for nonionic surfactants 

depends upon the hydrophilic character of the surfact- 

ant. Purkait et al. observed that nonionic surfactants 

have CP temperature below 100°C, e.g., TX-100 

(65°C) or TX-114 (24°C) [67], and this temperature 

undergoes changes due to the addition of solutes. In 

the case of ionic surfactants, CP temperature is higher 

than 100°C because of the solubility of ionic surfact- 

ants increases with an increase in temperature. In 

addition, increasing temperature results in a decrease 

in viscosity which ultimately increases flux through the 

membrane and affects the filtration process [17]. 

Urbański et al. reported that CTAB and alkyl poly-

glucoside (APG) surfactants caused a small additional 

resistance, but SDS added a strong resistance to the 

membrane at high temperatures. This is because 

CTAB solutions have a high krafft point 250°C, while 

the krafft point of SDS was 210°C [64]. 

2.4. Dissolved Ions  

The addition of salt decreases the surfactant leak- 

age to permeate due to drops in the CMC of the sur- 

factant, which leads to efficient removal of surfactant 

through membranes. Miyagishi et al. determined that 

the drop is much lower for nonionic surfactants than for 

ionic surfactants [68]. In the presence of salt, the 

repulsive forces between the head groups of ionic 

surfactant, which are usually fighting against the 

aggregation, decrease due to the electrostatic shielding 

effect. Thus, in the presence of an electrolyte, micelles 

formation is comparatively easy [44,69]. In this study, 

researchers presented that Cd
2+

 removal efficiency 

decreased from 95% to 75% with the increase of the 

NaCl concentration from 10 to 100 mM. This may be 

attributed to the cation Na
+
 which occupies the 

available binding sites. Additionaly, Cl
−
 anions can form 

complexes with Cd
2+

 metal ions [44]. Aoudia et al. 

reported that Cr
3+ 

removal was reduced from 99.65 to 

92.21% with the addition of 0.05 M NaCl and even up 

to 53.50% by adding 0.9 mM NaCl at the rate of 0.9 

mmol/dm
3
 [21]. When the salt is added to a solution, 

some of the water molecules are attracted by the salt 

ions which enhancing the attaching of organics with the 

micelles due to the salting-out effect as demonstrated 

for phenols [70]. On the contrary, Gzara and Dhahbi 

determined that as long as the NaCl feed concentration 

is less than or equal to 100 mM, more than 88% of Cr
3+ 

are retained and surfactant leakage was reduced [42]. 

Generally, permeate flux decreases by adding salt but 

metal removal efficiency depends upon the nature of 

solute. 

Various researchers reported that the retention of 

metal in the MEUF technique was inhibited in the 

presence of other inorganic pollutants. Baek and Yang 

reported that the rejection of nitrate (NO3
-
) from the 

nitrate/chromate/CPC system was below 40% with the 

molar ratios of 1:1:1, 1:1:2, and 1:1:3 (nitrate:chromate: 

CPC). They explained that when the ratio was increased 

to 1:1:5 and 1:1:10, rejection of NO3
-
 reached 65% and 

80%, respectively. The rejection of NO3
-
 was inhibited 

in the presence of CrO4
2-

 due to differences in binding 

efficiency towards ionic micelles between counter ions, 

which depends on the valence of counter ions; the 

valence of CrO4
2-

 was higher than that of NO3
-
. The 

rejection of NO3
-
 was suppressed significantly by co-

existence of CrO4
2-

 compared to the single component 

NO3
-
/CPC system. However, the rejection of CrO4

2- 
was 

increased as compare to single component CrO4
2- 

/CPC system. In the mixed system, the rejection of 

CrO4
2- 

increases from 50%, 71%, 90%, and 98% at the 

molar ratios of 1:1:1 to 1:1:2, to 1:1:3, and to 1:1:5 

(nitrate:chromate:CPC), respectively, as compared to 

CrO4
2- 

/CPC system [71]. The same author did another 

study for NO3
-
, CrO4

2-
,
 
and ferric cyanide [Fe(CN6)

3-
] 

removal using CPC and clearly observed the inhibition 

of [Fe(CN6)
3-

] on the removal of NO3
-
 and CrO4

2-
, but 

the inhibition of CrO4
2-

 on the removal of NO3
-
 was 

lower than that of ferricyanide [72]. Lee et al. Investi- 

gated simultaneous removal of CrO4
2- 

and Trichloro- 

ethylene (TCE) by MEUF in the mixed surfactants. 

They stated that the removal of TCE and CrO4
2- 

was 

not hindered by each other's presence, since the 

removal mechanism is different [46]. Similarly, Li et al. 

reported that the removal of Cd
2+

 and phenol using 

pure SDS and mixed surfactants (Triton X-100/SDS) 

[73]. In another experiment, Tung et al. found that the 

co-existence of phenol slightly enhanced Cu
2+

 removal 

https://www.synonyms.com/synonym/however
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while phenol removal was approximately 27% due to its 

relatively hydrophilic characteristics [48].  

In literature, simultaneous removal of multiple ions 

through the MEUF technique has also been investi- 

gated. For example, Karate and Marathe explained that 

Ni
2+ 

and Co
2+

 were simultaneously removed from 

aqueous feed using cross-flow micellar enhanced 

ultrafiltration [53]. Channarong et al. reported that the 

simultaneous removal of Ni
2+ 

and Zn
2+

 from aqueous 

solution by the MEUF and activated carbon fiber 

(MEUF-ACF) hybrid process. They observed that the 

concentration polarization of micelles played a major 

role in the removal of Ni
2+

, Zn
2+

, and SDS. In the case 

of single ion removal, ions are attracted by the charged 

surface of the micelles until the binding capacity is 

attained. If multiple ions are present in the solution, 

they compete for the binding sites at the surface of the 

micelle [74]. 

3. SELECTIVELY REMOVAL: LİGAND MODİFİED 
MİCELLAR ENHANCED ULTRAFILTRATION (LM-
MEUF)  

Traditional MEUF has the disadvantage of not 

providing a high selectivity in removing metal ions from 

aqueous solutions. ln recent years, this problem has 

been overcome by adding a ligand to an aqueous 

solution. The vast majority of the ligand forms a 

complex with the target ion of interest and solubilizes or 

dissolves inside the hydrophobic core of the micelles. 

This solution containing surfactant/ligand/ion is then 

forced through an ultrafilter membrane. Thus, the 

macro-ligand and its associated ions will be rejected by 

the membrane, unlike the uncomplexed ions that can 

pass through the membrane. This process is called the 

“ligand-modified MEUF” (LM-MEUF) technique. The 

main advantages of the LM-MEUF technique over the 

ultrafiltration system are to have more efficient 

separation with better selectivity, recovery of desire 

metals, and complexing agent can be chosen in order 

to be easily regenerated and reuse. The efficiency of 

the LM-MEUF technique depends on the ligand to 

metal ion mole ratio, the nature of the ligand, and the 

pH of the solution [36,85,86]. Based on the literature 

review, the removal efficiency of LM-MEUF for different 

heavy metals is summarized in Table 2. 

Roach and Zapien examined the specific separation 

of U(VI) from Sr
2+

. For both metal ions rejection 

exceeded 99.9% [86]. Şahin and Taşcıoglu attained the 

removal of Pb
2+ 

at pH 3, ~82%, in the presence of 

Dithizone and SDS as a surfactant. Another study done 

by the same author for removing of Cu
2+

 ions from both 

single-component and Cd
2+ 

containing solutions in the 

presence of SDS was determined. Complete removal 

of Cu
2+

 ions from Cd
2+ 

containing solutions could be 

achieved 2,4,6‐tri(2‐pyridyl)‐triazine (TPTZ) out of 20 

ligands [36]. Complexation behaviors of 20 ligands with 

Cu
2+

 and Cd
2+

 by co-existence of CTAB and TX100 

micelles at different pH values. The most effective 

Table 2: Heavy Metal Removal Efficiency in LM-MEUF Technique 

Metal Ions Ligand Surfactant Removal % Ref. 

Cd
2+

 pyridine-2-azo-p-dimethylaniline (PADA) SDS ∼99% 75 

Cr
3+

 etylenediaminetetraacetic acid (EDTA) SDS 99% 76 

Mg
2+

,Ni
2+

, Cd
2+

, 
Cu

2+
, Fe

2+
, Zn

2+
 

nonaoxyethylene oleylether  
carboxylic acid (RO90) 

SDS > 95% 77 

Ni
2+

/Co
2+

 iminodiacetic acid (IDA) SDS and SDS/TX100 
Co

2+
:84% 

Ni
2+ 

:93% 
78 

Rh triphenylphosphine (TPP) nonylphenol ethoxylate(Marlopen NP9) ∼100% 79 

Rh SulfoXantPhos (SX) 
poly(oxyethylene)-5-nonylphenol ether (NP5), 

poly(oxyethylene)-9-nonylphenol (NP9) 
93% 80 

Cu
2+

 citric acid>NTA>EDTA SDS 
citric 

acid>NTA>EDTA 
81 

Pd
2+

,Pt
2+

 pyridine-2-azo-p-dimethylaniline (PADA) SDS Pd
2+

:98% 82 

Pu
4+

 trioctylphosphine oxide (TOPO) 
polyethylene glycol ether,  

Tergitol 15-S-9 (Tergitol) 
90% 83 

U(VI) etylenediaminetetraacetic acid (EDTA) SDS 89% 84 

Am
3+

 
2-ethylhexyl phosphonic acid  

mono-2-ethylheyxl ester (H2A2) 
SDS and Tergitol ∼100% 85 
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ligand was found to be in the presence of CTAB and 2-

hydroxy-1-(2-hydroxy-4-sülfo-1-naphthylazo)-

naphthalene-3-carboxylic acid. Complete removal of 

Cu
2+

 ions from Cd
2+ 

could be achieved [87]. Roach et 

al. used nitrilotriacetic acid (NTA) derivatives to remove 

of Pb
2+

 from an aqueous solution. Ligands provide 

excellent separation of Pb
2+

, with RPb = 99.0-99.9% in 

the pH range 6 to 8 [88]. Vieira et al. showed that 

water soluble polymeric ligands to be powerful 

substances to remove trace metals from industrial 

wastewater through ultrafiltration [89]. Leclercq et al. 

investigated the complexation of Cu(II) with original 

alkylamidotartaric acids (CxT) in the presence of Brij 58 

and demonstrated that the extraction by LM-MEUF is 

very efficient technique [90]. Rahmanian et al. studied 

the effect of nonionic surfactant, pH and ligand and 

electrolyte concentration on Zn
2+

 rejection and 

permeate for first time [91]. 

4. CONCLUSION 

Micellar enhanced ultrafiltration is a versatile 

technique with manifold applications. As shown by the 

multiple examples in this review, MEUF allows for an 

efficient treatment of aqueous solutions containing 

solutes using surfactant at the CMC. The selection of 

appropriate parameters, e.g., surfactant properties, 

membrane characteristics, operational conditions, and 

dissolved ions, is the key to a successful application of 

MEUF. Researchers are more attracted to the different 

types of membranes and their applications. Usually, 

metal ions removal increased with the increased 

pressure, pH, and increased concentration of ionic 

surfactant. The rejection of solutes does not dependent 

on the initial amount of surfactant used but depends on 

its concentration near the membrane surface. However, 

the flux is determined by the interaction of the 

surfactant with the membrane under proposed 

conditions, and relative flux dramatically decreases 

when surfactant concentration increased. Many 

examples showed that a variety of metal ions could be 

applied for which a desired interaction with the 

surfactant can be established, finally resulting in 

rejection coefficient > 99%. These high values are not 

limited to aqueous solutions of single ion only and can 

be extended to mixtures of different solutes, e.g., 

multiple ions. As understood in this review, for applying 

the MEUF technique in real wastewater still needs 

some work, such as improving the performance in 

terms of permeate flux, and recovering metals, 

organics and surfactant from the retentate solution. 

Metal removal has also enhanced in the MEUF + 

ligand technique.  
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